Форсунки на бензиновом двигателе: Нерабочая форсунка на бензиновом двигателе признаки. Как распознать и что делать в случае загрязнения форсунок инжекторного двигателя. Промывка топливной системы в целом

Содержание

Как проверить форсунки не снимая с двигателя

Неисправности инжектора (форсунок) встречаются как на дизельных, так и на бензиновых двигателях. В схеме устройства системы питания инжекторного двигателя форсунка является элементом, который отвечает за впрыск распыленной порции топлива в камеру сгорания под определенным давлением.

Точное дозирование, герметичность и своевременное срабатывание инжекторной форсунки обеспечивают устойчивую и исправную работу двигателя на всех режимах его работы. Если форсунка «льет» (пропускает лишнее топливо в момент, когда его подача не требуется), снижается эффективность распыла горючего (нарушается форма факела) и возникают другие неисправности инжектора, тогда двигатель начинает дымить серым или черным дымом, теряет мощность, расходует много топлива и т.п.

Содержание статьи

Что указывает на возможные проблемы с инжектором

Сразу отметим, что причин нестабильной работы двигателя может быть много, начиная от забитого топливного фильтра, поломки бензонасоса, вышедшей из строя свечи зажигания или неисправной катушки до потери компрессии, проблем с ГРМ и т.

д. Наряду с этим одним из главных признаков неисправности форсунок является затрудненный пуск двигателя, особенно «на холодную», а также расход бензина или солярки (зависимо от типа двигателя), который заметно увеличивается. Еще необходимо отметить неустойчивую работу ДВС в режиме холостого хода, похожую на так называемое «троение» двигателя.

При езде возможно достаточно частое проявление одного или сразу нескольких симптомов:

  • наличие рывков, сильно замедленны реакции при нажатии на педаль газа;
  • явные провалы и потеря динамики при попытках резкого ускорения;
  • машина может дергаться на ходу, при сбросе газа, а также после смены режима нагрузки на мотор;

Необходимо добавить, что подобную неисправность необходимо устранять безотлагательно, так как проблемы с инжектором негативно сказываются не только на ресурсе двигателя и трансмиссии, но и на общей безопасности движения. На автомобиле с неисправными форсунками водитель может испытать серьезные трудности при обгоне, на крутых подъемах и т.

п.

Самостоятельная проверка форсунок

Начнем с того, что автомобильные форсунки делятся на несколько типов, из которых в разное время широкое применение нашли два вида: механические форсунки и электромагнитные (электромеханические) инжекторы.

Электромагнитные форсунки имеют в основе специальный клапан, который осуществляет открытие и закрытие форсунки для подачи топлива под воздействием управляющего импульса ЭБУ двигателем. Механические форсунки открываются в результате роста давления топлива в форсунке. Добавим, что на современных авто зачастую устанавливаются электромагнитные устройства.

Чтобы проверить форсунки своими руками без снятия с машины можно воспользоваться несколькими способами. Наиболее простым и доступным способом, который позволяет быстро проверить инжекторные форсунки не снимая их с машины, является анализ шумов, издаваемых двигателем в процессе работы.

Определить неисправную форсунку на слух по звуку работы ДВС можно в том случае, если из блока цилиндров доносится приглушенный высокочастотный звук. Это указывает на необходимость чистки инжектора или неисправность форсунок.

Как проверить подачу питания на форсунки

Указанную проверку производят в том случае, если сами форсунки исправны, но какой-либо из инжекторов не работает при включении зажигания.

  • для диагностики от инжектора отключается колодка, после чего к АКБ нужно подключить два провода;
  • другие концы проводов крепятся к контактам форсунки;
  • затем нужно включить зажигание и зафиксировать наличие или отсутствие вытекания топлива;
  • если горючее течет, тогда данный признак указывает на проблемы в электрической цепи;

Еще одним из диагностических приемов является проверка инжектора при помощи мультиметра. Данный способ позволяет измерить сопротивление на форсунках не снимая их с двигателя.

  1. Перед началом работ необходимо выяснить, какой импеданс (сопротивление) имеют форсунки, установленные на конкретном автомобиле. Дело в том, что встречаются инжекторные форсунки как с высоким, так и с низким сопротивлением.
  2. Следующим шагом станет выключение зажигание, а также сбрасывание минусовой клеммы с АКБ.
  3. Далее потребуется отключить электрический разъем на форсунке. Для этого необходимо использовать отвертку с тонким концом, при помощи которой нужно отщелкнуть специальный зажим, расположенный на колодке.
  4. После отсоединения разъема переводим мультиметр в нужный режим работы для замера сопротивления (омметр), подключаем контакты мультиметра к соответствующим контактам форсунки для измерения импеданса.
  5. Сопротивление между крайним и центральным контактом форсунки с высоким импедансом должно быть в рамках от 11-12 до 15-17 Ом. Если на автомобиле применяются форсунки с низким сопротивлением, тогда показатель должен быть от 2 до 5 Ом.

Если замечены явные отклонения от допустимых норм, тогда форсунку нужно демонтировать с двигателя для подробной диагностики. Также возможна замена форсунки на заведомо исправную, после чего оценивается работа двигателя.

Комплексная диагностика работы форсунок на рампе

Для такой проверки топливную рейку понадобится снять с мотора вместе с закрепленными на ней форсунками. После этого нужно присоединить все электрические контакты к рампе и форсункам в том случае, если таковые отключались перед снятием. Также необходимо вернуть на место минусовую клемму АКБ.

  1. Рампу необходимо разместить в подкапотном пространстве так, чтобы получилось поставить под каждой из форсунок мерную емкость с нанесенной шкалой.
  2. Нужно подключить к рампе трубки подачи топлива и дополнительно проверить надежность их крепления.
  3. Следующим шагом является включение зажигания, после чего необходимо немного провернуть двигатель стартером. Данную операцию лучше проводить с помощником.
  4. Пока помощник вращает двигатель, проконтролируйте эффективность работы всех инжекторов. Подача горючего должна быть одинаковой на всех форсунках.
  5. Завершающим этапом станет выключение зажигания и проверка уровня топлива в емкостях. Указанный уровень должен быть равнозначным в каждой емкости.

Большее или меньшее количество горючего в мерных емкостях укажет на неисправность форсунки или необходимость очистки одного или нескольких инжекторов. Если форсунка демонстрирует недолив, тогда элемент нужно чистить или менять. Подтекание топлива после отключения зажигания укажет на то, что форсунка «льет» и потеряла герметичность.

Кроме самостоятельной проверки можно воспользоваться услугой диагностики инжектора в автосервисе. Данную операцию совершают на специальном проверочном стенде. Проверка форсунки на стенде позволяет точно определить не только эффективность подачи горючего, но и форму факела во время распыла топлива.

Наш сайт: http://gl2.ru/ — сервис LR-West

Наши адреса:

г. Москва, ул. Рябиновая 28а, стр. 2

г. Москва, ул. Федоскинская 12с1

г. Москва, Каширское шоссе, поселок совхоза им. Ленина, стр. 1

Телефон +7 (495) 374 50 67

E-mail: [email protected]

Мы в соц.сетях:

Facebook — https://www.facebook.com/groups/lrwestMoscow

В контакте — https://vk.com/lrwestmsc

Инстаграм — https://www.instagram.com/lrwest.msc/

Наш канал на youtube — https://www.youtube.com/user/LRWestMSK/videos — Подписаться на канал!

Видео презентация LR-WEST:

сервис на ул. Федоскинская 12с1 — https://youtu.be/v17P9Zwi6cU

сервис на Рябиновой 28ас2 — https://youtu.be/3W2Od5y8ndQ

сервис на Каширском шоссе — https://www.youtube.com/watch?v=9ugEGkd5PbQ&t=3s

Как убедиться в том, что на топливные форсунки автомобиля поступает нужное напряжение?

Неисправности топливных форсунок ухудшают показатели топливной экономичности и могут привести к перебоям в работе двигателя. Убедитесь, что на форсунки поступает напряжение, достаточное для их корректной работы.

Если двигатель вашего автомобиля работает неравномерно, возможно, причина этого кроется в системе подачи топлива. Неисправность форсунки может нарушать процесс воспламенения в цилиндре. Это, в свою очередь, приводит к дисбалансу в работе двигателя на всех режимах. Топливная экономичность падает, так как топливо может сгорать не полностью, и вам приходится сильнее нажимать на газ, чтобы заставить автомобиль двигаться.

Топливные форсунки – это особый тип соленоидов, которые могут быстро активировать свои поршни. Это позволяет форсунке впрыскивать точное количество топлива в цилиндр даже при работе двигателя на высоких оборотах. За период эксплуатации автомобиля форсунки срабатывают миллионы раз. Со временем они изнашиваются, и в них могут накапливаться отложения, снижающие производительность работы двигателя.

Это руководство описывает проверку поступления корректного напряжения на форсунки и значения сопротивления форсунок. Форсунки могут быть неисправными и при условии корректного значения поступающего напряжения. В них способны накапливаться отложения, нарушающие процесс впрыска топлива в цилиндр. Это, в свою очередь, вызывает неполное сгорание топлива и перебои в работе двигателя.

Проверка сопротивления форсунок.

Необходимые материалы: цифровой вольтометр или мультиметр с возможностью измерения сопротивления.

Внимание: На некоторых двигателях для доступа к форсункам необходимо снять декоративную пластиковую крышку двигателя. Обычно она крепится стандартными болтами, которые можно легко открутить при помощи соответствующей головки и удлинителя.

Шаг 1: Убедитесь, что зажигание выключено. Для проведения этой проверки подача напряжения не нужна.

Шаг 2: Отсоедините жгут подачи питания на форсунки. На соединении кабеля может быть защелка, которую необходимо сдвинуть, а затем нажать на ушки и отсоединить разъем.

Шаг 3: Настройте прибор на измерение сопротивления. Если он не имеет автонастройки, установите минимальный диапазон измерений.

Шаг 4: Проверьте сопротивление. Подсоедините контакты измерителя к зубцам электрического соединителя, избегая их замыкания.

  • Форсунки высокого сопротивления в настоящее время являются наиболее распространенными. Их сопротивление может быть в пределах 12-17 Ом.
  • Форсунки низкого сопротивления могут устанавливаться на высокопроизводительных и мощных двигателях. Их сопротивление гораздо ниже – обычно оно достигает 2-5 Ом.

Шаг 5: Повторите проверку на всех форсунках. Отклонение значений сопротивления всех форсунок не должно быть более 0,5 Ом.

При большем отклонении необходимо проверить форсунку на предмет корректного распыления топлива.

Совет: Нормативное значение сопротивления для форсунок вашего автомобиля можно найти в интернете или руководстве по ремонту автомобиля.

Проверка электрического соединения форсунок

Шаг 1: Включите зажигание. Поверните ключ во второе положение (ON). Питание начнет поступать к элементам двигателя. Не запускайте двигатель.

Шаг 2: Настройте прибор на измерение постоянного тока. Если он не имеет автонастройки, установите минимальный диапазон измерений.

Шаг 3: Соедините «минусовой» контакт прибора с «землей». Кузов автомобиля заземлен, поэтому вы можете найти любой неокрашенный элемент кузова под капотом.

Совет: Некоторые измерительные приборы имеют зажимы типа «аллигатор» на контактах, поэтому вам не нужно будет держать провод. Это освободит ваши руки, и вы сможете корректно подсоединить «плюсовой» контакт прибора.

Шаг 4: Соедините «плюсовой» контакт прибора с клеммой жгута проводов форсунки. Жгут имеет две клеммы, в которые вставляются зубцы разъема форсунок. Одна из них заземлена и должна показывать 0 В. Вторая должна иметь показания около 12 В.

Шаг 5: Повторите операцию для всех форсунок. Не трогая заземление, повторите процедуру для всех форсунок.

Все показания должны быть около 12 В. Более низкие значения указывают на наличие сопротивления в кабеле.

Возможно, эти проверки помогут вам найти неисправность топливных форсунок, но, как уже было отмечено, проблема может быть не связана с электрикой. В случае корректных значений сопротивления, следующим шагом должны стать снятие инжекторов и проверка характера распыла при помощи тестера для форсунок.

Как проверить форсунки не снимая с двигателя

Форсунка представляет собой электромеханический клапан, который работает в качестве электрического магнита. В момент поступления напряжения на обмотку форсунки возникает электромагнитное поле, способное втягивать сердечник и иглу запорного устройства, при этом пропуская поток топлива к камере сгорания двигателя. На входном канале устройств вмонтировано дополнительный фильтр для топлива.

Форсунка – заключительный элемент топливной системы, внутрь которого под высоким давлением поступает топливо. От работоспособности, этой составляющей напрямую, зависит вся работа двигателя внутреннего сгорания. Когда уровень давления при открытии форсунки падает, то она раньше открывается, из-за чего образовывается черный дым. Если же давление в момент открытия повышается, то она открывается позже и возникает дым белого цвета.

Признаки неисправности форсунок

1. Замедляется работа пусковых элементов двигателя, что особо ярко выражено при холодной погоде.

2. Возникновение провалов и неких подергиваний автомобиля в момент ускорения или смены переходных режимов.

3. Плохая динамика и снижение мощности в работе двигателя.

4. Увеличивается количество потребляемого топлива.

5. На холостом ходу двигатель автомобиля может неравномерно работать.

Чтобы избежать несвоевременного ремонта автомобиля, следует своевременно проверять работоспособность форсунок.

Как проверить форсунки не снимая их с двигателя?

Проверка уровня сопротивления обмотки на форсунках

1. Осуществить осмотр можно, выключив зажигание и сняв с аккумуляторной батареи «минусовую» клемму.

2. Используя тонкую отвертку или шило необходимо отщелкнуть пружинный зажим на колодке.

3. Проводим отсоединение разъема от форсунки.

4. К выводам форсунки прикрепляем омметр и измеряем сопротивление обмотки.

5. Если сопротивление между боковым и центральным штырем разъема находится в пределах 11–15 Ом, то форсунка работает исправно. Если прибор показывает больше или меньше требуемого следует ее сменить.

Проверка работоспособности всех форсунок

1. Первоначально необходимо снять топливную рампу, на которой установлены форсунки.

2. Затем следует подсоединить колодку проводов к жгуту рампы. Если с батареи аккумулятора снята клемма «-», то оденьте ее обратно.

3. Соедините друг с другом топливные трубы и с помощью гаечного ключа хорошо закрутите крепящие их штуцеры.

4. Под каждой форсункой поставьте мерный стакан или любую иную емкость с разметкой.

5. Используя стартер, проверните двигатель и проследите за работой всех форсунок. Топливо должно выходить равномерно из каждой.

6. Выключите зажигание и проверьте уровень топлива в мерных стаканах, он должен быть одинаковым. Если количество топлива в емкостях не совпадает – замените или прочистите, вышедшую из лада форсунку.

7. Осмотрите все форсунки на наличие изъянов и дефектов. На распылительной части не должно быть никаких подтеков топлива в момент выключенного зажигания. Если подобные изъяны есть, то деталь не герметична и нуждается в замене.

Проверка поступления питания к форсункам

Подобную проверку необходимо проводить лишь тогда, когда хоть одна из форсунок при включенном зажигании отказывается работать.

1. Отключите от неработающей детали колодку с проводами.

2. Затем присоедините к батарее аккумулятора два конца проводов, а другую их сторону прикрепите к контактам на форсунке.

3. Подключите зажигание автомобиля и проследите за тем, не вытекает ли из форсунки топливо. Если да, то в электрической цепи есть какой-то дефект или неисправность.


Как промыть форсунки не снимая двигатель

29.01.2019 Грязь на форсунках

Проблемы с форсунками можно легко заметить на холостых оборотах: начинаются проблемы с разгоном, расход становится заметно выше. Если такое начало появляться, значит пришло время их чистить. Проблема не только в расходе, но и качестве топливовоздушной смеси – засоренная форсунка нарушает баланс.

Чистка форсунок в процессе

Почему это происходит

Самое неприятное в такой проблеме, как загрязнение форсунок, то, что, если затянуть с этим процессом, то одной промывкой уже не обойтись. А сама неприятность наступает плавно и едва можно заметить тенденции к ухудшению. У карбюраторных автомобилей всё немного проще – если карбюратор забился, то машина попросту глохнет, из-под нее течет топливо или еще какие-то радикальные изменения. С форсунками всё иначе – сначала, кажется, что следует заменить масло, вы его меняете и, вуаля, вроде бы с динамикой стало получше. Решая все проблемы кроме основной (промывка форсунки) можно временно избавить себя от неприятностей.

Промыть форсунку и не снимать двигатель – идеальный способ решить неисправность быстро и без лишних забот. Основной причиной засора форсунок является низкокачественное топливо с большим количеством тяжелых частиц. Однако, никто из нас не найдет сейчас АЗС с действительно качественным бензином, поэтому промывка форсунок – вопрос не выбора, а времени. Частицы (как правило, мелкая пыль оксида железа) растворены в бензине и спокойно проходят сквозь фильтры тонкой очистки. При остановке двигателя эти частицы оседают на форсунке, в отличие от более легких, которые практически сразу испаряются.

Далеко не все частицы проникают в цилиндр и сгорают там. Очевидно, что эта проблема проявляет себя при обыденной эксплуатации авто, т.е. когда поездки короткие и частые, когда мотор не успевает прогреваться. В такой ситуации количество отложений увеличивается, и необходимость чистки наступает раньше.

Какие есть виды промывки

Существует два типа промывки форсунок. Но, прежде, чем принять решение, какой именно способ применять, нужно подробно изучить ситуацию.

Методы промывки и очистки таковы:

  • Ультразвуковая промывка, которую можно произвести только на специальном стенде, при помощи профессионального оборудования. Также необходимо применить специальный раствор. Данная методика плохо справляется с очень загрязненными форсунками и не рекомендована для форсунок, изготовленных из керамики.
  • Промывка жидким раствором. Эту процедуру можно применить как при снятом силовом агрегате, так и не снимая мотор.

В данном случае нас интересует оптимальный способ промывки, при котором двигатель демонтировать Мы более внимательно рассмотрим именно чистку форсунок, без снятия их с двигателя. Это наиболее простой способ восстановить нормальную работу инжектора.

Вам потребуется второй, дополнительный бензиновый насос, сосуд для чистящей жидкости, шланг (подходит для садового полива) и, собственно, жидкость для чистки инжектора. Также потребуются новые свечи.

Процесс очистки форсунок

Процесс очистки

Многие механики допускают постоянно одну и ту же ошибку – жидкость для очистки заливается в топливный бак. Ожидается, что, попадая в форсунку вместе с топливом, жидкость способна прочистить по пути и форсунку. Однако, применяя такой странный метод многие забывают, что топливо вместе со смесью остается в форсунке после заглушки мотора. Смесь, в итоге, испаряется, а частицы все равно остаются. Добавлять чистящее средство в бак – совершенно неэффективно.

Видеоинструкция о том, как происходит чистка форсунок на стенде:

При чистке форсунок, мотор следует полностью отключить от системы подачи топлива. Нужно помнить, что топливная рампа находится под давлением, поэтому снимайте шланги максимально аккуратно. Подготовившись, нужно приступать непосредственно к работе:

  • Следует подготовить временную систему питания, вполне подойдет чистая пластиковая бутылка (без остатков воды). В нее наливается очиститель, для двигателя объемом 2,5 л достаточно одного литра, далее на каждые пол-литра объема добавляется 100 грамм жидкости. В нее нужно добавить немного бензина, достаточно взять половину от объема промывки. На горлышко надевается шланг, он закрепляется хомутом. Также в шланг врезается запасенный бензонасос;
  • Двигатель заводят и прогревают до рабочей температуры. После чего вытаскивают предохранитель, отвечающий за насос;
  • Мотор несколько раз запускают. Таким образом, производят сброс давления из топливной системы;
  • Снимается шланг, подводящий топливо к инжектору. На его место крепится свежесобранная топливная система с бачком, сделанным из бутылки. Также нужно снять шланг с обратки и заглушить его. Для этого внутрь шланга вставляется болт на 10 и зажимается хомутом; Инжектор отключен от топливной системы
  • Включается бензонасос, прокачивается жидкость. Проверяется герметичность соединений. Если все в норме, то можно переходить к следующему этапу;
  • Двигатель заводится, для начала он должен поработать 5 минут, после чего ему дают несколько минут отдохнуть. За это время жидкость, попавшая в форсунки, размочит отложения. Далее мотор опять заводится. На этот раз он должен проработать полчаса. Все это время следует держать его на холостом ходу, периодически поднимая обороты до 2500 оборотов. Но это необязательно;
  • После этого отключите приспособление и соберите штатную систему. Затем заведите мотор и дайте ему поработать 10 минут, за это время выгорят остатки жидкости. Заодно проверяют герметичность соединений;
  • Двигатель глушится и ставятся новые свечи зажигания. Заодно сбрасывают ошибки с ЭБУ. Желательно провести диагностику и убедиться в нормальной работе двигателя.

Таким образом, подводя итоги, следует отметить, что самостоятельно очистить инжектор и его форсунки – не такая уж сложная задача. Промыть форсунку в силах даже рядовой автовладелец, для этого ему не потребуется специальное оборудование, стенды и т.д.

Устройство и принцип работы форсунок бензинового двигателя / Блог АвтоТО — Обслуживание автомобиля

Запись опубликована 27.09.2010 автором dimalgor.

Mнoгиe coвpeмeнныe aвтoмoбили ocнaщaютcя cиcтeмaми впpыcкa тoпливa.

Cocтoяниe фopcyнoк — нeoтъeмлeмoй чacти cиcтeмы впpыcкa — вo мнoгoм oпpeдeляeт эффeктивнocть paботы двигaтeля. Bпpыcк  тoпливa — имeeт нeocпopимыe пpeимyщecтвa пo cpaвнeнию c кapбюpaтopным пpинципoм cмeceoбpaзoвaния. B пepвyю oчepeдь, этo бoлee тoчнoe дoзиpoвaниe тoпливa, a cлeдoвaтeльнo, бoльшaя экoнoмичнocть и пpиeмиcтocть aвтoмoбиля и мeньшaя тoкcичнocть oтpaбoтaвшиx гaзoв.

Oднaкo ocнoвнaя иcпoлнитeльнaя дeтaль cиcтeмы впpыcкa — фopcyнкa — paбoтaeт в тяжeлыx ycлoвияx и пoэтoмy вecьмa тpeбoвaтeльнa к oбcлyживaнию.

Oбщиe пoнятия

Фopcyнкa (инжeктop) — yпpaвляeмый элeктpoмaгнитный клaпaн, oбecпeчивaющий дoзиpoвaннyю пoдaчy тoпливa в цилиндpы  двигaтeля. Cyщecтвyют фopcyнки для цeнтpaльнoгo (oднoтoчeчнoгo,  мoнo) и для pacпpeдeлённoгo (мнoгoтoчeчнoгo) впpыcкa. Блoк yпpaвлeния — элeктpoнный блoк, yпpaвляющий  cиcтeмoй впpыcкa, в чacтнocти paбoтoй фopcyнoк.

Уcтpoйcтвo и пpинцип paбoты

Toпливo пoдaётcя к фopcyнкe пoд oпpeдeлённым (зaвиcящим oт peжимa paбoты двигaтeля) дaвлeниeм. Элeктpичecкиe импyльcы, пocтyпaющиe нa элeктpoмaгнит фopcyнки oт блoкa yпpaвлeния, пpивoдят в дeйcтвиe игoльчaтый клaпaн, oткpывaющий и зaкpывaющий кaнaл фopcyнки. Кoличecтвo pacпыляeмoгo тoпливa пpoпopциoнaльнo длитeльнocти импyльca, зaдaвaeмoй блoкoм  yпpaвлeния. Фopмa и нaпpaвлeниe pacпыляeмoгo фaкeлa игpaют cyщecтвeннyю poль в пpoцecce cмeceoбpaзoвaния и oпpeдeляютcя кoличecтвoм и pacпoлoжeниeм pacпылитeльныx oтвepcтий.

Pacпoлoжeниe, клaccификaция и мapкиpoвкa фopcyнoк

Цeнтpaльный впpыcк — B oбщий впycкнoй тpyбoпpoвoд тoпливo впpыcкивaeтcя oднoй фopcyнкoй (или двyмя кaк нa Xoндe), кoтopaя ycтaнaвливaeтcя пepeд дpocceльнoй зacлoнкoй, в мecтe, гдe ‘дoлжeн cтoять кapбюpaтop’, и xapaктepизyeтcя низким coпpoтивлeниeм oбмoтки элeктpoмaгнитa (дo 4-5 Ом). Pacпpeдeлённый впpыcк — Oтдeльныe фopcyнки ocyщecтвляют впpыcк тoпливa вo впycкныe тpyбoпpoвoды кaждoгo цилиндpa. Oни pacпoлaгaютcя y ocнoвaния впycкныx тpyбoпpoвoдoв (y кopпyca гoлoвки блoкa цилиндpoв) и oтличaютcя oтнocитeльнo выcoким coпpoтивлeниeм oбмoтoк элeктpoмaгнитoв (дo 12-16 Oм). Или мeньшим, нo c дoпoлнитeльным блoкoм coпpoтивлeний.

Ha нeкoтopыx aвтoмoбиляx пocлeднeгo пoкoлeния тoпливo пoдaётcя нeпocpeдcтвeннo в кaмepy cгopaния (нeпocpeдcтвeнный впpыcк). Фopcyнки тaкиx двигaтeлeй oтличaютcя выcoким paбoчим нaпpяжeниeм элeктpoмaгнитa (дo 100 B).B мapкиpoвкe фopcyнoк мoжeт oтpaжaтьcя фaбpичнaя (тopгoвaя) мapкa или нaзвaниe; кaтaлoжный нoмep или нaимeнoвaниe; нoмep cepии.

Ocнoвныe пpизнaки и пpичины нeиcпpaвнocти фopcyнoк

Cocтoяниe фopcyнoк cyщecтвeннo влияeт нa paбoтy двигaтeля. Ocнoвными пpизнaкaми иx нeиcпpaвнocти бывaют:

  • нeдocтaтoчнaя мoщнocть, paзвивaeмaя двигaтeлeм;
  • pывки и пpoвaлы пpи yвeличeнии нaгpyзки нa двигaтeль;
  • нeycтoичивaя paбoтa нa мaлыx oбopoтax;
  • пoвышeннaя тoкcичнocть oтpaбoтaвшиx гaзoв.

Haибoлee pacпpocтpaнeннoй нeиcпpaвнocтью фopcyнoк являeтcя иx зaгpязнeниe. Oни pacпoлoжeны в зoнe вoздeйcтвия выcoкиx тeмпepaтyp. Cлeдcтвиe этoгo -зaкoкcoвывaниe coдepжaщимиcя в тoпливe (ocoбeннo низкoкaчecтвeннoм) cмoлaми, oбpaзoвaниe нa фopcyнкe твepдыx oтлoжeний, пepeкpывaющиx (чacтичнo или пoлнocтью) pacпылитeльныe oтвepcтия и нapyшaющиx гepмeтичнocть игoльчaтoгo клaпaнa. Кpoмe тoгo, oбщee зaгpязнeниe элeмeнтoв тoпливнoй cиcтeмы (бaкa, тpyбoпpoвoдoв, фильтpa и т.д.) пpивoдит к зacopeнию чacтичкaми шлaмa кaнaлoв и фильтpa фopcyнки. Ocнoвным cпocoбoм вoccтaнoвлeния нopмaльнoй paбoтocпocoбнocти фopcyнoк являeтcя иx пpoмывкa.

Пpoмывкa фopcyнoк

Этa oпepaция пoдpaзyмeвaeт yдaлeниe (вымывaниe) нaкoпившиxcя зaгpязнeний из cиcтeмы. К ocнoвным cпocoбaм пpoмывки
фopcyнoк oтнocятcя:

  • пpoмывкa cпeциaльными пpиcaдкaми к тoпливy;
  • пpoмывкa бeз дeмoнтaжa фopcyнoк c двигaтeля cпoмoщью cпeциaльнoй ycтaнoвки;
  • пpoмывкa нa yльтpaзвyкoвoм cтeндe c дeмoнтaжoм фopcyнoк c двигaтeля.

Пpoмывкa c пoмoщью пpиcaдoк к тoпливy oтличaeтcя пpocтoтoй и зaключaeтcя в пepиoдичecкoм (кaждыe 2-3 тыc.км) дoбaвлeнии в тoпливo cпeциaльныx пpeпapaтoв. Этo пoзвoляeт пpoмывaть нe тoлькo caми фopcyнки, нo и вcю тoпливнyю cиcтeмy. Дaнный cпocoб эффeктивeн пpи peгyляpнoм yдaлeнии нeбoльшиx зaгpязнeний и нocит cкopee пpoфилaктичecкий xapaктep.

Bнимaниe! Удaлeниe зacтapeлыx oтлoжeний пoдoбным мeтoдoм мoжeт пpивecти к пpямo пpoтивoпoлoжнoмy peзyльтaтy: бoльшoe кoличecтвo шлaмa, cмытoгo мoющeй пpиcaдкoй co cтeнoк тoпливнoй cиcтeмы, зacopяeт тpyбoпpoвoд, тoпливный фильтp, a инoгдa и caми фopcyнки, oкoнчaтeльнo вывoдя иx из cтpoя. Пpoмывкa фopcyнoк c пoмoщью cпeциaльнoй ycтaнoвки бeз иx дeмoнтaжa зaключaeтcя в paбoтe двигaтeля нa cпeциaльнoм пpoмывaющeм тoпливe (coльвeнтe). Для этoгo oтключaeтcя штaтный тoпливный нacoc aвтoмoбиля и мaгиcтpaль cливa тoпливa в бaк (oбpaткa), a тoпливoпpoвoд cиcтeмы впpыcкa coeдиняeтcя c ycтaнoвкoи, имeющeи peзepвyap c coльвeнтoм, кoтopыи пoд дaвлeниeм пoдaётcя нa фopcyнки.

Пpoцecc дeлитcя нa нecкoлькo этaпoв. Cнaчaлa двигaтeль paбoтaeт в тeчeнии 15 минyт в peжимe xoлocтoгo xoдa. Зaтeм eгo ocтaнaвливaют нa 15 минyт для paзмягчeния ocoбo cтoйкиx oтлoжeний. Пoтoм двигaтeль cнoвa зaпycкaeтcя и paбoтaeт 15 минyт в peжимe пepиoдичecкoгo yвeличeния oбopoтoв дo иx мaкcимaльнoгo чиcлa. Зaключитeльным этaпoм пpoмывки являeтcя вoccтaнoвлeниe coeдинeний штaтныx тoпливoпpoвoдoв и paбoтa двигaтeля нa бeнзинe в тeчeнии 30 минyт. Пoдoбнyю пpoмывкy peкoмeндyeтcя пpoвoдить чepeз кaждыe 15-20 тыc. км пpoбeгa.

Пpoмывкa нa yльтpaзвyкoвoм cтeндe c дeмoнтaжoм фopcyнoк пpимeняeтcя в кaчecтвe кpaйнeй мepы для yдaлeния бoльшиx зaтвepдeвшиx oтлoжeний, кoгдa пepвыe двa cпocoбa нe пpивoдят к жeлaeмым peзyльтaтaм. Пpинцип дeйcтвия тaкиx cтeндoв ocнoвaн нa paзpyшeнии oтлoжeнии пoгpyжeннoи в cпeциaльныи мoющии cocтaв фopcyнки c пoмoщью yльтpaзвyкa. Кpoмe тoгo, cтeнды, кaк пpaвилo, пoзвoляют тoчнo oцeнить пpoизвoдитeльнocть и кaчecтвo pacпылa фopcyнки.

Oбщиe peкoмeндaции

Cтapaйтecь избeгaть зaпpaвoк тoпливoм нa coмнитeльныx AЗC. Иcпoльзoвaниe кaчecтвeннoгo бeнзинa пpoдлит cpoк cлyжбы инжeктopa. Coблюдaйтe peкoмeндyeмыe cpoки зaмeны тoпливнoгo фильтpa.

Продолжаем изучать двигатель: устройство и принцип работы турбонаддува.

Как работают системы впрыска топлива

Алгоритмы управления двигателем довольно сложны. Программное обеспечение должно позволять автомобилю соответствовать требованиям по выбросам на 100 000 миль, соответствовать требованиям EPA по экономии топлива и защищать двигатели от неправильного использования. И есть еще десятки других требований.

Блок управления двигателем использует формулу и большое количество справочных таблиц для определения ширины импульса для заданных условий эксплуатации. Уравнение будет представлять собой серию множества множителей, умноженных друг на друга.Многие из этих факторов будут взяты из справочных таблиц. Мы рассмотрим упрощенный расчет длительности импульса топливной форсунки . В этом примере в нашем уравнении будет только три фактора, тогда как в реальной системе управления их может быть сто или больше.

Ширина импульса = (основная ширина импульса) x (коэффициент A) x (коэффициент B)


Для вычисления ширины импульса ЭБУ сначала ищет базовую ширину импульса в справочной таблице. Базовая ширина импульса является функцией оборотов двигателя (об / мин) и нагрузки (которая может быть рассчитана по абсолютному давлению в коллекторе).Допустим, частота вращения двигателя составляет 2000 об / мин, а нагрузка равна 4. Мы находим число на пересечении 2000 и 4, что составляет 8 миллисекунд.

1000 1
об / мин Нагрузка
1 2 3 4

005 5

2 3 4 5
2,000 2 4 6 8 10
3,000 3 6 9 12 15
4,000 4 8 12 16 20


В следующих примерах A и B — это параметры, поступающие от датчиков.Допустим, A — температура охлаждающей жидкости, а B — уровень кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода равен 3, справочные таблицы говорят нам, что коэффициент A = 0,8 и коэффициент B = 1,0.

A Фактор A
B Фактор B
0 1,2
0 1.0
25 1,1
1 1.0
50 1.0
2 1.0
75 0,9
3 1.0
100 0,8
4 0.75


Итак, поскольку мы знаем, что ширина основного импульса является функцией нагрузки и числа оборотов в минуту, и что ширина импульса = (ширина основного импульса) x (коэффициент A) x (коэффициент B) , общая ширина импульса в нашем примере равна:

8 x 0,8 x 1,0 = 6,4 миллисекунды


Из этого примера вы можете увидеть, как система управления выполняет настройки. Если параметр B представляет собой уровень кислорода в выхлопе, справочная таблица для B — это точка, в которой (по мнению разработчиков двигателей) слишком много кислорода в выхлопе; и, соответственно, ЭБУ сокращает расход топлива.

Реальные системы управления могут иметь более 100 параметров, каждый со своей таблицей поиска. Некоторые параметры даже меняются со временем, чтобы компенсировать изменения в характеристиках компонентов двигателя, таких как каталитический нейтрализатор. И, в зависимости от частоты вращения двигателя, ЭБУ, возможно, придется выполнять эти вычисления более ста раз в секунду.

Чипы производительности
Это подводит нас к обсуждению чипов производительности. Теперь, когда мы немного понимаем, как работают алгоритмы управления в ЭБУ, мы можем понять, что делают производители микросхем производительности, чтобы получить больше мощности от двигателя.

Чипы Performance производятся компаниями вторичного рынка и используются для увеличения мощности двигателя. В ЭБУ есть микросхема, которая содержит все таблицы поиска; чип производительности заменяет этот чип. Таблицы в микросхеме производительности будут содержать значения, которые приводят к увеличению расхода топлива в определенных условиях движения. Например, они могут подавать больше топлива при полностью открытой дроссельной заслонке на каждой скорости двигателя. Они также могут изменить время зажигания (для этого тоже есть справочные таблицы). Поскольку производители чипов производительности не так озабочены такими проблемами, как надежность, пробег и контроль выбросов, как производители автомобилей, они используют более агрессивные настройки в топливных картах своих чипов производительности.

Для получения дополнительной информации о системах впрыска топлива и других автомобильных темах перейдите по ссылкам на следующей странице.

Все о топливных форсунках

Размещено автором Central Avenue Automotive и подано в раздел Двигатель, Топливная система.

Последний новый автомобиль с карбюратором, проданный в Северной Америке, вышел из автосалона в 1990 году. С тех пор все новые автомобили имели топливные форсунки. Проще говоря, топливная форсунка — это клапан, который впрыскивает топливо в ваш двигатель.Компьютер управления двигателем сообщает топливной форсунке, сколько газа нужно подавать, а также точное время, когда он должен быть доставлен. Это происходит тысячи раз в минуту. Впрыск топлива — это гораздо более точный способ подачи топлива, чем карбюраторы, что приводит к лучшей экономии топлива и мощности. Практически все топливные форсунки для газовых двигателей известны как портовые топливные форсунки, потому что они подают топливо в порт сразу за цилиндром. Портовые топливные форсунки работают при давлении от 40 до 80 фунтов на квадратный дюйм.

Некоторые автопроизводители недавно внедрили системы непосредственного впрыска газа на некоторые двигатели. Эти системы впрыскивают газ непосредственно в цилиндры под очень высоким давлением — в сотни раз превышающим давление систем впрыска через порт. Хотя более сложная технология прямого впрыска обещает большую мощность при улучшенной экономии топлива, поэтому мы можем ожидать ее появления в будущем.

Как видите, точность ваших топливных форсунок очень высока.Они должны работать правильно, чтобы ваш автомобиль работал правильно.

Высокие температуры под капотом и колебания качества газа вызывают загрязнение топливных форсунок воском, грязью и нагаром. Форсунки могут частично забиваться, что не позволяет им подавать необходимое количество топлива при правильном давлении. Конструкция каждого двигателя требует определенной формы распыления от топливной форсунки, которая может измениться при загрязнении форсунки. Когда форсунки загрязнены, топливо горит не так эффективно, что приводит к снижению расхода топлива и потере мощности, поэтому важно содержать топливные форсунки в чистоте.

Квалифицированные специалисты по обслуживанию в Central Avenue Automotive в Кенте могут выполнить обслуживание топливной системы за вас. Это полноценная услуга, а не простая уборка. Это связано с тем, что у топлива есть много способов стать грязным или загрязненным между бензобаком и топливной форсункой. Обслуживание топливной системы начинается с замены топливного фильтра. Этот фильтр очищает газ на выходе из резервуара. Различные части системы впуска топлива необходимо время от времени очищать от вредных смол, отложений и лака.Наконец, топливные форсунки очищаются, чтобы они работали должным образом и доставляли нужное количество топлива в нужное время.

Ваш центр обслуживания в Кенте использует процесс очистки вашей топливной системы, который включает в себя современные химические чистящие средства, а также некоторую старомодную чистку. Правильное обслуживание вашей топливной системы означает, что вы будете меньше тратить на бензин, получите высокую производительность и предотвратите дорогостоящий ремонт в будущем.

Теги: автосервис техническое обслуживание двигателя топливные форсунки топливная система

Как это работает: впрыск топлива

Ссылки на след

  1. Как это работает
  2. Feature Story

Подача топлива прямо в цилиндр оказалась намного более эффективной, чем старый добрый карбюратор

Автор статьи:

Джил МакИнтош

Дата публикации:

27 сентября 2017 г. • 7 февраля 2019 г. • 4 минуты чтения • Присоединяйтесь к разговору

Содержание статьи

Вот как вы завели машину с карбюратором холодным утром в «старые добрые времена».«Вы вытаскиваете дроссельную заслонку, несколько раз откачиваете дроссель и поворачиваете ключ. Если не переборщить и залить бензином, двигатель заведется, и вы будете нажимать на дроссельную заслонку и дроссельную заслонку, чтобы он продолжал работать. Через несколько минут, когда вы узнали, что все в порядке, вы могли уехать.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Сегодня? Вы поворачиваете ключ или нажимаете кнопку стартера, и через несколько секунд все готово.Отличие заключается в впрыске топлива, который используется во всех новых автомобилях.

Бензин должен быть смешан с воздухом, прежде чем его можно будет сжечь, и когда поршни двигателя опускаются вниз, они создают внутренний вакуум, который втягивает этот воздух. В старых автомобилях этот воздух поступает через карбюратор, который измеряет его и смешивает с нужным количеством топлива. (На любом транспортном средстве педаль «газа» на самом деле является пневматической педалью: нажатие на нее сигнализирует двигателю о необходимости втянуть больше воздуха, и система добавляет необходимое дополнительное топливо.) Эта воздушно-топливная смесь втягивается во впускной коллектор и в цилиндры, где он воспламеняется в каждом из свечей зажигания.

Двигатель Ford EcoBoost V8 с двойным турбонаддувом сочетает в себе турбонаддув с прямым впрыском топлива для создания системы, которая обеспечивает мощность безнаддувного V8 с экономией топлива V6

Гораздо эффективнее заправлять топливо именно там, где оно необходимо, и это что делает двигатель с впрыском топлива. Топливные форсунки распыляют бензин под давлением изнутри в двигатель, когда воздух врывается внутрь, создавая пар топливо-воздух в точке, где двигатель использует его, в отличие от карбюратора, который установлен над двигателем.Топливо впрыскивается точно в нужное время и в нужном количестве, чтобы максимизировать эффективность двигателя.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

В самых ранних основных системах впрыска топлива, которые появились на автомобилях в 1980-х годах, использовалась простая и недорогая система, называемая впрыском через корпус дроссельной заслонки. Блок был установлен над двигателем и, как и карбюратор, добавлял топливо, когда воздух проходил через впускной коллектор.Двигатель запускался легче, но у него был общий недостаток с карбюратором: не все цилиндры получали одинаковое количество топлива, что приводило к потере газа и увеличению выбросов.

Система дроссельной заслонки была заменена многоточечным впрыском, который сегодня используется в некоторых автомобилях. Над каждым поршнем имеется камера сгорания, в которой впускные клапаны открываются, впуская топливно-воздушную смесь. Свеча зажигания воспламеняет топливо для подачи энергии, а затем открываются клапаны для выпуска выхлопных газов. В многопортовой системе есть инжектор за пределами каждой камеры сгорания, распыляющий топливо в воздух непосредственно перед его поступлением в камеру.Предоставление каждому цилиндру собственной форсунки решает старую проблему неравномерного распределения топлива.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Следующим шагом стал непосредственный впрыск бензина, или GDI, который раньше использовался почти исключительно на дорогих автомобилях, но теперь также используется большинством основных производителей. Форсунка установлена ​​так, что ее сопло находится внутри камеры сгорания.Когда впускные клапаны открываются, в камеру попадает обычный воздух. Форсунка распыляет топливо, и вихревой воздух смешивается с ним, образуя пар, прежде чем свеча зажигания воспламенит его.

Прямой впрыск более эффективен, чем многопортовый. GDI создает более мелкий туман, который воспламеняется более полно, а также распыляет более точное количество топлива. Эти двигатели могут быть более мощными, даже если они потребляют меньше топлива и выбрасывают меньше выбросов из выхлопной трубы. Относительно новый для бензина, непосредственный впрыск всегда использовался в дизельных двигателях, которые зависят от тепла сжатия, а не от свечи зажигания для воспламенения топлива.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Ни одна система не идеальна. GDI более сложен, чем многоточечный впрыск, и, поскольку он находится под более высоким давлением, а сопла должны выдерживать высокую температуру сгорания, компоненты более мощные и, соответственно, более дорогие. У них также может быть проблема с отложениями в двигателе. Все двигатели выделяют загрязняющие вещества и углерод, которые вместе с остатками масла могут превращаться в твердую жирную субстанцию, известную как мусор.

На верхние части впускных клапанов в многопортовых двигателях попадает очищающий спрей бензина, а на клапаны двигателей GDI — нет, и они могут образовывать слой грязи. Сколько мусора и сколько проблем это создаст, может зависеть от производителя, двигателя и даже от того, кого вы спрашиваете — это может быть спорным вопросом для автолюбителей, а также от того, что с этим делать. Любые несгоревшие пары бензина рециркулируют обратно в систему как часть системы контроля выбросов двигателя, поэтому использование высококачественного топлива может помочь уменьшить отложения, а также сохранить чистоту форсунок форсунок.Кроме того, замените свечи зажигания и выполните другое техническое обслуживание в соответствии с графиком вашего автомобиля, который вы найдете в руководстве по эксплуатации, включая своевременную замену воздушного фильтра и моторного масла.

Регулярная промывка форсунок или чистящие добавки также вызывают споры. Некоторые говорят, что это профилактическое обслуживание, а другие называют это пустой тратой денег. Они часто были полезны на старых двигателях, когда форсунки и топливо были не так хороши, как сегодня, но если ваш автомобиль работает нормально и в руководстве по эксплуатации не указано ни одного из них, скорее всего, вы сможете обойти это стороной.

Поделитесь этой статьей в своей социальной сети

Подпишитесь, чтобы получать информационный бюллетень Driving.ca Blind-Spot Monitor по средам и субботам

Нажимая на кнопку подписки, вы соглашаетесь на получение вышеуказанного информационного бюллетеня от Postmedia Network Inc. откажитесь от подписки в любое время, нажав на ссылку отказа от подписки внизу наших писем. Postmedia Network Inc. | 365 Bloor Street East, Торонто, Онтарио, M4W 3L4 | 416-383-2300

Спасибо за регистрацию!

Приветственное письмо уже в пути.Если вы его не видите, проверьте папку нежелательной почты.

Следующий выпуск «Монитора слепых зон» Driving.ca скоро будет в вашем почтовом ящике.

Комментарии

Postmedia стремится поддерживать живой, но гражданский форум для обсуждения и поощрять всех читателей делиться своим мнением о наших статьях. На модерацию комментариев может потребоваться до часа, прежде чем они появятся на сайте. Мы просим вас, чтобы ваши комментарии были актуальными и уважительными.Мы включили уведомления по электронной почте — теперь вы получите электронное письмо, если получите ответ на свой комментарий, есть обновление в цепочке комментариев, на которую вы подписаны, или если пользователь, на которого вы подписаны, комментарии. Посетите наши Принципы сообщества для получения дополнительной информации и подробностей о том, как изменить настройки электронной почты.

Система впрыска топлива — обзор

13.3.4 Воздушный впрыск топлива

Системы впрыска топлива незаменимы при усовершенствовании двухтактных двигателей с целью повышения их преимуществ в применениях в автомобильных двигателях.Имеется множество отчетов о разработках инжекторов [35–42], но очень немногие содержат достаточную информацию, относящуюся к подробным характеристикам распыляемых капель. Системы распыления и впрыска были тщательно исследованы, особенно в дизельных двигателях. Двухтактный двигатель включает в себя сложные процессы, такие как процесс продувки, циклическое изменение и пропуски зажигания, которые тесно связаны с распространением и отражением волны давления. Хотя процесс продувки был ключевой особенностью при разработке двухтактных двигателей [20,22–24,43–46], имеется очень мало экспериментальных данных, объясняющих взаимосвязь между испарением аэрозоля бензина, образованием смеси и продувкой. процесс [47–54].

Для небольших двухтактных двигателей прямой впрыск топлива рассматривается как способ решения проблем неполного сгорания и чрезмерной концентрации углеводородов в выхлопных газах. В частности, пневматический впрыск топлива был разработан как мощный инструмент для создания более горючей топливно-воздушной смеси при обедненных условиях сгорания. Пневматический впрыск использует сжатый воздух для распыления топлива в форсунке и улучшения проникновения мелких капель. В мире появилось много различных типов инжекторных механизмов.В формировании струи инжектора с подачей воздуха преобладает вспомогательный воздушный поток, поэтому следует понимать процесс диспергирования капель и их распыление, а также динамику капель.

Инструменты лазерной диагностики, такие как лазерный лист [55], эксиплекс [56] и LDV [14], могут предоставить информацию, касающуюся угла распыления, формы распыления, проникновения, области паров и т. Д., Но подробную информацию о распылении, такую ​​как капля Распределение диаметра и его скорости в двумерной плоскости пока не получено.Техника визуализации может предоставить достаточную пространственную, но очень скудную временную информацию о характеристиках распыления. Фазовый доплеровский анемометр (КПК) может измерять диаметр капли и ее скорость с очень высоким пространственным и временным разрешением, но это метод измерения по одной точке. Для определения двумерного изображения аэрозоля с подробными характеристиками капель требуется альтернативный метод.

В этом разделе доказана применимость среднего диаметра по Заутеру (SMD) [57,58] в периодическом инжекторе, а также реализованы классы размеров капель, чтобы лучше понять передачу импульса между жидкой и газовой фазами.

Пневматическая форсунка, использованная в этом эксперименте, была коммерческой форсункой для двухтактного морского двигателя мощностью более 22 кВт (30 л.с.) на цилиндр, как показано на рисунке 13.21. Топливо сначала впрыскивается в полость, и воздушный инжектор приводится в действие путем открытия тарельчатого клапана. Соотношение воздух-топливо можно контролировать, изменяя период открытия клапана, когда разница давлений между воздухом и топливом установлена ​​на определенном уровне. Перед клапаном форсунка имеет прямую трубку длиной 36 мм, в которой проводится предварительная атомизация.Топливо с пневмоприводом впрыскивается через тарельчатый клапан диаметром 5 мм.

Рис. 13.21. Инжектор с пневмоприводом.

(перепечатано с разрешения SAE)

В качестве топлива вместо бензина использовался сухой растворитель с показателем преломления 1,427. Удельная плотность сухого растворителя составляет 0,77 г / см 3 , что очень похоже на плотность бензина (0,7–0,8 г / см 3 ). Угол рассеяния 68 ° определялся углом преломления первого порядка [59]. Для векторных измерений использовался однокомпонентный ЛДВ с изменением угла падения луча на ± 45 °.

Прямые фотографии впрыснутого спрея показаны [60] на рисунке 13.22. Понятно, что грибовидный вихрь вызывается напряжением сдвига на распылительной оболочке. Скорость распылительного наконечника, рассчитанная по этим изображениям, составляет около 64 м / с. Лист лазера YAG был использован для получения двумерного изображения аэрозоля, как показано на том же рисунке. Эти кадры представляют собой прямые снимки определенного цикла. Хорошо известно, что в этом типе инжектора с пневмоприводом бывают вариации от цикла к циклу. На рисунке также показаны два изображения в разных циклах в одно и то же время.Эти фотографии указывают на важность и необходимость анализа брызг с помощью двухмерного изображения с высоким временным разрешением, поскольку визуализация лазерного листа не может предоставить информацию об изменении во времени и информацию о диаметре. Одноточечные измерения не выявляют вариаций от цикла к циклу и вариаций пространственной структуры. Однако, используя одноточечное измерение с усредненными по ансамблю данными, можно продемонстрировать двухмерное изображение брызг с его пространственной структурой, как показано [61] на рисунке 13.23. Также показаны средний диаметр по Заутеру (SMD) и соответствующие векторы скорости.

Рис. 13.22. Изображения структуры впрыснутого спрея.

(перепечатано с разрешения SAE)

Рис. 13.23. Векторы скорости капель и SMD.

(перепечатано с разрешения SAE)

Пространственная дисперсия капель лучше всего объясняется с использованием плоских источников информации, таких как фотография или изображение лазерного листа. Метод КПК предоставляет одноточечную информацию, но метод усреднения по ансамблю с фазовой синхронизацией может продемонстрировать двумерное изображение, как показано на рисунке 13.23. Осесимметрия струи была проверена путем измерения в противоположных точках до r = –3 мм. На этом рисунке показано изменение SMD и его пространственная структура в зависимости от времени. Длина вектора была рассчитана как длина траектории капли в пределах 0,25 мс, а цвет представляет собой SMD. Максимальный размер SMD составлял 130 микрон.

Через 1,6 мс после сигнала впрыска, который использовался в качестве сигнала вспомогательного пневмопривода, на оси наблюдалась первая капля. Через 0,25 мс скорость распылительного наконечника достигла примерно 65 м / с, и наблюдалось рассеяние капель в радиальном направлении.Скорость распылительного наконечника 65 м / с была почти такой же, как и рассчитанная по изображению прямого распыления. Размер SMD на наконечнике распылителя составлял около 25 микрон. На центральной оси направление капель было параллельно оси, в то время как направление капель в области оболочки распылителя было более 45 градусов в радиальном направлении.

Через 2,3 мс скорость распылительного наконечника на оси увеличилась, и следующая капля из сопла образовала группу капель большего размера. Область, в которую проникают капли, напоминала зонтик.Маленькие и быстрые капли существовали до 2,8 мс. Через 2,8 мс скорость распылительного наконечника уменьшилась, а SMD увеличился вблизи центральной оси. Более крупные капли догоняли и сталкивались с более мелкими каплями, и, следовательно, диаметр начал увеличиваться. Капли брызг во внешней области имели более низкую скорость из-за сильных сдвиговых потоков, и тогда направление капель показывало волнистую структуру брызг. Очень большая капля красного цвета возле сопла образовалась за 2,875 мс, когда размер капли распылительного наконечника составлял 30 микрон.

Кроме того, капли брызг, находящиеся под воздействием турбулентного воздуха, имели тенденцию следовать за движением воздуха, но большие капли с высоким импульсом проникали в области с высокой турбулентностью потока, такие как области рециркуляционного потока. Тогда эту динамику капель нельзя было продемонстрировать только по среднему диаметру по Затеру, но для этого требуются другие передовые методы, такие как анализ с классификацией по размеру.

Четыре вектора скорости капли, классифицированные по размеру, показаны замороженными на 2,875 мс на рисунке 13.24. Ясно, что в областях малых капель образуется грибовидный вихрь, вызванный сдвиговым потоком.На наконечнике распылителя мелкие капли демонстрируют больший градиент скорости, чем более крупные капли. Векторы капель большего размера имеют более прямые и более узкие углы впрыска. В области оболочки распылителя нет капель размером более 30 мкм мкм.

Рис. 13.24. Динамика капель по размеру при 2,875 мс.

(перепечатано с разрешения SAE)

Угол распыления для каждого размерного класса и затухание количества движения должны быть количественно определены для понимания процессов испарения и образования смеси.Профили движения воздуха и турбулентной энергоемкости показаны на рисунке 13.25. Большая область турбулентной энергии, показанная темной областью на рисунке, указывает на наличие области сильного сдвигового потока. В начале периода закачки большее пятно находится в центре оси. На следующем этапе в области оболочки распылителя появляется темная область. Вектор скорости скольжения показывает большой угол вектора в области сильного сдвига.

Рис. 13.25. Движение воздушного потока, турбулентная кинетическая энергия и скорость скольжения маленькой капли.

(перепечатано с разрешения SAE)

Характеристики распыления бензинового инжектора с пневмоприводом были исследованы с помощью фазовых доплеровских измерений. Краткое изложение вышеизложенных результатов следует.

Двумерное планарное изображение капель, классифицированных по размеру, использовалось для демонстрации пространственной структуры образования брызг. Было обнаружено, что средний диаметр по Заутеру не является лучшим представительным значением в области ускорения, и что метод классификации по размеру очень полезен для понимания подробных характеристик распыления.Скорость скольжения и относительное число Рейнольдса были реализованы, чтобы показать область передачи импульса из-за сильной силы сопротивления. Грибовидный вихрь образовывался сильным сдвиговым потоком на распылительной оболочке и состоял из маленьких капель размером от 10 до 20 мкм мкм. Возле сопла была обнаружена структура с двойным распылительным наконечником, которая быстро уменьшалась с увеличением расстояния. Капли размером более 30 мкм м проникли почти прямо вниз по течению. Было обнаружено, что эта анимация брызг может быть самым мощным инструментом в понимании процессов передачи импульса.

Waynes Garage :: Топливные форсунки — ремонт автомобилей

Как работают топливные форсунки

Мы часто слышим о грязных топливных форсунках , , но что делает их грязными? В большинстве случаев дело не в грязи или мусоре в топливе, а в самом топливе.

Бензин содержит парафиновые соединения, которые могут оставлять отложения лака на игле форсунки при испарении топлива. Эти отложения имеют тенденцию образовываться после выключения двигателя. Тепло от двигателя вызывает испарение остаточного топлива в наконечниках форсунок, оставляя налет лака.Эти отложения в форсунке накапливаются и ограничивают поток топлива или нарушают форму распыления форсунки.

На многих двигателях последних моделей форма и направление факела распыления имеют решающее значение для чистого сгорания и хорошей производительности. Если форсунка форсунки загрязнена, рисунок может быть искажен или отклонен в одну сторону, вызывая тощее место в камере сгорания, которое может вызвать пропуски зажигания или даже преждевременное зажигание или детонацию.

Не требуется особых ограничений в форсунке для обеднения топливной смеси.Только ограничения от 8% до 10% в одной топливной форсунке может быть достаточно, чтобы нарушить топливно-воздушную смесь и вызвать пропуски зажигания.

Поскольку эти отложения находятся прямо у отверстия иглы, единственный хороший способ удалить их после того, как они накапливаются, — это использование мощного очистителя, который пропускается через форсунку с форсунками, изолированными от топливной системы, с использованием специального оборудования, предназначенного для этой цели.

Очиститель топливных форсунок, который вы покупаете в магазине автозапчастей и кладете в топливный бак, помогает предотвратить образование отложений, но обычно не удаляет их, когда они накапливаются.Концентрация, необходимая для удаления этих отложений при добавлении в топливный бак (за большие деньги), может привести к тому, что ваш автомобиль будет работать очень плохо, вероятно, не запустится холодно и, возможно, вызовет повреждение вашей топливной системы и каталитического нейтрализатора.

В некоторых местах продают очистку впрыска топлива, пропуская раствор через впускное отверстие в надежде, что он покроет форсунки достаточно, чтобы их очистить. Это может очистить впускную систему, но редко очистит форсунку. Не тратьте деньги зря.

Бензин должен содержать достаточно моющего средства, чтобы эти отложения не прилипали и не накапливались в форсунках. Но знаете что? Не все бензины одинаковы.
Некоторые бренды содержат намного меньше моющих средств, чем другие.

типов топливных форсунок | | — Pro Flow

Типы топливных форсунок:

Верхняя подача — Топливо поступает сверху и выходит снизу.

Боковая подача — Топливо попадает сбоку на штуцере форсунки внутри топливной рампы.

Форсунки корпуса дроссельной заслонки — (TBI) Расположены непосредственно в корпусе дроссельной заслонки.

Типы систем впрыска топлива:

Форсунки с дроссельной заслонкой или одноточечные форсунки (TBI)
Одноточечный впрыск был первым шагом до появления более сложных многоточечных систем. Не такой точный, как современные системы, TBI дозировал топливо лучше, чем карбюратор, был дешевле и проще в обслуживании.

Портовый или многоточечный впрыск топлива (MPFI)
Многоточечный впрыск топлива имеет отдельную форсунку для каждого цилиндра, сразу за его впускным отверстием, поэтому систему иногда называют впрыском через порт.Подача паров топлива так близко к впускному отверстию гарантирует, что они будут полностью втянуты в цилиндр. Основным преимуществом является то, что MPFI измеряет топливо более точно, чем TBI, обеспечивая желаемое соотношение воздух / топливо. MPFI снижает вероятность конденсации топлива во впускном коллекторе.

Последовательный впрыск топлива (SFI)
Иногда называемый последовательным впрыском топлива (SPFI) или впрыском по времени, SFI представляет собой тип многоточечного впрыска. Хотя в базовом MPFI используется несколько форсунок, которые распыляют топливо одновременно или группами.Последовательный впрыск топлива запускает каждую форсунку независимо и синхронизируется по времени, как свечи зажигания. SFI распыляет топливо непосредственно перед или после открытия впускного клапана.

Прямой впрыск
Прямой впрыск подает топливо непосредственно в камеры сгорания, минуя клапаны. Прямой впрыск, более распространенный в дизельных двигателях, набирает популярность в конструкциях бензиновых двигателей и иногда называется DIG или бензин с прямым впрыском. Как и в других системах, дозирование топлива является еще более точным, а прямой впрыск дает инженерам еще одну переменную, влияющую на то, как происходит сгорание в цилиндрах.

Профессиональные услуги по проверке и очистке системы впрыска топлива для:
В списке указаны не все, мы обслуживаем топливные форсунки и для других моделей. Звоните, если есть вопросы.

Топливные форсунки Acura
Топливные форсунки Alfa Romeo
American Motors
Топливные форсунки Audi
Топливные форсунки Bentley
Топливные форсунки BMW
Топливные форсунки Buick
Топливные форсунки Cadillac
Топливные форсунки Chevrolet
Топливные форсунки Chrysler
Топливные инжекторы Daewoo
Топливные форсунки Dagle
Топливные форсунки
Топливные форсунки Ferrari
Топливные форсунки Fiat
Топливные форсунки Ford
Топливные форсунки Geo
Топливные форсунки GMC
Топливные форсунки Holden
Топливные форсунки Honda
Топливные форсунки Hyundai
Топливные форсунки Infiniti
Топливные форсунки Isuzu
Топливные форсунки Jaguar
Jeep
Kia Топливные форсунки

Топливные форсунки Lancia
Топливные форсунки Lexus
Топливные форсунки Lincoln
Топливные форсунки Mazda
Топливные форсунки Mercedes Benz
Топливные форсунки Mercury
Топливные форсунки Merkur
Топливные форсунки Mitsubishi
Топливные форсунки Nissan
Топливные форсунки Oldsmobile
Топливные форсунки Plymouth
Топливные форсунки Plymouth
Топливные форсунки Porsche
Топливные форсунки Range Rover
Топливные форсунки Renault
Топливные форсунки Rolls Royce
Топливные форсунки Rover
Топливные форсунки Saab
Топливные форсунки Saturn
Топливные форсунки Seat
Топливные форсунки Subaru
Топливные форсунки Suzuki
Топливные форсунки Toyota
Triumph Топливные форсунки Топливные форсунки Volkswagen
Топливные форсунки Volvo

Форсунки Yamaha

Система впрыска топлива: определение, функции, виды, работа

Вы знаете, как топливо поступает в камеру сгорания в автомобильных двигателях? Уверен, вы думаете не о карбюраторе, а о топливной форсунке .Сейчас они в основном ушли в прошлое, особенно в двигателях внутреннего сгорания. Используемый эффективный процесс известен как система впрыска топлива .

Впрыск топлива — это введение топлива в двигатели внутреннего сгорания, в основном автомобильные, с помощью инжектора. Этот процесс был введен в соответствие с законами о выбросах и топливной эффективности. За год производители автомобилей увидели большие преимущества топливных форсунок, и именно здесь начинается падение карбюраторов.

С 1980 года впрыск топлива стал альтернативой карбюраторам на бензиновых двигателях.Ну, разница между впрыском топлива и карбюрацией заключается в том, что впрыск топлива распыляет топливо через небольшое сопло под высоким давлением. В то время как карбюраторы полагаются на всасывание топлива в воздушный поток через трубку Вентури.

Исследования показали, что все дизельные двигатели конструктивно используют впрыск топлива. В газовых двигателях можно использовать непосредственный впрыск бензина, при котором топливо подается непосредственно в камеру внутреннего сгорания. Также можно использовать непрямой впрыск, когда топливо смешивается с воздухом перед тактом впуска.

Сегодня мы подробно рассмотрим определение, функции, детали, типы, принцип работы, проблемы, а также преимущества и недостатки системы топливных форсунок в автомобильных двигателях.

Прочтите: все, что вам нужно знать об автомобильном поршне

Что такое топливная форсунка?

Топливные форсунки представляют собой небольшие форсунки с электронным управлением для распыления топлива под высоким давлением в камеру сгорания двигателя. Он содержит клапаны, которые могут открываться и закрываться много раз в секунду.

До появления топливных форсунок карбюратор широко использовался в двигателях, и до настоящего времени этот двигатель все еще существует. Фактически, во многих других машинах, таких как газонокосилки и бензопилы, по-прежнему используются карбюраторы. Но поскольку компонент усложнился, пытаясь контролировать все требования к автомобилю, была выпущена лучшая альтернатива.

Карбюраторы, где сначала была заменена система впрыска топлива в корпус дроссельной заслонки. Эта система также известна как одноточечная или центральная система впрыска топлива.Это электрически управляемые топливные форсунки в корпусе дроссельной заслонки.

Это была почти лучшая альтернатива, которая позволяла производителям автомобилей не вносить радикальных изменений в конструкцию двигателей.

Постепенно, по мере разработки новых двигателей, многоточечный впрыск топлива заменил впрыск топлива в корпусе дроссельной заслонки. Этот многоточечный впрыск топлива также известен как портовый, многоточечный или последовательный впрыск топлива.

Система содержит топливные форсунки для каждого цилиндра, которые распыляются прямо на впускной клапан.Он обеспечивает более точный учет топлива и более быструю реакцию.

Функции топливной форсунки

Ниже приведены функции топливных форсунок в двигателе внутреннего сгорания:

  • Основное назначение системы впрыска топлива в дизельных двигателях заключается в том, что на их конструкцию сильно влияет компонент,
  • Форсунка для подачи топлива в цилиндры.
  • Улучшает характеристики двигателя по характеристикам, выбросам и шуму.
  • Топливо подается под очень высоким давлением впрыска.
  • Его материалы спроектированы таким образом, чтобы выдерживать более высокие нагрузки и обеспечивать долговечность, соответствующую работе двигателя.
  • Еще одно предназначение системы впрыска — своевременный впрыск топлива. То есть регулируется момент впрыска.
  • Необходимо подать правильное количество топлива, чтобы обеспечить требуемую мощность двигателя. Вот почему контролируется дозирование впрыска.
  • Инжектор
  • изготовлен с большей точностью и допуском, чтобы обеспечить его эффективность работы.Это также предотвращает утечку.
  • Топливная форсунка распыляет топливо на очень маленькие топливные частицы, обеспечивая испарение каждой маленькой капельки топлива и ее сгорание.
  • Кислорода достаточно для смешивания с распыляемым топливом и обеспечения полного сгорания.

Читать: Общие сведения о системе смазки двигателя

Основные части системы впрыска топлива

Ниже приведены основные функциональные части, которые обеспечивают работу системы впрыска топлива в автомобильных двигателях, и названия компонентов топливной форсунки:

Основные части системы впрыска топлива разделены на две части: стороны низкого и высокого давления, части низкого давления — это топливный бак, топливный фильтр и топливный насос.При этом к стороне высокого давления относятся насос высокого давления, топливная форсунка, гидроаккумулятор, форсунка топливной форсунки. Форсунка имеет различную конструкцию срабатывания для различных типов систем впрыска топлива.

Поскольку топливо необходимо перекачивать из топливного бака в систему форсунок, роль играет топливная система низкого давления. При этом от топливной форсунки до камеры сгорания идет система высокого давления. Ниже представлена ​​роль следующих частей, указанных выше:

  • Топливный бак — часть, где хранится топливо.
  • Топливный насос — перекачивает топливо из топливного бака в систему впрыска топлива.
  • ТНВД — эта деталь является измерителем давления топлива для впрыска.
  • Губернатор — подача топлива в соответствии с нагрузкой.
  • Форсунка — подает топливо из ТНВД в цилиндры.
  • Топливный фильтр — для фильтрации грязи, каналов и абразивных частиц от блокировки системы впрыска.
На рисунке ниже показаны основные части топливной форсунки:

Система впрыска топлива работает полностью точно, чтобы обеспечить правильное количество топлива для любых условий эксплуатации. Блок управления двигателем (ЭБУ) используется для контроля большинства входных датчиков. Ниже приведены несколько деталей, в которых датчик используется для точной работы:

  • Датчик кислорода — обратите внимание на количество кислорода в выхлопных газах, которое позволяет ЭБУ определять, является ли топливная смесь богатой или бедной.Соответственно, выполняется регулировка.
  • Датчик положения дроссельной заслонки — этот датчик контролирует положение дроссельной заслонки, чтобы узнать, сколько воздуха попадает в двигатель. ЭБУ быстро реагирует на изменения, увеличивая или уменьшая расход топлива по мере необходимости.
  • Датчик массового расхода воздуха — сообщить блоку управления двигателем количество топлива, поступающего в двигатель.
  • Датчик температуры охлаждающей жидкости — ЭБУ определяет, когда двигатель достигает своей надлежащей рабочей температуры.
  • Датчик абсолютного давления в коллекторе — определяет давление воздуха во впускном коллекторе.
  • Датчик частоты вращения двигателя — контролирует частоту вращения двигателя, поэтому используется для расчета ширины импульса.
  • Датчик напряжения — определяет напряжение системы в автомобиле, чтобы знать, когда ЭБУ поднимает обороты холостого хода. это может быть, когда напряжение падает, что указывает на высокую электрическую нагрузку.

Читайте: Обычные и нетрадиционные типы автомобильных шасси

Типы систем впрыска топлива

Ниже приведены распространенные типы системы впрыска топлива, встречающиеся в старых и современных автомобилях:

Одноточечный впрыск или впрыск дроссельной заслонки:

Одноточечная система впрыска — это самый ранний и простой впрыск топлива, пришедший на смену карбюраторам.Он содержит одну или две форсунки в корпусе дроссельной заслонки, который является горловиной впускного коллектора двигателя.

Эта инжекторная система не точна, чем предыдущая, но по сравнению с карбюраторами она лучше управляема, менее дорога и проста в обслуживании.

Портовый или многоточечный впрыск топлива:

В многоточечных топливных форсунках разделительные форсунки расположены в каждом цилиндре на его впускном канале. Вот почему систему иногда называют форсункой, которая выпускает пары топлива близко к месту впуска, обеспечивая их полное втягивание в цилиндр.

Одним из преимуществ этой форсунки является то, что расходомер топлива более точен по сравнению с одной точкой. Он также идеально подходит для достижения требуемого соотношения топливо-воздух и практически исключает возможность конденсации или скопления топлива во впускном коллекторе.

Последовательный впрыск топлива:

Этот тип топливной форсунки также известен как последовательный впрыск топлива через порт или впрыск по времени. Это тип многопортового впрыска, даже если базовый многопортовый использует несколько форсунок.Все они распыляют свое топливо в одно и то же время или последовательно, заставляя топливо оставаться в течение 150 миллисекунд, когда двигатель работает на холостом ходу.

Преимущества последовательного впрыска топлива заключаются в том, что система реагирует быстрее, если водитель делает резкое изменение. Это связано с тем, что клапану нужно только дождаться открытия следующего впускного клапана, а не полного оборота двигателя.

Прямой впрыск:

Прямой впрыск является обычным явлением в дизельных двигателях, хотя начинает применяться и в бензиновых двигателях.Его иногда называют DIG для бензина с прямым впрыском. При этом топливо впрыскивается прямо в камеру сгорания, мимо клапанов.

Дозирование топлива более точное, чем у других типов впрыска топлива. Прямой впрыск топлива дает инженерам еще одну возможность точно влиять на то, как происходит сгорание в цилиндрах. Наука о конструкции двигателя изучает, как воздушно-топливная смесь вращается в цилиндрах. А еще мотыга идет взрыв от точки возгорания.

Прямой впрыск в бензиновом двигателе может обрабатывать такие вещи, как форма цилиндров и поршней.А также расположение портов и свечей зажигания, время, продолжительность и интенсивность искры. Количество свечей зажигания на цилиндр. Все это влияет на то, насколько полно и равномерно сгорает топливо в бензиновом двигателе.

Принцип действия

Работа системы топливных форсунок довольно интересна и понятна. Основная работа идет от топливной форсунки до камеры сгорания после того, как топливо перекачивается в нее из топливного бака.

Как было сказано ранее, топливная форсунка представляет собой механическое устройство с электронным управлением, которое отвечает за распыление топлива.На инжектор подается питание, и электромагнит перемещает плунжер, который открывает клапан. Этот клапан позволяет топливу под давлением выливаться через крошечное сопло. Форсунка предназначена для распыления топлива, благодаря чему топливо легко сгорает,

Время, в течение которого топливная форсунка остается открытой, определяет подачу топлива в двигатель. Это известно как «ширина импульса» и управляется устройством ECU. Система топливных форсунок устанавливается непосредственно на впускной коллектор, так что топливо может распыляться прямо на впускной клапан.

Внутри обычного инжектора есть пружина, которая удерживает игольчатый клапан в закрытом положении. Он удерживает этот игольчатый клапан до тех пор, пока линия высокого давления не достигнет определенного значения. Существует труба под названием «топливная рампа», по которой топливо под давлением подается к форсункам.

Правильное количество топлива, подаваемого на требуемые детали. Различные части двигателя оснащены датчиками, которые сообщают блоку управления двигателем информацию о количестве топлива и при необходимости производят регулировку. Различные датчики были перечислены и объяснены в приведенной выше части этой статьи.

Посмотрите видео ниже, чтобы лучше понять работу системы впрыска топлива:

Прочтите: Что нужно знать о двигателях с турбонаддувом

Признаки неисправности топливных форсунок и способы их предотвращения

Отказ топливной форсунки происходит после перегрузки, и если ее не обслуживать регулярно, это может привести к серьезным неисправностям или засорению. Ниже приведены симптомы неисправности топливных форсунок и способы их предотвращения:

  • Неравномерные характеристики двигателя
  • Осложнения при запуске автомобиля
  • Запах топлива
  • Разбавление маслом
  • Неудачная эмиссия
  • Двигатель не развивает полную частоту вращения
  • Низкая производительность автомобиля
  • Катастрофический отказ двигателя
  • Выделение дыма
  • Повышенный расход топлива
  • Загрязнение

Проблема часто возникает на топливной форсунке, когда есть грязь, частицы углерода, жидкое топливо или скопление остатков, приводящих к засорению топливных форсунок.Проблемы возникают после того, как корзина фильтра собирает мусор, который препятствует протеканию топлива через нее.

Правильный способ предотвратить отказ топливных форсунок — это регулярное техническое обслуживание. Детали автомобиля необходимо регулярно осматривать. Несмотря на то, что топливные форсунки имеют большие допуски, все же следует проводить проверку компонентов.

Для более надежного результата добавление влаги втягивание этанола или присадок, визуальный контроль, проведение ультразвуковой очистки. Кроме того, поможет фактическая картина потока для проверки объема и распыления.

Преимущества и недостатки системы впрыска топлива

Преимущества:

Ниже приведены преимущества системы впрыска топлива:

  • Точная топливная смесь топлива и воздуха обеспечивает максимально возможную топливную экономичность и выработку энергии.
  • Процесс сгорания значительно более эффективен в двигателе с впрыском топлива.
  • Двигатели с впрыском топлива более экономичны и позволяют максимально или минимизировать уровень выбросов.
  • В двигателе с впрыском топлива исключен холодный запуск, что устраняет необходимость в ручной блокировке.
  • Он также используется на современных мотоциклах.
  • Система впрыска топлива автоматически уравновешивает топливовоздушную смесь с учетом окружающей среды.
  • Уменьшается вибрация двигателя и сводится к минимуму проблема засорения свечей зажигания.

Прочтите: Двухтактный двигатель: все, что вам нужно знать

Недостатки

Несмотря на все преимущества системы впрыска, некоторые ограничения все же имеют место.Ниже приведены недостатки системы:

  • Это сложное устройство с электронным управлением, которое работает с несколькими электронными датчиками.
  • Обслуживание и ремонт системы очень ограничены. То есть не вся мастерская может делать свою работу.
  • Система впрыска топлива стоит довольно дорого.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *