Электродвигатель не набирает обороты: Неисправности электродвигателей — ООО ПФ «КРЭДО»

Содержание

Неисправности электродвигателей — ООО ПФ «КРЭДО»

Чтобы быстро определить, почему электродвигатель вышел из строя и в каких узлах произошел сбой – рекомендуется ознакомиться с перечнем наиболее популярных неисправностей. Ниже приведены характерные поломки, причины возникновения и способы их правильного устранения.

 

Неисправность: Электродвигатель сильно гудит при запуске, не набирает оборотов, или не запускается совсем.

Причина: Обрыв цепи статора, обрыв цепи одной из фаз (наконечник, кабель, контактор), перегорела защитная вставка.
Решение: Восстановить цепь питания, проверить и сменить предохранитель.

Причина: Обрыв обмотки статора.
Решение: Перемотать статор.

Причина: Обрыв в цепи фазного ротора (кабель, реостат, щетки).
Решение: Восстановить цепь ротора.

Причина: Нарушение контакта между стержнями и кольцами в короткозамкнутом роторе (дым и искры).


Решение: Ремонт ротора.

Причина: Заклинивание вала ЭД или привода.
Решение: Произвести очистку двигателя или его механизма от возможных загрязнений.

Причина: Низкий пусковой момент, который не позволяет ротору набрать обороты.
Решение: Замена на аналогичный двигатель с большим пусковым моментом.

Причина: Соединение звездой вместо треугольника
Решение: Проверить правильность схемы соединения, произвести переподключение.

 

Неисправность: Сильный нагрев в подшипниках скольжения.

Причина: Отсутствие или недостаточное количество смазки.
Решение: Произвести смазку подшипников должным образом.

Причина: В масле имеются примеси и механические частицы.
Решение: Произвести замену смазки.

Причина: Износ деталей полумуфт, дефект кольца, бой шейки вала и т.п.
Решение: Ремонт механической части двигателя.

 

Неисправность: Сильный нагрев в подшипниках качения.

Причина: Отсутствие или недостаточное поступление смазки, избыток смазки.
Решение: Произвести смазку подшипников должным образом, проследить за возможными утечками, убрать излишки смазки.

Причина: Дефекты подшипника, выраженные посторонним шумом.
Решение: Замена подшипника.

 

Неисправность: Корпус электродвигателя сильно нагревается при работе.

Причина: Слабая работа принудительной системы охлаждения.

Решение: Очистка каналов и технологических отверстий.

Причина: Забиты вентиляционные каналы для пропускания холодного воздуха.
Решение: Продувка сжатым воздухом.

Причина: Повышенная нагрузка по току.
Решение: Понизить нагрузку или заменить на ЭД большей мощности.

 

Неисправность: Искрение при работе ЭД и появление дыма.

Причина: Ротор соприкасается с поверхностью статора.
Решение: Ремонт двигателя.

Причина: Некорректная работа в защитной или пускорегулирующей системе.
Решение: Диагностика защитной или пускорегулирующей системы и устранение дефектов.

 

Неисправность: Повышенные вибрации при работе ЭД.

Причина: Износ соединительных муфт
Решение: Отсоединить муфты и проверить ЭД без подключения к механизму.

Причина: Нарушена центровка двигателя и механизма.
Решение: Проверить и затянуть крепежные детали, а также крепления к станине.

Причина: Износ подшипников, разбалансировка ротора, взаимное смещение положения ротора и статора.
Решение: Ремонт ЭД.

 

Неисправность: Колебания потребления тока статора ЭД в процессе его работы.

Причина: Плохое соединение в цепи — для фазного ротора, для короткозамкнутого ротора — плохое соединение между стержнями и кольцами.
Решение: Ремонт ЭД (при больших колебаниях – незамедлительно, при небольших скачках – чем раньше – тем лучше).

 

Неисправность: Искры из коллекторно-щеточного узла. Сильный нагрев и обгорание соответствующей арматуры.

Причина: Щетки плохо отшлифованы.
Решение: Отшлифовать щетки.

Причина: Недостаточный зазор для свободного движения щеток в щеткодержателях.
Решение: Выставить допустимый зазор в пределах 0. 2-0.3 мм.

Причина: Загрязнение контактных колец или щеток.
Решение: Произвести очистку, устранить источник распространения загрязнения.

Причина: На контактных кольцах имеются борозды и неровности.
Решение: Проточить и произвести шлифовку колец.

Причина: Слабый прижим щеток.
Решение: Отрегулировать усилие нажатия.

Причина: Отсутствует равномерное распределение тока между щетками.
Решение: Отрегулировать усилие нажатие щеток и их свободный ход в щеткодержателях, проверить состояние контактной группы Траверс, оценить состояние токопроводов.

 

Неисправность: Активная сталь статора перегревается равномерно по всей поверхности.

Причина: Повышенное напряжение питания.
Решение: Организовать дополнительное охлаждение электродвигателя и понизить напряжение электросети до штатного уровня.

 

Неисправность: Сильный нагрев активной стали статора в отдельном месте на холостом ходу при штатном напряжении в сети.

Причина:

Местное КЗ между отдельными листами активной стали.
Решение: Очистить и прошлифовать место соприкосновения листов, покрыть их диэлектрическим лаком.

Причина: Нарушена изоляция в местах стяжки активной стали.
Решение: Восстановить изоляцию на данных участках.

 

Неисправность: ЭД с фазным ротором при загрузке не выходит на номинальные обороты.

Причина: Некачественное соединение в пайке контактного кольца ротора.
Решение: Произвести контроль надежности пайки визуально и «проверкой с падением напряжения».

Причина: Слабый контакт обмотки ротора с контактным кольцом.
Решение: Проверить и восстановить токопроводящие соединения.

Причина:

Слабое соединение в щеточном узле и механизме КЗ ротора.
Решение: Произвести шлифовку и регулировку усилия прижатия щеток.

Причина: Слабое соединение контактных проводов в пусковой аппаратуре.
Решение: Восстановить целостность и надежность контактов на соответствующем участке.

 

Неисправность: Двигатель с фазным ротором запускается при незамкнутой цепи ротора, а под нагрузкой не может выйти на номинальный режим.

Причина: КЗ в обмотке якоря, соединительных хомутах лобовых соединений.
Решение: Изолировать соприкасающиеся хомуты, Устранить КЗ и произвести замену поврежденной обмотки якоря.

Причина: КЗ обмотки ротора по двум участкам одновременно.
Решение: Устранить КЗ и произвести замену обмотки неисправной катушки.

 

Неисправность: Двигатель с короткозамкнутым ротором не набирает штатное количество оборотов.

Причина: Отработало тепловое реле, вышли из строя предохранители или автомат.
Решение: Проверка и устранение данных неисправностей.

 

Неисправность: При запуске электродвигателя электрическая дуга перекрывает контактные кольца.

Причина: В щеточном узле или на контактных кольцах присутствует пыль, грязь.
Решение: Провести чистку.

Причина: Высокая влажность в месте эксплуатации ЭД.
Решение: Нанести дополнительный слой диэлектрика или произвести замену ЭД на другой, пригодный для эксплуатации в текущих условиях.

Причина: Обрыв в контактных соединениях реостата или ротора.

Решение: Провести диагностику всех соединений, устранить неисправности.

Неисправности электродвигателя. Основные причины. Фото, видео

Автор Alexey На чтение 11 мин. Просмотров 1.8k. Опубликовано Обновлено

Электродвигатели, как и все механизмы, подвержены износу, и при их эксплуатации часто встречаются неисправности, поломки или работа с параметрами, отличающимися от номинальных значений. Поскольку в электромоторе электроэнергия превращается в механическую энергию, то очевидно, что неисправности электродвигателей могут быть вызваны как неисправностями в электрических и электромагнитных системах, так и дефектами в механизмах.

Электрическую составляющую неисправностей подразделяют на внутреннюю – неисправности в обмотках и коллекторных контактах электродвигателя, и внешнюю – неисправности в компонентах пускателя и в питающих проводах.

Изношенная (справа) и новая (слева) коллекторные контактные щетки

Существует множество алгоритмов для проверки и поиска неисправностей электрических двигателей в зависимости от их конструкции, типа, габаритов, массы, расположения и текущего режима работы.

Не может существовать единственно правильной инструкции проверки электродвигателей, например – один электромотор свободно помещается на ладони, тогда как другой необходимо поднимать краном, хоть и принцип их действия может быть одинаковым.

Различие размеров электродвигателей

Первоначальная диагностика электродвигателя только своими руками

Допустим, электродвигатель средних размеров, мощностью до 10 кВт стоит на рабочем столе. Любой мастер первым делом попробует прокрутить рукой вал – если он вращается свободно, практически без шума, сохраняя достаточно долгое время (секунд десять) вращение по инерции, то можно сделать первый вывод, что с механической частью, возможно, неисправностей нет.

Прокрутка вала рукой

Хотя, неисправность в механизмах может обнаружиться только при работе на номинальных оборотах электрон двигателя, но, если при прокручивании вала рукой уже ощущается «тугой» ход и слышны скрежет, скрипение и постукивание, то можно заключить, что причиной этих явлений является износ подшипников. Если диагностируется электродвигатель с фазным ротором, или постоянного тока, то причиной нехарактерных звуков могут быть дефекты в токопередающих кольцах или коллекторных щетках.

Контактная система электро двигателя с фазным ротором

Еще один способ проверки подшипников – подергать со стороны в сторону вал двигателя, перпендикулярно и параллельно его оси. Если ощущается шатание вала, то скорее всего шарикоподшипники изношены. Но может иметь место выработка посадочного места подшипника,

Посадочное место шарикоподшипника в торцевой крышке электродвигателя

реже – истирание самого вала – такие неисправности характерны для электродвигателей, работавших с большой боковой нагрузкой на шкив, или подключенных к плохо центрированной соединительной муфте (оси ведущего и ведомого фланца не совпадали).

Сильно изношенный и деформированный вал электродвигателя

Причины и последствия износа подшипников в электродвигателе

Таким образом, даже не подключая и не разбирая двигатель, ни наблюдая его в процессе работы, можно провести начальную диагностику и поиск неисправностей без измерительных устройств и инструментов, пробуя вращать вал рукой и слушая издаваемые им звуки.

Чтобы определить происхождение звуков, издаваемых работающим электродвигателем, нужно отключить питание – электромагнитная природа шума исчезнет и останется только трение или биение вращающихся механизмов. Если слышен визг или скрипение, которое не наблюдалось при малых оборотах, то причиной может быть отсутствие смазки в шарикоподшипниках или их сильное загрязнение.

Очень сильно загрязненный подшипник

Сильная вибрация вала электрон двигателя, вращающегося по инерции, указывает на износ подшипника или дисбаланс колеса вентилятора, у которого может отколоться одна из лопастей. Биение вала на изношенных подшипниках будет все больше изнашивать прилегающие поверхности, что может спровоцировать ещё одну неисправность – ротор будет касаться статора в процессе вращения, и при этом будет выделяться металлическая стружка, усугубляя трение.

Последствия биения вала ротора из-за разбитых подшипников

Поэтому эксплуатировать электродвигатель с изношенными подшипниками нельзя, иначе серьезно повредятся коллекторные пластины и магнитопровод ротора и статора, что сильно ухудшит их электромагнитные характеристики.

Износ шарикоподшипников вызывает повышенное тепловыделение и энергопотребление электродвигателя при снижении его эффективности. В асинхронных электродвигателях короткозамкнутый ротор контактирует со статором только через подшипники – поэтому их износ или дефекты являются основной причиной механических неисправностей.

Полуразобранный асинхронный электродвигатель с короткозамкнутым ротором

Намного реже случаются деформации вала или трещины в корпусе.

Разборка типового асинхронного электро двигателя

Поскольку имеется большое разнообразие конструкций электрических двигателей, то для разборки конкретного электродвигателя нужно изучать его чертежи и инструкцию по ремонту, ознакомиться с наглядными видео.



Но в общих чертах конструкции популярных в быту электромоторов схожи – на валу ротора находятся шарикоподшипники качения, внешние обоймы которых запрессовываются в посадочные места на внутренних поверхностях торцевых щитов (крышек). Устройство асинхронного трехфазного двигателя с короткозамкнутым ротором

Сами щиты центрируются при помощи проточенной цилиндрической кромки, совпадающей по размерах с проточкой на кожухе статора. Фиксация торцевых щитов осуществляется болтовыми соединениями. При разборке электродвигателя его вал разъединяют с ведомыми механизмами и снимают электродвигатель со станины.

Демонтаж двигателя с рабочего места

После этого необходимо снять с вала элемент передачи механической энергии (шкив, шестерня, фланец и т.д.). Открутив болты крепления, при помощью съемника снимают торцевые щиты с подшипников, после чего можно осторожно вынуть ротор.

Съемник для подшипников

Подшипники чистят, заново смазывают или заменяют, очищают поверхности ротора и статора, после чего собирают электро двигатель вновь. Существует множество способов съема подшипников, методов и инструментов.


Недостаточные обороты электродвигателя

Как правило, выявление механических неисправностей в подшипниках не дает ответа на вопрос, почему электродвигатель не набирает обороты. Причиной может быть неисправность в ведомой нагрузке. Но, если у свободного от нагрузки двигателя подшипники настолько загрязнены и износились, что вал не может раскрутиться, то такое явление будет наблюдаться очень недолго – из-за трения и большого тепловыделения сталь шарикоподшипников раскалится, и они будут буквально перемолоты, что в итоге приведет к заклиниванию ротора.

Часть валиков качения шарикоподшипника буквально «размазаны» по сепараторному кольцу

Поэтому причину недостаточных оборотов следует искать во внутренних или внешних электрических неполадках. Первым делом нужно убедиться в качестве электроэнергии, поступающей на клеммы двигателя – напряжение должно соответствовать номинальному значению.

Межфазное напряжение в пределах нормы

Также следует проверить контактные площадки контакторов пускателя – при больших токах они могут подгорать, что будет вызывать падение напряжения на них. В неисправных изношенных контакторах может происходить дребезг контактов, что приводит к прерыванию тока.

На экране осциллографа отображен дребезг контактов, приведший к прерыванию тока

Народный способ проверить работоспособность пускателя – подключить к нему другой исправный электродвигатель такого же типа, той же или немного меньшей мощности.

Основные неисправности во внутренней электрической системе, влияющие на обороты двигателя.

Исключив внешние электрические неисправности, необходимо проверить обмотки двигателя на пробой и обрыв. Мультиметр переключают в режим мегомметра и измеряют сопротивление изоляции обмоток, приложив щупы поочередно к каждому выводу и корпусом. Если на дисплее высвечивается ноль, то имеет место явный пробой – где-то изоляция перетерлась, и провод напрямую контактирует с корпусом.

Иллюстрация процесса измерения сопротивления обмоток электродвигателя

При данных измерениях дисплей может показывать сопротивление в пределах нескольких мегаом – в этом случае нужно смотреть документацию к двигателю, и свериться с графой сопротивления изоляции.

Таблица оценки качества сопротивления изоляции электродвигателей

Вполне возможно, что повышенная влажность, наличие в двигателе мелкой металлической стружки будет ухудшать диэлектрические свойства изолирующих материалов. Данные утечки тока, протекающие сквозь дефективную изоляцию, негативно влияют как на эффективность электродвигателя, так и электробезопасность его эксплуатации.

Обнаружение неисправностей в обмотках электродвигателей

Обрыв в одной из обмоток может стать причиной того, что двигатель не запустится вовсе и будет сильно гудеть, пока не сработает защита или не перегорят оставшиеся катушки. Для обнаружения обрыва в обмотках трехфазного асинхронного двигателя, необходимо отсоединить перемычки, формирующие подключение звездой или треугольником и проверить каждую обмотку в отдельности.

Иллюстрация процесса прозвонки обмоток электродвигателя

Такой способ будет надежнее всего и не даст возможности запутаться начинающему мастеру. Проверку осуществляют в режиме омметра. В зависимости от качества прибора и мощности двигателя, показания омметра буду близки к нулю, составляя несколько Ом.

Здесь важно, чтобы сопротивление обмоток было одинаково. Условие равенства сопротивления обмоток справедливо также для двигателей постоянного тока. В данных электродвигателях имеются две или несколько статорных обмоток и множество обмоток на роторе, подключенных к коллекторным контактным пластинам.

Прозвонка обмоток ротора коллекторного электродвигателя

Если в одной из обмоток сопротивление меньше, чем у других, то это указывает, что между некоторыми витками катушки произошло короткое замыкание, которое называют межвитковым.

Обнаружение межвиткового замыкания в обмотках двигателя

Именно такое межвитковое замыкание очень часто является причиной недостаточного набора оборотов двигателем. Точность у обычных мультиметров недостаточна для измерения десятых долей Ома. Поэтому используют дополнительное сопротивление реостата, формируя делитель напряжения вместе с испытуемой обмоткой, стабилизированный источник питания, вольтметр и амперметр. Измеряют падение напряжения на каждой обмотке – в случае их исправности, показания вольтметра будут одинаковыми. Меньшее напряжение будет указывать на наличие межвиткового замыкания даже без вычисления сопротивлений обмоток, которые можно произвести по формуле, приведенной на рисунке.

Вычисление сопротивления обмотки через падение напряжения

При условии равенства фаз, межвитковое замыкание в обмотках работающего асинхронного трехфазного двигателя можно обнаружить, измерив токи в каждой фазе. Увеличенный ток в одной фазе при подключении обмоток электродвигателя звездой, или больший ток в двух фазах при подключении обмоток треугольником будет указывать на межвитковое замыкание.

Иногда найти место межвиткового замыкания в асинхронном двигателе можно применив народный метод – вынимают ротор, и на обмотки подают пониженное трехфазное напряжение – не более 40 В (для обеспечения электробезопасности и чтобы катушки не перегорели).

В цилиндр горизонтально стоящего статора помещают металлический шарик, который начнет катиться по внутренней поверхности статора, следуя за вращающимся магнитным полем.

Обнаружение межвиткового замыкания при помощи стального шарика

Если шарик вдруг примагнитится к одному месту, то его местоположение будет указывать на межвитковое замыкание.

Основные неисправности коллекторных электродвигателей

У коллекторных электродвигателей постоянного и переменного тока часто встречается неисправность, связанная с износом контактных пластин и щеток коллектора. При сильном износе и загрязнении соприкасающихся поверхностей сопротивление коллекторных контактов будет увеличиваться, что приведет к снижению момента вращения и эффективности двигателя.

Очистка коллекторных пластин при помощи наждачной бумаги

В конечном итоге такой износ приводит к тому, что между щеткой и пластиной периодически пропадает контакт, и в процессе вращения наблюдается прерывистая работа электродвигателя.

Поврежденные коллекторные контактные пластины ротора

При запуске такой электродвигатель может не запустится вовсе. Если при подаче напряжения коллекторный двигатель постоянного или переменного тока иногда запускается после толчка его вала, то необходимо заменить щетки и почистить коллекторные пластины. Иногда наблюдается повышенное искрение у одной из щеток – это указывает на смещение щетки относительно перпендикулярной оси вала центральной линии, проходящей через центр. Центровка щеток поможет устранить данный дефект.

Правильно выставить коллекторные щетки

Ознакомиться с процессом проверки коллекторных двигателей можно, посмотрев приведенное ниже видео


Неисправности в магнитопроводе, ухудшающие характеристики электродвигателя

Если с механической и электрической частью двигателя переменного тока все в порядке, но ощущается, что он работает не на максимальной мощности и наблюдается повышенное тепловыделение, то возможно замыкание между пластинами магнитопровода.

Переменный ток в магнитопроводе вызывает вихревые токи, ухудшающие характеристики электродвигателя, поэтому статор и ротор набирают из шихтованных пластин специальной электротехнической стали. Данные пластины покрываются изоляцией в виде оксидного слоя, напыления или лака.

Если вследствие механических повреждений или появления ржавчины изоляция между шихтованными пластинами нарушается, происходит короткое замыкание между ними.

Наличие ржавчины на поверхности на магнитопроводе ротора

Обнаружить замыкание пластин магнитопровода при помощи домашних измерительных приборов практически невозможно, поэтому нужна полноценная диагностика неисправностей двигателя в специализированной мастерской.

Иногда замыкание магнитопровода можно обнаружить при тщательном осмотре поверхности, или заметив локальный повышенный нагрев магнитопровода. Но без полной разборки всего двигателя, включая магнитопровод, данную неисправность устранить невозможно.

В приведенных ниже таблицах собраны наиболее часто встречаемые неисправности и поломки электродвигателей, а также методы их устранения.

Таблица неисправностей двигателя, часть перваяТаблица неисправностей электродвигателя, часть вторая

Причины почему греется электродвигатель, защита от перегрева

Перегрев электродвигателя – одна из самых распространенных неисправностей, последствием которой может быть выход агрегата из строя. Почему греется асинхронный электродвигатель и что необходимо сделать, чтобы этого не происходило?

Причины перегрева двигателя

Нагрев может быть спровоцирован самыми разными факторами. Чаще всего виной тому:

  • Эксплуатация в недопустимом режиме. Устройство не должно долгое время работать при повышенной нагрузке, а также подвергаться механическим воздействиям (удары, резкие толчки, вибрация) – от этого нарушается целостность.
  • Коррозия, вызванная резкими и частыми перепадами температур и повышенной влажностью. Уменьшение зазора между элементами из-за ржавчины приводит к тому, что электродвигатель не набирает обороты и греется.
  • Несоблюдение правил хранения, монтажа и транспортировки. Следует четко следовать инструкциям, приведенным в паспорте.
  • Повреждение изоляции обмотки. Оно может произойти при попадании под корпус инородных частиц или при небрежной транспортировке. Последствия бывают разные – локальные короткие замыкания, деформация вала, неравномерное вращение ротора, и как итог – перегрев.
  • Эксплуатация при повышенном или пониженном напряжении в сети. Пытаясь найти ответ на вопрос: почему греется электродвигатель 3-хфазный, проверьте проводку и состояние розеток.
  • Засорение вентиляционных каналов. Чтобы этого избежать, достаточно регулярно проводить техосмотр и чистку двигателя.
  • Постоянная слишком высокая/низкая температура в помещении, где функционирует двигатель.
  • Разрушение подшипника. Признаки данной неисправности – неподвижность или плохое прокручивание ротора при включении устройства, полное заклинивание ротора и статора и нагрев корпуса.

В большинстве случаев предотвратить нагрев обмотки электродвигателя можно, просто строго соблюдая правила эксплуатации. Иногда достаточно выключить его и оставить в состоянии покоя на некоторое время. Если же элементы уже повреждены, требуется их починка или замена.

Превентивные меры, необходимые для защиты электродвигателя от перегрева

Конечно, лучше не доводить агрегат до поломки. Для этого следует принять меры, обеспечивающие защиту электродвигателя от перегрева:

  • Не допускайте перегрузки устройства.
  • Если двигатель пока не эксплуатируется, храните его в помещении с приемлемой температурой и влажностью.
  • Периодически проверяйте состояние узлов.

Если механизм и корпус часто и сильно нагреваются, следует выявить причины этого и устранить их:

  • Заменить подшипник.
  • Перемотать обмотки.
  • Отчистить детали от ржавчины.
  • Сменить изоляцию обмоток.
  • Прочистить каналы вентиляции.

В «запущенных» случаях придется отнести агрегат в ремонтную мастерскую.

Знать причины перегрева двигателя и способы их устранения необходимо для того, чтобы, во-первых, не допускать самого перегрева, во-вторых, уметь самостоятельно определить неполадку и исправить ее, если это в ваших силах.


Двигатель не набирает обороты: причины

Почему двигатель не набирает обороты, которые необходимы для корректной работы? Такой вопрос задают себе очень многие водители. В период эксплуатации двигателей разного типа, они часто сталкивается с ситуацией, когда при нажатии на педаль газа двигатель никаким образом не реагирует и не набирает необходимые обороты.

Часто такие проблемы встречаются с автомобилями, оборудованными ГБО, хотя при переключении на бензин проблема улетучивается. Неисправности разного плана могут повлечь за собой как достаточно серьезный ремонт, так и простые профилактические меры. Рассмотрим подробнее, почему двигатель плохо набирает обороты, как на бензине, так и солярке.

При первом же случае, очень важно попытаться проанализировать, при каких условиях это произошло и как проявляется. Обязательно нужно постараться выявить все сопутствующие симптомы.

Отказ полностью исправного ДВС набирать необходимые обороты после сервисных работ или ремонта обычно является результатом неправильной сборки, ошибок подключения и т.д. такие ситуации позволяют мгновенно определить неисправности путем осмотра или возврата авто на станцию ремонта.

Возможные причины, по которым не развивает обороты двигатель, делятся условно на категории. Вначале разберемся с более простыми, можно сказать незначительными неисправностями. Набор нужных показателей при езде очень зависит от полноценности сгорания, состава смеси, эффективности подачи ее в нужном объеме и своевременного воспламенения.

Одна из частых причин, по которым обороты не могут набираться до нужного значения — нарушенная работа систем зажигания, подачи топлива и воздуха:

  1. Значительное загрязнение воздушных фильтров уменьшает возможность проникать воздуху через фильтры. Двигатель в такой ситуации начинает работать неровно, теряет мощность, вследствие чего не сможет набрать обороты. Одна из частых причин — появление в воздушном фильтре веток, грязи, пакетов и т.д.;
  2. Уделить внимание нужно подсосу на предмет впуска излишков воздуха. Проблема может возникнуть неожиданно, либо в результате постепенного прогресса. Работая на сильном подсосе, мотору очень сложно набрать обороты. Пропорции топлива и воздуха в топливно-воздушной смеси значительно отклоняется от нормального показателя. Смесь в итоге получается очень скудной на бензин и богатой на воздух. Двигатель с такой смесью заводится без проблем, но не будет работать без перебоев и не сможет набрать оборотов при малейшем движении;
  3. Агрегат не получает достаточного количества топлива. Обычно в роли виновника выступает фильтр, который запросто может забиться посторонними предметами. Обычно проблем с запуском ДВС не возникает, так как уровень горючего в норме, но автомобиль дергается, несвоевременно реагирует на манипуляции с педалью газа. Обороты могут не достигать уровня определенной отметки тахометра;
  4. Загрязненная фильтр-сетка на бензонасосе, так как со временем образование на ней налета из бака — естественны процесс. Отсутствие нужного давления в системе приводит к падению производительности насоса. Нормальная работа мотора невозможна на разных режимах: двигатель будет набирать, необходимы обороты и тут же глохнуть из-за забивания сеточки;
  5. Нарушенная работа проводов и свечей делает проблемным воспламенение горючей смеси. Процесс поджога топливного заряда несвоевременен, мощность падает, соответственно обороты не будут расти. Причиной этих проявлений обычно становится загрязнение и замасливание свечей, повреждение ее корпуса, зазоры при монтаже на электродах;
  6. Троение двигателя при обрывах высоковольтных проводов, пропуск момента зажигания, ухудшенная динамика набора ДВС оборотов.

Серьезные неполадки, требующие определенного уровня мастерства, знаний и специального оборудования или обращения на станцию техобслуживания. Речь пойдет уже не о расходных материалах, а именно о деталях:

  • Пожалуй, важнейшая причина — нарушенные фазы работы ГРМ. Сбалансированная работа газораспределительного механизма нарушается за счет несвоевременного открытия клапанов. Такие неприятности обычно появляются после неудачных попыток замены ГРМ ремня, особенно при перескакивании зубчиков. Также к причинам относится клапаны, которые неправильно отрегулированы, неполадки в фазах газораспределения и даже поломка привода ГРМ;
  • Нарушенная работа зажигательного модуля и катушек. Пропуски зажигания становятся привычным делом, а двигатель попросту не может достичь необходимых для нормальной работы оборотов;
  • Стоит обратить особое внимание на питание форсунок на инжекторе. На форсунку не действует управляющий сигнал, либо это происходит с перебоями из-за неправильной работы проводки;
  • Нарушения в работе бензонасоса, а если дизельный двигатель, то ТНВД. Проблема развивается постепенно, все начинается из-за постепенного ослабления возможностей перекачивания топлива, и как следствие — нехватки давления. В итоге, при большой загрузке двигателя, он начнет глохнуть все чаще;
  • Проблема загрязнения инжектора происходит при работе агрегатов с топливом крайне низкого качества. Обязательно стоит прочищать форсунки минимум на 30 тысячах;
  • Некорректная работа датчиков электрической системы могут повлиять даже на состав горючей смеси.

Что в итоге?

Учитывая все проблемы с тем, что ДВС медленно набирает обороты, целесообразно будет как можно скорее провести диагностическую проверку на предмет наличия ошибок. В срочном порядке такую процедуру нужно провести, в случае, когда загорается «check» на приборке.

Редко бывают случаи, когда двигатель не развивает обороты по причине выхода из строя ЭБУ. Такие неприятности могут возникнуть из-за мойки двигателя и халатного диагностического обслуживания прошивки.

Результатом такого вмешательства является неадекватное восприятие ЭБУ оборотов: низкие принимаются за высокие, и наоборот. Максимальную мощность ДВС можно получить при условии своевременного проведения всех регламентных работ, предусмотренных заводом изготовителем и прочих не менее важных сервисных мероприятий.

13 распространенных причин неисправности электродвигателей

4 Февраля 2018

В промышленности электродвигатели используются повсеместно, они становятся технически все сложнее, что часто может осложнять поддержание их работы на пике эффективности. Важно помнить, что причины неисправностей электродвигателей и приводов не ограничиваются одной областью специализации: они могут быть как механического, так и электрического характера. И только нужные знания разделяют дорогостоящий простой и продление срока службы.

Наиболее частые неисправности электродвигателей — повреждения изоляции обмоток и износ подшипников, возникающие по множеству разных причин. Эта статья посвящена заблаговременному обнаружению 13 наиболее распространенных причин повреждений изоляции и выхода из строя подшипников.

Качество электроэнергии

1. Переходное напряжение
2. Асимметрия напряжений
3. Гармонические искажения

Частотно-регулируемые приводы

4. Отражения на выходных ШИМ-сигналах привода
5. Среднеквадратичное отклонение тока
6. Рабочие перегрузки

Механические причины

7. Нарушение центрирования
8. Дисбаланс вала
9. Расшатанность вала
10. Износ подшипника

Факторы, связанные с неправильной установкой

11. Неплотно прилегающее основание
12. Напряжение трубной обвязки
13. Напряжение на валу

Качество электроэнергии

1. Переходное напряжение

Переходные напряжения могут происходить из множества источников как на самом предприятии, так и за его пределами. Включение и выключение нагрузки поблизости, батареи конденсаторов коррекции коэффициента мощности или даже погодные явления — все это может создавать переходные напряжения в распределительных сетях. Эти процессы с произвольной амплитудой и частотой могут разрушать или повреждать изоляцию обмоток электродвигателей.

Обнаружение источника переходных процессов может оказаться сложной задачей, поскольку они происходят нерегулярно, а их последствия могут проявляться по-разному. Например, переходные процессы могут проявиться в контрольных кабелях и необязательно нанесут вред непосредственно оборудованию, но они могут нарушить его работу.

Воздействие: повреждение изоляции обмотки электродвигателя приводит к раннему возникновению неисправностей и незапланированному простою.

Прибор для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.

Критичность: высокая.

2. Асимметрия напряжений

Трехфазные распределительные сети часто питают однофазные нагрузки. Асимметрия сопротивления или нагрузки может быть причиной асимметрии напряжений на всех трех фазах. Возможные неисправности могут находиться в проводке электродвигателя, на клеммах электродвигателя, а также в самих обмотках. Эта асимметрия может вызывать перегрузки в каждой фазной цепи трехфазной сети. Одним словом, напряжение на всех трех фазах всегда должно быть одинаковым.

Воздействие: асимметрия является причиной сверхтоков в одной или нескольких фазах, которые вызывают перегрев и повреждение изоляции.

Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.

Критичность: средняя.

3. Гармонические искажения

Проще говоря, гармоники — это любые нежелательные дополнительные высокочастотные колебания напряжения или тока, поступающие на обмотки электродвигателя. Эта дополнительная энергия не используется для вращения вала электродвигателя, а циркулирует в обмотках и в конечном итоге приводит к потере внутренней энергии. Эти потери рассеиваются в виде тепла, которое со временем ухудшает изолирующие свойства обмоток. Некоторые гармонические искажения формы тока являются нормой для систем, питающих электронную нагрузку. Гармонические искажения можно измерить с помощью анализатора качества электроэнергии, проконтролировав величины токов и температуры на трансформаторах и убедившись, что они не перегружены. Для каждой гармоники утвержден приемлемый уровень искажений, который регламентируется стандартом IEEE 519-1992.

Воздействие: снижение эффективности электродвигателя приводит к дополнительным расходам и увеличению рабочей температуры.

Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.

Критичность: средняя.

Частотно-регулируемые приводы

4. Отражения на выходных ШИМ-сигналах привода

Частотно-регулируемые приводы используют широтно-импульсную модуляцию (ШИМ) для управления выходным напряжением и частотой питания электродвигателя. Отражения возникают из-за несогласованности полных сопротивлений источника и нагрузки. Несогласованность полных сопротивлений может произойти в результате неправильной установки, неправильного выбора компонентов или ухудшения состояния оборудования со временем. Пик отражения в цепи электропривода может достигать уровня напряжения шины постоянного тока.

Воздействие: повреждение изоляции обмотки электродвигателя приводит к незапланированному простою.

Прибор для измерения и диагностики: Fluke 190-204 ScopeMeter® , 4-канальный портативный осциллограф с высокой частотой выборки.

Критичность: высокая.

5. Среднеквадратичное отклонение тока

По своей сути среднеквадратичное отклонение тока — это паразитные токи, циркулирующие в системе. Среднеквадратичное отклонение тока образуется как результат частоты сигнала, уровня напряжения, емкости и индуктивности в проводниках. Эти циркулирующие токи могут выйти через системы защитного заземления, вызывая ложное размыкание или, в некоторых случаях, нагревание обмотки. Среднеквадратичное отклонение тока можно обнаружить в проводке электродвигателя, это сумма тока с трех фаз в любой момент времени. В идеальной ситуации сумма этих трех токов должна равняться нулю. Иными словами, обратный ток от привода будет равняться току, поступающему на привод. Среднеквадратичное отклонение тока можно также представить в виде асимметричных сигналов в нескольких проводниках, имеющих емкостную связь с заземляющим проводником.

Воздействие: произвольное размыкание цепи из-за прохождения тока по защитному заземлению.

Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke 190-204 ScopeMeter с широкополосными (10 кГц) токовыми клещами (Fluke i400S или аналогичные).

Критичность: низкая.

6. Рабочие перегрузки

Перегрузка электродвигателя возникает, когда он работает под повышенной нагрузкой. Основными признаками перегрузки электродвигателя являются чрезмерное потребление тока, недостаточный крутящий момент и перегрев. Избыточное тепловыделение электродвигателя является главной причиной его неисправности. При перегрузке электродвигателя его отдельные компоненты — включая подшипники, обмотки и другие части — могут работать нормально, но электродвигатель будет перегреваться. Поэтому начинать поиски неисправности следует с проверки именно перегруженности электродвигателя. Поскольку 30% всех неисправностей электродвигателей происходят именно из-за их перегруженности, важно понимать, как измерять и определять перегрузку электродвигателя.

Воздействие: преждевременный износ электрических и механических компонентов электродвигателя, ведущий к необратимому выходу из строя.

Инструмент для измерения и диагностики: цифровой мультиметр Fluke 289.

Критичность: высокая.

7. Нарушение центрирования

Нарушение центрирования возникает при неправильном выравнивании вала привода относительно нагрузки или смещении передачи, которая их соединяет. Многие специалисты считают, что гибкое соединение устраняет и компенсирует смещение, тем не менее, гибкое соединение защищает от смещения только саму передачу. Даже с гибким соединением не отцентрированный вал будет передавать повреждающие циклические усилия по своей длине на электродвигатель, вызывая повышенный износ электродвигателя и увеличивая фактическую механическую нагрузку. Кроме того, нарушение центрирования может быть причиной вибрации валов как нагрузки, так и электропривода. Существует несколько типов нарушения центрирования:

  • Угловое смещение: оси валов пересекаются, но не параллельны;
  • Параллельное смещение: оси валов параллельны, но не соосны;
  • Сложное смещение: сочетание углового и параллельного смещений. (Примечание: практически всегда нарушение центрирования является сложным, но практикующие специалисты рассматривают их как сумму составляющих смещений, поскольку устранять нарушение центрирования проще по отдельности — угловую и параллельную составляющие).

Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.

Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830.

Критичность: высокая.

8.
Дисбаланс вала

Дисбаланс — это состояние вращающейся детали, когда центр масс расположен не на оси вращения. Иными словами, когда центр тяжести находится где-то на роторе. Хотя устранить дисбаланс двигателя полностью невозможно, можно определить, не выходит ли он за рамки приемлемых значений, и предпринять меры для исправления ситуации.

Дисбаланс может быть вызван различными причинами:

  • скопление грязи;
  • отсутствие балансировочных грузов;
  • отклонения при производстве;
  • неравная масса обмоток двигателя и другие факторы, связанные с износом.

Тестер или анализатор вибрации поможет определить, сбалансирован вращающийся механизм или нет.

Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

9. Расшатанность вала

Расшатанность возникает из-за чрезмерного зазора между деталями. Расшатанность может возникать в нескольких местах:

  • Расшатанность с вращением возникает из-за чрезмерного зазора между вращающимися и неподвижными частями машины, например, в подшипнике.
  • Расшатанность без вращения возникает между двумя обычно неподвижными деталями, например, между опорой и основанием или корпусом подшипника и машиной.

Как и в случаях со всеми другими источниками вибрации, важно уметь определить расшатанность и устранить проблему, избежав убытков. Определить наличие расшатанности во вращающейся машине можно с помощью тестера или анализатора вибрации.

Влияние: ускоренный износ вращающихся компонентов, вызывающий механические неисправности.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

10. Износ подшипника

Неисправный подшипник имеет повышенное трение, сильнее нагревается и имеет пониженную эффективность из-за механических проблем, проблем со смазкой или износа. Неисправность подшипника может быть следствием различных факторов:

  • нагрузка, превышающая расчетную;
  • недостаточная или неправильная смазка;
  • неэффективная герметизация подшипника;
  • нарушение центрирования вала;
  • неправильная установка;
  • нормальный износ;
  • наведенное напряжение на валу.

Когда неисправности подшипников начинают проявляться, это также вызывает каскадный эффект, ускоряющий выход двигателя из строя. 13% неисправностей двигателя вызваны неисправностями подшипников, и более 60 % механических неисправностей на предприятии вызваны износом подшипников, поэтому важно знать, как устранять эти потенциальные проблемы.

Влияние: ускоренный износ вращающихся компонентов приводит к выходу подшипников из строя.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

Факторы, связанные с неправильной установкой

11. Неплотно прилегающее основание

Неплотное прилегание вызывается неровным монтажным основанием двигателя или приводимого в движение компонента или неровной монтажной поверхностью, на которой располагается монтажное основание. Данное состояние может создать неприятную ситуацию, при которой затяжка монтажных болтов на самом деле привносит новые нагрузки и нарушение центрирования. Неплотное прилегание опоры часто возникает между двумя диагонально расположенными крепежными болтами, как, например, в случае с неровным стулом или столом, которые раскачиваются по диагонали. Существуют два типа неплотного прилегания основания:

  • Параллельное неплотное прилегание основания —возникает, когда одна монтажная опора расположена выше, чем три другие;
  • Угловое неплотное прилегание основания —возникает, когда одна из монтажных опор не параллельна или не перпендикулярна по отношению к монтажной поверхности.

В обоих случаях неплотное прилегание основания может быть вызвано неровностями в монтажной опоре механизма или в монтажном основании, на котором находится опора. В любом случае найти и устранить неплотное прилегание необходимо до центрирования вала. Качественный лазерный инструмент для центрирования может определить неплотное прилегание основания данной вращающейся машины.

Влияние: нарушение центрирования компонентов механического привода.

Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830.

Критичность: средняя.

12. Напряжение трубной обвязки

Натяжением трубной обвязки называется состояние, при котором новые нагрузки, натяжения и силы, действующие на остальное оборудование и инфраструктуру, передаются назад на двигатель и привод, приводя к нарушению центрирования. Наиболее часто встречающимся примером этого являются простые схемы с электродвигателем/насосом, когда что-то оказывает воздействие на трубопроводы, например:

  • смещение в фундаменте;
  • недавно установленный клапан или другой компонент;
  • предмет, ударяющий, сгибающий или просто давящий на трубу;
  • сломанные или отсутствующие крепления для труб или настенная арматура.

Эти силы могут оказывать угловое или смещающее воздействие, что в свою очередь приводит к смещению вала двигателя/насоса. По этой причине важно проверять центрирование машины не только во время установки — точное центрирование является временным состоянием и может изменяться с течением времени.

Влияние: нарушение центрирования вала и последующие нагрузки на вращающиеся компоненты, приводящие к преждевременным неисправностям.

Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830.

Критичность: низкая.

13. Напряжение на валу

Когда напряжение на валу электродвигателя превышает изолирующие характеристики смазки подшипника, происходит пробой на внешний подшипник, что вызывает точечную коррозию и образование канавок на дорожке качения подшипника. Первыми признаками проблемы являются шум и перегрев, возникающие по мере того, как подшипники теряют первоначальную форму, а также появление металлической крошки в смазке и увеличение трения подшипника. Это может привести к разрушению подшипника уже через несколько месяцев работы электродвигателя. Неисправность подшипника — это дорогостоящая проблема как с точки зрения восстановления электродвигателя, так и с точки зрения простоя оборудования, поэтому предотвращение этого посредством измерения напряжения на валу и тока в подшипниках является важной частью диагностики. Напряжение на валу присутствует только тогда, когда на двигатель подается питание, и он вращается. Угольная щетка, устанавливаемая на щуп, позволяет измерять напряжение на валу при вращении электродвигателя.

Влияние: дуговые разряды на поверхности подшипника вызывают точечную коррозию и образование канавок, что в свою очередь приводит к чрезмерной вибрации и последующей неисправности подшипника.

Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke-190-204 ScopeMeter, щуп AEGIS с угольными щетками для измерения напряжения на валу.

Критичность: высокая.

Четыре стратегии для достижения успеха

Системы управления электродвигателями используются в важных процессах на заводах. Поломка оборудования может привести к большим финансовым потерям, связанным как с потенциальной заменой электродвигателя и его деталей, так и с простоем систем, зависящих от данного электродвигателя. Обеспечивая обслуживающих инженеров и техников необходимыми знаниями, определяя приоритеты работ и проводя профилактическое обслуживание для контроля оборудования и устранения трудно обнаруживаемых проблем, зачастую можно избежать неисправностей, вызванных рабочими нагрузками, и сократить потери от простоя.

Существуют четыре ключевые стратегии для устранения или предотвращения преждевременных поломок электродвигателя и вращающихся деталей:

  1. Запись рабочих условий, технических характеристик оборудования и диапазонов допусков рабочих характеристик.
  2. Регулярный сбор и запись критических измерений при установке, до и после технического обслуживания.
  3. Создание архива эталонных измерений для анализа тенденций и обнаружения изменения состояния.
  4. Построение графиков отдельных измерений для выявления основных тенденций.Любые изменения в линии тенденций более чем на +/- 10-20% (или любую другую определенную величину, в зависимости от эксплуатационных характеристик или критичности системы) необходимо исследовать для выявления причин возникновения проблем.

Двигатель не набирает обороты: причины и способы ремонта

Для каждого автомобилиста важно чтобы его транспортное средство работало исправно, и без каких-либо проблем было способно развивать собственную оптимальную мощность. Однако по ряду причин силовой агрегат машины со временем может перестать набирать необходимое для его нормальной работы количество оборотов. В таком случае автомобиль утратит былую резвость, и его тяговые качества значительно снизятся.

Признаки неполадки

Определить недостаток количества оборотов довольно просто и каждый водитель способен отличить нормальную мощность своей машины. Снижение мощности всегда сопровождается ухудшением динамики, тяги, слабым разгоном, а также повышенной температурой ДВС. Нередко автомобиль с данной проблемой расходует гораздо больше топлива, а выхлопные газы могут иметь сизый либо чёрный цвет.

Исправный мотор всегда без промедлений реагирует на нажатие педали акселератора и начинает развивать больше оборотов. В случае если этого не происходит или ощутимой разницы не наблюдается, то следует уделить внимание как двигателю, так и топливной системе.

Что касается неисправностей, из-за которых силовой агрегат не способен набирать необходимое количество оборотов, то стоит отметить, их довольно много.

Недостаточный прогрев ДВС

В первую очередь стоит понимать, что непрогретый двигатель неспособен полноценно функционировать. По этой причине перед началом движения рекомендуется дать агрегату поработать в холостом режиме несколько минут либо начинать движение на холодном двигателе без стремительного разгона. Но стоит помнить, что если автомобиль снабжён карбюраторным двигателем, то лучше отдать предпочтение прогреву, нежели щадящему старту. В противном случае движение может происходить рывками, и мотор может заглохнуть.

В случае когда прогрев занимает значительное количество времени стоит уделить внимание системе охлаждения. Вполне возможно, что термостат вышел из строя.

Засорение фильтров

Засорённые фильтрующие элементы воздуха и топлива неспособны обеспечить полноценное смесеобразование, в связи с чем обороты заметно снижаются.

Воздушный фильтр

Воздушный фильтр обеспечивает чистоту всасываемого воздуха для создания топливовоздушной смеси, но в тоже время он подвергается серьёзному засорению. Поры фильтра забиваются пылью, что снижает подачу воздуха, из-за чего и снижается оборотистость.

Засоренный воздушный фильтр

По конструкции различают три основных вида воздушных фильтров: цилиндрический, панельный, бескаркасный. В современных автомобилях чаще всего применяются именно панельные виды. Как правило, в технической документации к транспортному средству сказано, что замену данного фильтра рекомендуется через каждые 20 000 км пробега, однако на практике, при эксплуатации автомобиля в запылённых городах, устанавливать новый элемент лучше после 10 000 км.

Провести замену довольно просто и для этого вовсе не обязательно обращаться в автосервис. Открыв капот, следует открутить крышку воздушного фильтра. Обычно она зафиксирована четырьмя болтами, для которых потребуется специальная отвёртка TORX 25. Далее, старый фильтр необходимо изъять. Обычно он вытаскивается без каких-либо проблем. Посадочное место рекомендуется протереть влажной тряпочкой, если заметны крупные отложения пыли и видны пух или насекомые. А затем, устанавливается новый фильтр и фиксируется крышкой.

Топливный фильтр

Что касается топливного фильтра, он засоряется несколько меньше, однако многое зависит и от качества используемого топлива. Как и воздушный, топливный фильтр обеспечивает чистоту подаваемого компонента для дальнейшего смесеобразования. При значительном загрязнении фильтра, его пропускная способность уменьшается, от чего, в конечном счёте, страдает и мощность транспортного средства.

Засоренный топливный фильтр

Производители утверждают, что ресурс детали около 60 000 км пробега, но это при условии использования исключительно качественного топлива. По этому топливный фильтр многие опытные автомобилисты рекомендуют менять вместе с воздушным.

Топливные фильтры в зависимости от типа двигателя делятся на три вида:

• Карбюраторные – степень очистки от 15, до 20 мкм.
• Инжекторные – степень очистки от 5, до 10 мкм.
• Дизельные – степень очистки менее 5 мкм.

К каждому типу двигателя подобраны именно такие степени очистки, которые не допускают проникновения в двигатель частиц способных привести к его поломке.

Замена топливного фильтра в целом проста, но требует соблюдения техники безопасности. При работе запрещено курить, рекомендуется проводить замену в проветриваемом помещении. Фильтр обычно находится под капотом недалеко от ДВС, но в некоторых автомобилях он расположен в баке рядом с бензонасосом.

Работу стоит начинать именно на запущенном агрегате. С топливного насоса вытаскивается предохранитель, через некоторое время мотор заглохнет. Делается это для того, чтобы из системы при замене не вытекло топливо. После того как двигатель перестал работать обязательно отключается «масса» насоса, поскольку неосторожное движение может спровоцировать короткое замыкание и, в конечном счёте, возгорание.

Далее, демонтируется старый фильтр, его рекомендуется обернуть ветошью, так как может вытечь немного горючего. Перед снятием стоит запомнить нюансы крепления прежней детали. Все уплотнительные шайбы и прокладки должны быть расположены строго на своём месте. После демонтажа устанавливается новый элемент. В его комплект входят крепежи, поэтому старые лучше выбросить. На конечно этапе предохранитель снова вставляется в насос и подключается его масса.

Завезти ДВС с первого раза получается не сразу, это связано с тем, что давление топлива упало, но после нескольких попыток мотор снова начнёт работать нормально.

Нарушение зазора в свечах зажигания

Стоит понимать, что зазор между электродами в свечах зажигания крайне важный момент в работе мотора. Его изменение на десятую долю миллиметра обязательно повлечёт за собой негативные последствия при эксплуатации транспортного средства. Как правило, происходит снижение оборотистости и тягового усилия, увеличение потребления горючего, а также затруднительный пуск агрегата.

Проверка свечи зажигания

Искра между двумя электродами проходит с конкретной силой тока, но изменение зазора, так или иначе, влияет на этот показатель. Разность зазора изменяет скорость возгорания смеси в цилиндре на долю секунды, но даже при этом сбивается нормальный режим работы двигателя.

Проверяется зазор специальным щупом определённой толщины. Их можно приобрести в любом автомагазине. Во всех свечах зажигания двигателя зазор должен быть одинаковым, в случае обнаружения погрешности верхний электрод необходимо загнуть или отогнуть.

Для каждой машины зазор между электродами разный и как правило он указан в технической документации. Однако и у всех производителей данной детали эта величина также различная. Поэтому перед заменой рекомендуется проверить и отрегулировать зазор в каждой отдельной свечи.

Неправильный угол опережения зажигания

Нередко при диагностике данной проблемы водители забывают о том, что система зажигания, а именно его момент также имеет важную роль в этом вопросе. От этого зависит своевременность воспламенения топливовоздушной смеси в цилиндрах агрегата.

В случае когда угол опережения зажигания установлен неверно, добиться нормальной работы ДВС не удастся.

Инжекторный двигатель

Что касается инжекторных двигателей, в них угол устанавливается благодаря бортовому компьютеру, на который поступает информация о работе агрегата с помощью различных датчиков.

Погрешность может быть связана с поломкой следующих датчиков:

• Датчик положения коленчатого вала

• Датчик детонации

• Датчик положения распределительного вала

• Датчик массового расхода воздуха

• Датчик кислорода

• Датчик положения дроссельной заслонки

Если эта система даёт сбой, то собственными силами обойтись не получится и следует обязательно посетить автосервис.

Карбюраторный двигатель

В случае с карбюратором всё несколько проще – угол устанавливается исключительно в ручном режиме, прокручивая распределитель зажигания. Верно установить его довольно трудно, но всё же возможно.

Если зажигание смеси происходит, когда поршень находится в верхней мёртвой точке, то взрыв смеси произойдёт, когда он начнёт движение вниз. Для того чтобы такого не происходило угол зажигания корректируется. Чтобы правильно выставить угол необходимо выявить такт сжатия в первом цилиндре. Для этого можно взять кусочек ватки, и закупорить отверстие свечи цилиндра. После этого коленвал прокручивается за хроповик и при начале сжатия ватка вылетит под давлением. При этом метки на шкиве и лобовой крышке должны соответствовать друг другу. Когда метки сошлись необходимо уделить внимание ротору трамблёра, он должен быть направлен именно на контакт первого цилиндра (нумерация цилиндров обозначена на крышке трамблёра). В случае если всё именно так, то с углом опережения зажигания всё в порядке.

Далее, при обнаружении погрешности необходимо послабить нижнюю гайку фиксирующую трамблёр. После чего слегка приподняв трамблёр, следует прокрутить ротор, пока он не станет на контакт первого цилиндра. Установив ротор фиксирующую гайку можно подтянуть, но не до конца.

Теперь следует провести наладку угла зажигания. Делается это следующим образом. Тестер, или контрольная лампа подключаются к плюсовой клемме катушки зажигания и к «массе» автомобиля. Включается зажигание, и начинается настройка. Для этого ротор прижимается одной рукой, а другой медленно прокручивается вакуумный регулятор по часовой стрелке, до тех пор, пока контрольная лампа не погаснет. После в противоположную сторону прокручивается корпус трамблёра до момента возгорания лампы или выявления показания на тестере. Как только это произошло, прокручивание завершается, и гайка плотно затягивается. Таким образом, регулируется угол опережения зажигания на карбюраторных двигателях.

Уровень бензина в поплавковом отсеке карбюратора

В процессе образования топливовоздушной смеси предел горючего в поплавковой камере карбюратора играет огромную роль. При слишком низком уровне количество бензина в смеси заметно уменьшается, вследствие чего ДВС неспособен развивать достаточную мощность. Когда уровень высокий топливная смесь обогащённая, но полноценно прогреться, прежде чем попасть в цилиндр она неспособна, отчего также оборотистость снижается.

Для того чтобы отрегулировать уровень топлива достаточно согнуть крепление поплавка в нужном направлении и до необходимого предела.

Неполадка в ускорительном насосе и засорение магистралей

При диагностике немаловажно уделить внимание состоянию ускорительного насоса ведь именно благодаря его безотказности двигатель реагирует на нажатие педали акселератора. Расположенные в насосе жиклёры в нормальном состоянии должны подавать топливо тонкой струйкой.

Проверить это довольно просто. Необходимо демонтировать воздушный фильтр для того, чтобы открылся обзор первой камеры. После этого следует открыть дроссельную заслонку и держать её в таком состоянии несколько секунд. Вследствие этого из жиклёра выйдет мощная и тонкая струя горючего, которая должна быть направлена чётко во вторую камеру. В случае если струйка слабая или идёт неровно – жиклёр засорён и требует срочной очистки.

Подсос воздуха во впускном коллекторе

Кроме всего прочего, причиной значительного падения оборотов силового агрегата может быть также и обычный подсос воздуха во впускном коллекторе. При этом мотор плохо запускается, троит, повышается расход бензина, возникают проблемы даже на холостом ходу. Связано это с тем, что в топливную смесь дополнительно проникает лишний воздух.

Выяснить, что инжекторный агрегат перестал полноценно развивать обороты именно по этой причине довольно затруднительно, и ещё сложнее найти то самое место где пропускает воздух. Наиболее часто происходит это вследствие износа прокладки коллектора. Для проверки можно обильно покрыть место стыковки коллектора топливом при помощи шприца по всему периметру соединения. Далее, следует запустить двигатель и если получится развить нормальные обороты, значит проблема кроится именно здесь.

Однако стоит понимать, что этот способ довольно примитивен. Для полноценной диагностики впускного коллектора рекомендуется посетить автосервис, поскольку самостоятельно это сделать весьма трудно.

Нарушение газораспределения

При разрыве ремня ГРМ происходит нарушение фаз газораспределения в агрегате. Случается это и после его замены, если новый ремень был установлен со смещением хотя бы на один зуб шестерни коленвала и распредвала. В таком случае нарушается цикл работы ДВС, повышается потребление топлива, а также выхлоп приобретает различные цвета из-за неполноценного сгорания смеси.

В связи с тем, что замена ремня требует определённых познаний в работе двигателя, доверить эту процедуру лучше автосервису, а не пытаться выставить цикл самостоятельно.

Низкая компрессия

Пожалуй, наиболее серьёзная проблема из-за которой снижается мощность двигателя – снижение компрессии.

Происходит это при износе деталей поршневой группы. Последствием данной проблемы становиться потеря энергии при работе ДВС. Компрессия проверяется компрессометром, и если показатели ниже оптимальных, то данная проблема требует обязательного капитального ремонта двигателя. Нормой считается компрессия в пределах 10 – 14 кг/см2, но для каждого автомобиля она своя и указана в документации.

Коллекторные электродвигатели, устранение неисправностей — Ремонт220

Автор Фома Бахтин На чтение 3 мин. Просмотров 5.6k. Опубликовано Обновлено

Если ваш коллекторный электродвигатель не набирает нормальное число оборотов или при запуске, его вал не приходит во вращение, прежде всего, нужно проверить, не перегорели ли предохранители устройства (неисправные заменить), нет ли обрыва в цепи якоря (для этого осмотреть, а при необходимости прозвонить цепь якоря, в том числе пусковой реостат, устранить повреждение) и не перегружен ли двигатель (выяснить и устранить причину перегрузки).

Нередко, перегрузка двигателя является причиной потребления тока ненормальной величины (надо осмотреть механическую передачу, тормоз и устранить причины перегрузки).

Если при пуске в ход двигатель потребляет ток больше нормального, следует проверить правильность (согласованность) включения параллельной и последовательной обмоток друг относительно друга, а также правильность включения параллельной обмотки по отношению к пусковому реостату. Наиболее частыми ошибками являются: включение шунтовой обмотки последовательно с сопротивлением реостата или подсоединение шунтовой обмотки к одному полюсу сети.

Чтобы проверить правильность включения обмотки возбуждения, один из зажимов шунтовой обмотки электродвигателя (эти зажимы определяют или по их размерам — они меньше якорных, или при помощи мегомметра) соединяют перемычкой с любым якорным зажимом, а другой — с проводником, идущим от контактной дуги реостата. Обычно этот проводник бывает меньшего сечения и его легко найти без мегомметра. Оба якорных проводника временно оставляют свободными. Включив рубильник и передвинув рычаг реостата в среднее положение, подают питание на свободные якорные концы. После этого берут контрольную лампу и один провод от нее соединяют с генераторным зажимом электродвигателя, который соединен перемычкой с зажимом возбуждения. Вторым свободным проводом от контрольной лампы по очереди прикасаются к подводящим якорным концам. При касании с одним из них лампа должна загореться; при размыкании проводов между ними будет тянуться длинная искра. При касании с другим якорным концом лампа не горит. Конец провода, при соединении с которым лампа загорелась, должен быть подведен к якорному зажиму, имеющему перемычку с зажимом возбуждения. Второй якорный конец крепится соответственно ко второму якорному зажиму. Если во время работы двигателя число оборотов его оказывается меньше нормального, то причинами этого могут быть: перегрузка двигателя, недостаточное напряжение в питающей сети, слишком большая величина тока возбуждения (следует понизить до нормальной). При неисправности обратного характера, то есть, если число оборотов двигателя оказывается больше нормального, необходимо, прежде всего, проверить цепь возбуждения (состояние катушек и контактов в цепи), устранить обнаруженные повреждения и установить нормальный ток возбуждения.

Иногда причина неисправности заключается в неправильном соединении параллельной и последовательной обмоток возбуждения (включены ошибочно друг другу навстречу). Надо проверить также величину напряжения в сети, так как превышение его нормальной величины, естественно, ведет к увеличению числа оборотов двигателя.

капитальный ремонт асинхронного электродвигателя 3квт


Чистка коллектора ротора (якоря) в бытовых условиях


Основная причина неисправностей однофазного двигателя

Большинство проблем с однофазными двигателями связаны с центробежным выключателем, термовыключателем или конденсатором (-ами). Если проблема в центробежном выключателе, термовыключателе или конденсаторе, двигатель обычно обслуживается и ремонтируется. Однако, если двигателю более 10 лет и он менее 1 л.с., двигатель обычно заменяют. Если мощность мотора меньше 1/8 л.с., его почти всегда заменяют.

Устранение неисправностей однофазных (однофазных) двигателей

Двухфазный двигатель имеет пусковую и рабочую обмотки.Пусковая обмотка автоматически снимается центробежным переключателем при разгоне двигателя. Некоторые электродвигатели с расщепленной фазой также включают термовыключатель, который автоматически выключает электродвигатель при его перегреве. Термовыключатели могут иметь ручной или автоматический сброс. Следует проявлять осторожность с любым двигателем, который имеет автоматический сброс, поскольку двигатель может автоматически перезапуститься в любое время.

Для диагностики двигателя с расщепленной фазой выполните следующую процедуру:

  1. Отключите питание двигателя.Осмотрите мотор. Замените двигатель, если он сгорел, вал заклинило или есть признаки повреждения.
  2. Убедитесь, что двигатель управляется термовыключателем. Если термовыключатель ручной, сбросьте термовыключатель и включите двигатель.
  3. Если двигатель не запускается, используйте вольтметр, например промышленный мультиметр Fluke 87V, для проверки напряжения на клеммах двигателя. Напряжение должно быть в пределах 10% от указанного напряжения двигателя. Если напряжение неправильное, устраните неисправность цепи, ведущей к двигателю.Если напряжение в норме, выключите двигатель, чтобы его можно было проверить.
  4. Выключите ручку предохранительного выключателя или комбинированного стартера. Заблокируйте и пометьте пусковой механизм в соответствии с политикой компании.
  5. При выключенном питании подключите Fluke 87V к тем же клеммам двигателя, от которых были отключены подводящие провода питания. Омметр покажет сопротивление пусковой и ходовой обмоток. Поскольку обмотки параллельны, их общее сопротивление меньше, чем сопротивление каждой обмотки в отдельности.Если счетчик показывает ноль, короткое замыкание. Если счетчик показывает бесконечность, имеется обрыв цепи. В любом случае двигатель следует заменить. Примечание. Размер двигателя слишком мал для того, чтобы его ремонт был рентабельным.
  6. Осмотрите центробежный выключатель на предмет признаков перегорания или поломки пружин. Если присутствуют какие-либо очевидные признаки проблем, отремонтируйте или замените переключатель. Если нет, проверьте переключатель с помощью омметра.

Вручную задействуйте центробежный выключатель. (Концевой раструб на стороне переключателя, возможно, придется снять.) Если мотор исправен, сопротивление на омметре уменьшится. Если сопротивление не меняется, проблема существует. Продолжайте проверять, чтобы определить проблему.

Устранение неисправностей конденсаторных двигателей

Конденсаторный двигатель — это двигатель с расщепленной фазой с добавлением одного или двух конденсаторов. Конденсаторы придают двигателю больший пусковой и / или рабочий крутящий момент. Устранение неисправностей конденсаторных двигателей похоже на поиск неисправностей двигателей с расщепленной фазой. Единственное дополнительное устройство, которое следует учитывать, — это конденсатор.

Конденсаторы имеют ограниченный срок службы и часто являются проблемой конденсаторных двигателей. Конденсаторы могут иметь короткое замыкание, разрыв цепи или могут выйти из строя до такой степени, что их необходимо заменить. Износ может также изменить емкость конденсатора, что может вызвать дополнительные проблемы. При коротком замыкании конденсатора обмотка в двигателе может перегореть. Когда конденсатор выходит из строя или открывается, двигатель имеет плохой пусковой момент. Низкий пусковой крутящий момент может помешать запуску двигателя, что обычно вызывает перегрузку.

Все конденсаторы имеют две проводящие поверхности, разделенные диэлектрическим материалом. Диэлектрический материал — это среда, в которой электрическое поле поддерживается с минимальной подачей внешней энергии или без нее. Это тип материала, используемого для изоляции проводящих поверхностей конденсатора. Конденсаторы бывают масляные или электролитические. Масляные конденсаторы залиты маслом и опломбированы в металлическую тару. Масло служит диэлектрическим материалом.

Электролитические конденсаторы используются в двигателях чаще, чем масляные.Электролитические конденсаторы образуются путем наматывания двух листов алюминиевой фольги, разделенных кусками тонкой бумаги, пропитанной электролитом. Электролит — это проводящая среда, в которой ток происходит за счет миграции ионов. Электролит используется как диэлектрический материал. Алюминиевая фольга и электролит закрыты картонной или алюминиевой крышкой. Предусмотрено вентиляционное отверстие для предотвращения возможного взрыва в случае короткого замыкания или перегрева конденсатора.

Конденсаторы переменного тока

используются с конденсаторными двигателями.Конденсаторы, предназначенные для подключения к сети переменного тока, не имеют полярности.

Для диагностики конденсаторного двигателя выполните следующую процедуру:

  1. Выключите ручку предохранительного выключателя или комбинированного стартера. Заблокируйте и пометьте пусковой механизм в соответствии с политикой компании.
  2. Используя Fluke 87V, измерьте напряжение на клеммах двигателя, чтобы убедиться, что питание отключено.
  3. Конденсаторы расположены на внешней раме двигателя. Снимаем крышку конденсатора.Внимание: хороший конденсатор будет держать заряд даже при отключении питания.
  4. Осмотрите конденсатор на предмет утечки, трещин или вздутия. Замените конденсатор, если он есть.
  5. Вынуть конденсатор из цепи и разрядить. Чтобы безопасно разрядить конденсатор, поместите резистор 20 000 Ом, 2 Вт на клеммы на пять секунд.
  6. После того, как конденсатор разрядится, подключите провода Fluke 87V к клеммам конденсатора. Fluke 87V покажет общее состояние конденсатора.Конденсатор исправен, закорочен или разомкнут.

Настройте Fluke 87V на измерение емкости. Считываемое значение емкости должно находиться в пределах ± 20% от значения, указанного на этикетке конденсатора.

Связанные ресурсы

Руководство по поиску и устранению неисправностей — асинхронные двигатели

Используйте этот ресурс для устранения неполадок двигателя переменного тока. Если проблемы с двигателем не могут быть решены с помощью этого списка, обратитесь за помощью к своему поставщику .

1. Двигатель не запускается при первоначальной установке

  • Двигатель подключен неправильно
    • Обратитесь к электрической схеме, чтобы убедиться, что двигатель подключен правильно.
  • Двигатель поврежден, ротор задевает статор
    • Проверните вал двигателя и пощупайте его на ощупь.
  • Электропитание или неисправность линии
    • Проверить источник питания, перегрузку, предохранители, элементы управления и т. Д.

2. Двигатель работал, затем не запускается

  • Сработал предохранитель или автоматический выключатель
    • Замените предохранитель или переустановите прерыватель.
  • Статор закорочен или заземлен (двигатель издает гудение и срабатывает автоматический выключатель или предохранитель)
    • Проверить герметичность змеевиков. При обнаружении утечек мотор необходимо заменить.
  • Двигатель перегружен или заклинило
    • Убедитесь, что нагрузка свободна. Сравните потребление тока двигателя в амперах с номиналом, указанным на паспортной табличке.
  • Конденсатор (на однофазном двигателе) мог выйти из строя
    • Сначала разрядите конденсатор.Чтобы проверить конденсатор, установите вольтметр на шкалу RX100 и прикоснитесь щупами к клеммам конденсатора. Если конденсатор в порядке, стрелка подскочит до нуля Ом и снова переместится на высокое значение. Постоянное нулевое сопротивление указывает на короткое замыкание; устойчиво высокое сопротивление указывает на обрыв цепи.

3. Двигатель работает, но гаснет

  • Падение напряжения
    • Если напряжение ниже 90% номинального значения двигателя, обратитесь в свою энергетическую компанию или убедитесь, что другое оборудование не отнимает мощность у двигателя.
  • Нагрузка увеличена
    • Убедитесь, что нагрузка не изменилась и оборудование не затянулось. Если это вентилятор, убедитесь, что поток воздуха не изменился.

4. Мотор слишком долго разгоняется

  • Неисправный конденсатор
    • Проверьте конденсатор согласно предыдущим инструкциям.
  • Неисправные подшипники
    • Подшипники с шумом или грубостью должны быть заменены поставщиком двигателя.
  • Напряжение слишком низкое
    • Убедитесь, что напряжение находится в пределах 10% от номинального значения, указанного на паспортной табличке двигателя. В противном случае обратитесь в свою энергетическую компанию или проверьте, не отнимает ли какое-либо другое оборудование питание от двигателя.

5. Двигатель работает в неправильном направлении

  • Неправильная разводка
    • Перемонтируйте двигатель в соответствии со схемой, прилагаемой к двигателю. Электрические схемы Groschopp можно найти на странице «Электрические схемы» в нашем разделе ресурсов или на страницах отдельных двигателей.

6. Двигатель перегружен / постоянно срабатывает защита от перегрева

  • Слишком высокая нагрузка
    • Убедитесь, что груз не зажат. Если двигатель заменяется, убедитесь, что номинальные характеристики такие же, как у старого двигателя. Если предыдущий двигатель был особой конструкции, стандартный двигатель не сможет воспроизвести его характеристики. Снимите нагрузку с двигателя и проверьте мощность двигателя без нагрузки. Оно должно быть меньше номинальной нагрузки, указанной на паспортной табличке (верно только для трехфазных двигателей).
  • Слишком высокая температура окружающей среды
    • Убедитесь, что в двигатель поступает достаточно воздуха для надлежащего охлаждения. Большинство двигателей рассчитаны на работу при температуре окружающей среды не выше 40 ° C. (Примечание. Правильно работающий двигатель может быть горячим на ощупь.)

7. Перегрев двигателя

  • Перегрузка. Сравните фактический (измеренный) ток с номиналом на паспортной табличке.
    • Найдите и удалите источник чрезмерного трения в двигателе или нагрузке.Уменьшите нагрузку или замените двигатель на двигатель большей мощности.
  • Однофазный (только трехфазный)
    • Проверить ток на всех фазах. Должно быть примерно так же.
  • Неправильная вентиляция
    • Проверьте внешний вентилятор охлаждения, чтобы убедиться, что воздух правильно движется через каналы охлаждения. Если накопилось слишком много грязи, очистите двигатель.
  • Несимметричное напряжение (только трехфазное)
    • Проверить напряжение на всех фазах.Должно быть примерно так же.
  • Трение ротора о статор
  • Повышенное или пониженное напряжение
    • Проверьте входное напряжение на каждой фазе двигателя, чтобы убедиться, что двигатель работает при напряжении, указанном на паспортной табличке.
  • Обрыв обмотки статора (только трехфазный)
    • Проверьте сопротивление статора на всех трех фазах на предмет баланса.
  • Неправильные соединения
    • Проверьте все электрические соединения на предмет надлежащей заделки, зазоров, механической прочности и целостности цепи.См. Схему подключения двигателя.

8. Двигатель вибрирует

  • Двигатель смещен относительно нагрузки
  • Несбалансированная нагрузка (приложение с прямым приводом)
    • Снимите двигатель с нагрузки и осмотрите двигатель самостоятельно. Убедитесь, что вал двигателя не погнут.
  • Неисправные подшипники двигателя
    • Проверить двигатель самостоятельно. Если подшипники неисправны, вы услышите шумы или почувствуете неровности.
  • Слишком малая нагрузка (только одна фаза)
    • Некоторая вибрация при небольшой нагрузке — стандарт. Рассмотрите возможность перехода на двигатель меньшего размера из-за чрезмерной вибрации.
  • Неисправна обмотка
    • Проверить обмотку на короткое замыкание или разрыв цепи. Усилители также могут быть высокими. При дефектной обмотке замените двигатель.
  • Высокое напряжение
    • Проверьте источник питания, чтобы убедиться в правильности напряжения.

9. Отказ подшипников

  • Нагрузка на двигатель может быть чрезмерной или несбалансированной
    • Проверьте нагрузку двигателя и проверьте натяжение приводного ремня, чтобы убедиться, что оно не слишком туго. Несбалансированная нагрузка также приведет к выходу подшипников из строя.
  • Высокие температуры окружающей среды
    • Если двигатель используется в среде с высокими температурами окружающей среды, может потребоваться другой тип смазки для подшипников. Возможно, вам потребуется проконсультироваться с заводом-изготовителем.
  • Высокая температура двигателя
    • Проверьте и сравните фактическую нагрузку двигателя с его номинальной нагрузочной способностью.

10. Отказ конденсатора

  • Слишком высокая температура окружающей среды
    • Убедитесь, что температура окружающей среды не превышает допустимую температуру двигателя (указана на паспортной табличке).
  • Возможный скачок напряжения на двигателе (вызванный ударом молнии или другим высоким переходным напряжением)
    • Если это обычная проблема, установите сетевой фильтр.

Завод Инжиниринг | Методы поиска и устранения неисправностей помогают поддерживать работу асинхронных двигателей переменного тока

Тимоти Х. Тиберт, старший инженер-электрик, Kaman Industrial Technologies 1 мая 2006 г.

Когда оборудование на вашем предприятии выходит из строя, вам необходимо быстро локализовать неисправность. Проблема в двигателе или цепи запуска? В выпуске PLANT ENGINEERING за август 2005 г. «Используйте пошаговый подход к анализу проблем с запуском двигателя» рассматривается организованный процесс поиска и устранения проблем с запуском электродвигателя.В номере за апрель 2006 г. «Отремонтировать или заменить? Примите правильное решение по моторам »обсудили решение о ремонте или замене. В этой статье мы рассмотрим типичные проблемы в работе трехфазных асинхронных двигателей переменного тока, а также способы их диагностики и устранения.

Ни одно ответственное обсуждение обслуживания электрооборудования не будет полным без предварительного обсуждения необходимости поддержания безопасной рабочей среды. Обязательно примите все необходимые меры предосторожности, чтобы защитить себя или своих сотрудников от вреда.Соблюдайте правила вашей компании для надлежащей защиты сотрудников. Эти правила могут включать средства индивидуальной защиты, меры предосторожности по электробезопасности, процедуры блокировки / маркировки и любые другие установленные требования и процедуры безопасности при работе с электричеством. Помните, что когда дело доходит до электричества, одна ошибка может оказаться для вас последней.

Основные средства диагностики

Перед тем, как начать, соберите базовое диагностическое оборудование для работы. Типичные инструменты, используемые для устранения неполадок в работе двигателя, включают в себя вольтметр переменного тока, клещевые клещи переменного тока, омметр и мегомметр.Эти инструменты используются для измерения напряжения, тока и сопротивления двигателя.

Перегрев двигателя

Одним из наиболее частых источников проблем в работе двигателя является перегрев. Ни для кого не секрет, что двигатели выделяют тепло как побочный продукт своей работы. Это тепло является результатом сопротивления обмотки и других недостатков в генерации и индукции магнитного потока, используемого для создания крутящего момента на валу двигателя. Эмпирическое правило для расчета ожидаемого срока службы двигателя гласит: «Повышение температуры двигателя на 10 градусов по Цельсию приводит к сокращению срока службы двигателя на 50%.«Важно свести к минимуму неблагоприятные последствия перегрева.

Вот почему двигатели предназначены для отвода тепла во время нормальной работы за счет использования их внешних поверхностей и, как правило, охлаждающего вентилятора. Доступны другие конфигурации двигателей для улучшенного снижения температуры, включая полностью закрытые без вентиляции (TENV), водяные теплообменники и теплообменники типа воздух-воздух.

Тем не менее, несмотря на все усилия производителей, перегрев — обычная проблема в эксплуатации. Симптомы проблем с перегревом двигателя включают чрезмерный нагрев снаружи двигателя, отключение двигателя из-за перегрузки или привода и отказ обмотки двигателя.

Несимметричное напряжение

Неуравновешенность напряжений — распространенный и опасный источник перегрева. Эмпирическое правило для определения эффекта дисбаланса напряжений: «процент повышения температуры двигателя равен удвоенному квадрату процента дисбаланса напряжений». Например, 3% -ный дисбаланс напряжения может привести к повышению температуры двигателя на 18% (рассчитывается как: 2 X (3%) 2).

Чтобы определить, существует ли дисбаланс напряжений, сначала проверьте напряжение питания на устройстве управления двигателем, когда двигатель не работает.Установите вольтметр переменного тока на диапазон трехфазного напряжения питания двигателя. На линейной стороне устройства управления двигателем (сторона источника питания пускателя двигателя) проверьте и запишите межфазное напряжение и межфазное напряжение для каждой комбинации.

Измерения межфазного напряжения должны быть очень близки к таким же показаниям. Если дисбаланс напряжения присутствует на стороне питания, когда двигатель не работает, проблема в источнике напряжения. Проверьте систему электроснабжения вашего объекта и устраните проблему с электроснабжением.Проблемы могут включать обрыв предохранителя, несбалансированность входящей электросети, проблемы с трансформатором или размер подводящего провода. Измерения напряжения между фазой и землей могут отличаться в зависимости от конфигурации входящего напряжения, и эти измерения могут быть полезны для дальнейшего поиска и устранения неисправностей.

Если подача напряжения в порядке, затем используйте вольтметр переменного тока для проверки напряжения на стороне нагрузки устройства управления двигателем, когда двигатель работает (двигатель «T» ведет к T1 к T2, T2 к T3, T3 к T1, T1 на землю, T2 на землю и T3 на землю).Эти измерения позволят проверить напряжение, поступающее на двигатель, и проводку от устройства управления двигателем к двигателю.

Если дисбаланс напряжения присутствует только при работающем двигателе, проблема в двигателе или проводке от пускового устройства двигателя к двигателю. Отключите питание устройства управления двигателем и соблюдайте все требования по блокировке / маркировке и безопасности. С помощью омметра проверьте сопротивление проводов двигателя на контрольной аппаратуре. Это позволит проверить двигатель и провода к нему.Проверьте и запишите межфазное сопротивление и сопротивление между фазой и землей.

Измерения сопротивления между фазами должны быть очень близкими для каждого измерения и соответствовать техническим характеристикам двигателя, рекомендованным производителем. Значения сопротивления зависят от мощности двигателя и напряжения. Сопротивление между фазой и землей должно быть очень высоким для каждой комбинации измерений.

Если междуфазное сопротивление высокое, это может означать обрыв обмотки в двигателе, обрыв провода к двигателю или плохое соединение в клеммной коробке двигателя.Откройте соединительную коробку двигателя, отсоедините соединения двигателя и проверьте обмотки двигателя с помощью омметра. Определите, в чем проблема: в двигателе или питающих проводах. Замените двигатель, подайте провода или отремонтируйте соединения двигателя в соединительной коробке.

Если сопротивление фазы относительно земли низкое, отсоедините двигатель от соединительной коробки двигателя и проверьте провода двигателя. Если сопротивление двигателя низкое, значит, в двигателе короткое замыкание, и его необходимо заменить. Если сопротивление двигателя относительно земли на выводах двигателя высокое, проверьте питающие провода.Замените неисправные провода или повторно подключите и изолируйте соединения двигателя в клеммной коробке двигателя, чтобы исключить короткое замыкание.

Если с помощью омметра проблем с сопротивлением не обнаружено, используйте мегомметр для проверки той же серии тестовых измерений, которые описаны с помощью омметра. Мегомметр проверяет проводку с более высоким напряжением, чтобы определить, существует ли прерывистый или пробой в изоляции обмоток двигателя, проводов двигателя или соединений двигателя.

Перегрузка двигателя

Двигатели

предназначены для работы в нормальном режиме в пределах номинальных значений, указанных на паспортной табличке двигателя.На паспортной табличке указан номинальный ток при полной нагрузке. Этот рейтинг не должен превышаться во время нормальной работы, однако случайные и кратковременные инциденты обычно не являются проблемой. Двигатель не предназначен для отвода тепла, которое выделяется на уровнях, превышающих номинальный ток полной нагрузки, за исключением пусковых и периодических скачков нагрузки.

Убедившись, что напряжение и сопротивление двигателя в норме, с помощью амперметра переменного тока проверьте ток двигателя. Установите амперметр переменного тока на уровень выше полной номинальной нагрузки двигателя.Прикрепите зажим амперметра переменного тока к одному из проводов двигателя. Измерьте и запишите показания усилителя для каждой фазы (T1, T2 и T3).

Показания ампер для каждой фазы должны быть одинаковыми. Если значение силы тока для каждой фазы превышает значение, указанное на паспортной табличке полной нагрузки, двигатель перегружен. Проверьте нагрузку на наличие проблем, таких как заклинившая нагрузка, слишком много материала или отказ подшипника. Двигатель также может быть неправильно настроен в соответствии с требованиями к нагрузке. Если показания ампер для каждой фазы сильно различаются, это может указывать на проблему с напряжением или сбой в обмотке или соединении двигателя.Затем проверьте показания напряжения и сопротивления двигателя, как описано ранее.

Окружающая среда

Двигатели требуют охлаждения для отвода тепла, выделяемого во время работы. Если двигатель перегревается, проверьте область вокруг двигателя на предмет высокой температуры окружающей среды. Тепло может передаваться двигателю из окружающей среды за счет излучения, конвекции и теплопроводности. Если двигатель установлен рядом с духовкой, горелкой или другим источником тепла, по возможности переместите двигатель в место подальше от источников тепла.Тепло может передаваться двигателю через механическое соединение с горячей нагрузкой.

Двигатель находится в грязном или пыльном помещении? Скопление пыли и грязи на двигателе изолирует двигатель. Это уменьшит способность вентилятора двигателя отводить тепло, выделяемое двигателем.

Прочие источники перегрева

Другая возможность состоит в том, что двигатель работает слишком медленно. Двигатели предназначены для работы с частотой вращения, близкой к указанной на паспортной табличке, и могут работать выше или ниже этого номинала в зависимости от технических характеристик производителя.При работе двигателя с частотно-регулируемым приводом двигатели имеют диапазон скорости, при котором он эффективно отводит тепло при номинальной нагрузке. Двигатели должны обеспечивать диапазон скорости нагрузки с постоянным крутящим моментом для конвейеров, шнеков, экструдеров и т. Д., А также для нагрузок с переменным крутящим моментом, таких как центробежные насосы и воздуходувки. Номинальные значения относятся к диапазону скоростей двигателя ниже номинального числа оборотов, указанного на паспортной табличке.

При работе двигателя с частотно-регулируемым приводом с частотой вращения выше указанной на паспортной табличке, выходной крутящий момент двигателя уменьшается.Типичные кривые крутящего момента двигателя указывают на постоянную выходную мощность двигателя в лошадиных силах и работу с переменным крутящим моментом выше базовой скорости. Чем выше скорость двигателя выше базовой, тем меньше крутящий момент, доступный от двигателя.

Работа двигателя в большом цикле также нагревает двигатель. Когда двигатель запускается, обычно требуется более высокий ток, чем полная номинальная нагрузка, чтобы начать вращение двигателя и разогнать его до скорости. Если двигатель запускается и останавливается часто, он может не работать достаточно долго на скорости, чтобы вентилятор мог отводить тепло.

Альтернативы отвода тепла от двигателя включают вентилятор с постоянной скоростью вращения, подачу наружного воздуха к двигателю и использование теплообменника.

Низкая скорость или недостаток крутящего момента

Двигатель в надлежащем рабочем состоянии должен быстро достичь скорости, близкой к указанной на паспортной табличке, при запуске через линию. Если двигателю требуется много времени для достижения указанной на паспортной табличке числа оборотов в минуту или малый крутящий момент, проверьте следующее:

Низкое напряжение — Основной причиной плохой работы двигателя является низкое напряжение.В условиях низкого напряжения не обеспечивается мощность, необходимая для достижения двигателем ожидаемого крутящего момента. Если ваш двигатель не генерирует необходимый крутящий момент для вашей работы, сначала проверьте напряжение двигателя, как описано ранее.

Однофазный — Однофазное напряжение, как и низкое напряжение, не обеспечивает необходимой мощности для развития номинального крутящего момента двигателя. Типичные характеристики двигателя могут включать гудение двигателя или двигатель с очень низким крутящим моментом при повороте.Опять же, проверьте напряжение двигателя, как описано ранее.

Чрезмерная вибрация — Чрезмерная вибрация является не только симптомом, но и причиной проблем с работой двигателя. Чрезмерная вибрация двигателя обычно является признаком неисправности двигателя или нагрузки и может привести к преждевременному выходу из строя двигателя и нагрузки. Следующие шаги должны помочь вам в обнаружении и устранении проблем с вибрацией:

Несоосность и несбалансированные нагрузки — Несоосность вала двигателя и вала нагрузки вызывает ненужную вибрацию.Преждевременный выход из строя подшипников двигателя и / или нагрузки может быть следствием несоосности. Вал двигателя должен быть отцентрован с валом нагрузки, чтобы оптимизировать эффективность работы. Доступны различные инструменты для центровки двигателя и нагрузки, такие как комплекты для лазерной центровки. Двигатели и нагрузки также должны быть жестко закреплены на основании, чтобы поддерживать соосность и минимизировать вибрацию от незакрепленного монтажного оборудования.

Неуравновешенность нагрузки — Неуравновешенность нагрузки является дополнительной причиной вибрации двигателя. Проверьте нагрузку на наличие дисбаланса, например, излишка материала на внешней стороне барабана, сломанных лопастей вентилятора и т. Д.Очистите материал или отремонтируйте нагрузку и снова запустите оборудование, чтобы проверить наличие проблем с дисбалансом.

Кавитация насоса — Кавитация насоса является частой причиной чрезмерной вибрации насоса, которая, в свою очередь, может повредить двигатель. Кавитация присутствует, когда насос работает за пределами своих возможностей. Это может включать слишком низкое давление напора, слишком большое рабочее колесо, слишком быструю работу насоса или слишком низкое давление нагнетания. Обратитесь к производителю насоса, чтобы убедиться, что насос работает в пределах проектных возможностей.

Выбор и обслуживание двигателя

Как правило, современные электродвигатели обеспечивают длительную безотказную службу, если соблюдать осторожность при первоначальном применении и текущем техническом обслуживании двигателя. Правильный выбор двигателя и критерии применения включают:

  • Напряжение

  • Требуемая мощность

  • Требования к установке (крепление на лапах, крепление на C-образную поверхность и т. Д.)

  • Базовая частота вращения

  • Тип корпуса (TEFC, ODP, смыв и т. Д.)

  • Экологические проблемы (температура, влажность, пыль, грязь, опасные вещества и т. Д.)

  • Тип нагрузки (постоянный крутящий момент, переменный крутящий момент, высокая инерция)

  • Рабочий цикл

  • Способ пуска (через линию, ЧРП и т. Д.)

  • Особые соображения (рекуперативная нагрузка, позиционирование и т. Д.)

    • Правильное техническое обслуживание двигателя включает регулярную смазку подшипников (не допускайте чрезмерного смазывания), мониторинг вибрации, очистку и мониторинг состояния.Правильное применение и методы профилактического обслуживания могут обеспечить надежную бесперебойную работу производства.

      Итог…

      Эксплуатационные проблемы двигателя — частая причина простоев и головной боли при обслуживании.

      Хорошие навыки поиска и устранения неисправностей помогают выявить первопричину двигательных проблем и избежать их повторения.

      Найдите время при обработке ситуации отказа двигателя, чтобы тщательно диагностировать ситуацию и получить полное представление об источнике (или источниках) проблемы.

      Анализ проблем приложений и применение долгосрочных корректирующих решений поможет свести к минимуму сбои в работе.

% PDF-1.4 % 66 0 объект > эндобдж xref 66 48 0000000016 00000 н. 0000001325 00000 н. 0000001488 00000 н. 0000002065 00000 н. 0000002514 00000 н. 0000002594 00000 н. 0000002704 00000 н. 0000002807 00000 н. 0000002945 00000 н. 0000003021 00000 н. 0000003144 00000 п. 0000003220 00000 н. 0000003345 00000 н. 0000003420 00000 н. 0000003495 00000 н. 0000003571 00000 н. 0000003842 00000 н. 0000004928 00000 н. 0000005224 00000 н. 0000006325 00000 н. 0000006603 00000 п. 0000007693 00000 п. 0000007981 00000 п. 0000009083 00000 н. 0000009111 00000 п. 0000009140 00000 н. 0000009161 00000 п. 0000009949 00000 н. 0000009970 00000 н. 0000010245 00000 п. 0000011310 00000 п. 0000012136 00000 п. 0000012157 00000 п. 0000013252 00000 п. 0000013539 00000 п. 0000014244 00000 п. 0000014266 00000 п. 0000014989 00000 п. 0000015011 00000 п. 0000015840 00000 п. 0000015862 00000 п. 0000016688 00000 п. 0000016710 00000 п. 0000017498 00000 п. 0000017520 00000 п. 0000017727 00000 п. 0000001639 00000 н. 0000002043 00000 н. трейлер ] >> startxref 0 %% EOF 67 0 объект > / Контуры 70 0 R >> эндобдж 68 0 объект ĄѦk) / U (5OsS’6f ܃ C> эндобдж 112 0 объект > поток n6mra] `dU5nyA / yɕ ް ªF7-8V {9gBEçB ^.`6o \ R ƀBR $ I, R +! ty93S ػ DixDGbOyoD8.SQNU7lnk ~ ‘/ CC2 & b} ib * 8’ Ŝ pC28heI ݠ 47} c {F1NfnN ٗ n ܌ V @ 86J6H 쨮 `/ RȀx8 ݌ WJP * конечный поток эндобдж 113 0 объект 310 эндобдж 69 0 объект > / Шрифт> / ExtGState> / ProcSet [/ PDF / Text] >> / Содержание [92 0 R 96 0 R 100 0 R 102 0 R 104 0 R 106 0 R 108 0 R 111 0 R] / MediaBox [0 0 612 792] / CropBox [0 0 612 792] / Повернуть 0 >> эндобдж 70 0 объект > эндобдж 71 0 объект EZ \) 皔 Yo) / Родитель 70 0 р / А 80 0 Р / След. 77 0 R / C [0 0 1] >> эндобдж 72 0 объект ] Z) / Родитель 70 0 р / Назад 73 0 руб. / A 74 0 R / C [0 0 1] >> эндобдж 73 0 объект > эндобдж 74 0 объект fJ _- $ \ nJ Խ

Заставьте электродвигатель снова поработать: 6 шагов (с изображениями)

Электролитический конденсатор нередко высыхает и выходит из строя в аудиооборудовании через 20 лет или меньше.Но замена пускового конденсатора без предварительной проверки на короткое замыкание или разрыв обмоток, сброс обрыва и неисправный центробежный переключатель не заставят ваш двигатель работать, если конденсатор на самом деле не ваша проблема.

Многие двигатели имеют куполообразную крышку снаружи двигателя, а конденсатор находится под ней. Конденсаторы двигателя обычно представляют собой цилиндры с выводами наверху. Но некоторые конденсаторы в старых двигателях также могут быть плоскими, например, короткая стопка учетных карточек 4 x 6. Они могут быть расположены в основании двигателя, так что по внешнему виду создается впечатление, что в двигателе нет конденсатора.

Конденсатор может вздуться или протечь при выходе из строя. Он может даже расколоться. Но это также может выглядеть совершенно нормально. Существуют различные процедуры тестирования конденсаторов, но эти тесты не являются надежными. Конденсатор может пройти несколько тестов и все равно выйти из строя под нагрузкой.

Если вы еще этого не сделали, воспользуйтесь отверткой, чтобы замкнуть любой остаточный заряд в конденсаторе двигателя. Сделайте это пару раз на всякий случай.

Если ваш конденсатор определенно нуждается в замене, скопируйте цифры напряжения и емкости, надеюсь, все еще читаемые.Вы всегда можете использовать запасной конденсатор, рассчитанный на более высокое напряжение, чем оригинальный конденсатор вашего двигателя, но значения емкости должны соответствовать как можно точнее. Таким образом, конденсатор переменного тока на 230 вольт может заменить конденсатор переменного тока на 125 вольт. Емкость будет иметь диапазон от 220 до 260 мкФ. Конденсатор с номиналом от 210 до 250 мкФ должен быть достаточно близким для нормальной работы. (Если вы видите значения в миллифарадах, 1 миллифарад равен 1000 микрофарад.)

Вот несколько способов проверить конденсатор .Выберите те, которые подходят тому, что у вас есть

Процедура A — Отключив хотя бы один провод от конденсатора и отключив питание цепи двигателя, подключите омметр к обоим выводам конденсатора. Аналоговый счетчик предпочтительнее, но не обязателен. Показание должно возрасти до высокого значения и внезапно упасть до нуля или обрыв цепи. Если есть стабильное показание некоторого значения, конденсатор закорочен. Если показание не повышается изначально, что-то внутри конденсатора сломано и имеется разрыв цепи.

Процедура B — Отсоедините оба провода от конденсатора. Подключите его к шнуру лампы и последовательно с лампой накаливания мощностью около 60 Вт. Подключите его к розетке. Лампа должна гореть, хотя может быть тусклее, чем обычно.

Процедура C — Здесь вы можете получить измеритель, который считывает значение емкости конденсатора, менее чем за 20 долларов плюс стоимость доставки. Вышеупомянутые тесты дают вам представление о том, работает ли конденсатор, но не дают никаких подсказок о фактической емкости конденсатора.(Высохший электролитический конденсатор может показаться хорошим, но его емкость слишком мала для запуска двигателя.) Счетчик меняет это. Найдите в инструкциях по поиску схем измерителя емкости. По крайней мере, один использует модуль Arduino. Около 25 лет назад у меня был журнал электроники с самодельной схемой для измерителя емкости на базе микросхемы 555. (Вот аналогичное устройство, которое вы можете сделать.) Теперь у меня есть цифровой мультиметр с измерением емкости. Некоторые измерители емкости используют генератор сигналов высокой частоты, который является частью измерителя.Их можно использовать «в цепи» и давать точные показания без обратной связи через другие части схемы.

Конденсаторы могут давать хорошие показания на измерителе и при этом оставаться слабыми или выходить из строя. Измеритель ESR измеряет внутреннее сопротивление, которое влияет на фактическую производительность.

Процедура C ‘ — Книга, упомянутая на следующем шаге, предоставляет еще один тест. Он включает в себя измерение тока (силы тока), используемого двигателем при включении питания. Математическая формула показывает, сколько микрофарад дает ваш конденсатор с учетом параметров теста.Это полезно, потому что это тест под нагрузкой.

Процедура D — Не всегда возможно купить несколько единиц испытательного оборудования, которое нельзя использовать более одного или двух раз. Если все остальное (короткое замыкание и размыкание, центробежный переключатель, сброс и т. Д.) Проверяется в вашем двигателе и конденсатор показывает, что все в порядке, но двигатель по-прежнему не работает, новый конденсатор будет доставлен к вашей двери за 10-20 долларов. . В худшем случае у вас будет относительно небольшая сумма денег, и это может быть недостаток вашего конденсатора, который не проявляется в тестах, которые вы можете провести.В лучшем случае мотор может работать.

Когда закончите, восстанавливает соединения с конденсатором , старым или новым.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовать
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

Электродвигатели — Restarters Wiki

На этой странице рассказывается об электродвигателях различных типов, о том, как их идентифицировать и понять, как их типичные отказы, а также как их проверить.

Сводка

Многие устройства и приборы содержат электродвигатели. Эта страница поможет вам понять, как они работают, что может пойти не так и, возможно, как их исправить.

Безопасность

Двигатели в бытовых приборах могут быть довольно мощными и вместе с соответствующими шестернями и механизмами могут вызывать травмы. Как и все сетевые электроприборы, перед началом работы обязательно отключите их от сети. Прибор должен пройти испытание PAT как до, так и после попытки разборки или ремонта.

Типы двигателей

Существует много типов электродвигателей, но почти все они делятся на три основных типа. Все они состоят из двух основных компонентов:

  • The Rotor — бит, который вращается, и
  • Статор — бит, который не вращается.

Все они полагаются на электромагнетизм . Когда электрический ток течет через катушку с проволокой, он создает магнитное поле. Катушка обычно наматывается на железный сердечник, который затем намагничивается, что значительно увеличивает магнетизм.

Двигатели постоянного и универсального (переменного / постоянного тока)

Мотор универсальный, в разобранном виде. Универсальный двигатель с ротором и коммутатором. Универсальный двигатель, показывающий статор со щетками на дальнем конце.

Статор представляет собой постоянный магнит или электромагнит.

В простейших игрушечных двигателях ротор представляет собой другую катушку или целый ряд катушек во всех реальных двигателях, намотанных на многослойный железный сердечник.

Пара угольных щеток подает ток на ротор через коммутатор , который постоянно переключает ток в роторе на те катушки, которые находятся под прямым углом к ​​катушке статора в любой данный момент.Это создает постоянное вращающее усилие.

В бесщеточном двигателе с электронной коммутацией или бесщеточном двигателе ротор часто представляет собой постоянный магнит. Электронные схемы определяют положение ротора и постоянно переключают ток в серии катушек статора, чтобы вращать ротор. Это устраняет необходимость в электрическом подключении к ротору и, таким образом, повышает надежность.

Двигатели постоянного тока и универсальные двигатели работают одинаково хорошо, как динамо-машины, и генерируют напряжение, противоположное приложенному напряжению.Это известно как «обратная ЭДС (электродвижущая сила)». При небольшой нагрузке эти двигатели разгоняются до тех пор, пока не будут генерировать почти столько же напряжения, сколько приложено. Следовательно, легко изменять скорость, просто изменяя приложенное напряжение.

Коллектор и щетки (кроме двигателей с электрической коммутацией) подвержены износу и могут образовывать искры. Поэтому такие двигатели не используются там, где требуется высочайшая надежность или существует риск возгорания или взрыва из-за горючих газов.

Динамо-эффект минимален при первом запуске двигателя и до того, как он достигнет полной скорости. Это позволяет двигателю потреблять сильный ток и генерировать очень большой пусковой момент (то есть вращающее усилие). Это особенно полезно в электромобилях и поездах, где требуется мощная сила для первоначального приведения их в движение.

Двигатель без сердечника — ротор и корпус с постоянным магнитом, видимым внутри корпуса.

В двигателе без сердечника обмотки ротора сформированы в полый цилиндр, связанный смолой — железного сердечника нет.Он вращается вокруг статического постоянного магнита, расположенного внутри него. Магнитное поле проходит от одного полюса магнита через обмотки ротора, а затем возвращается через стальной корпус двигателя, снова через противоположную сторону ротора и, следовательно, обратно к другому полюсу магнита.

Двигатель без сердечника — Коммутатор и щетки.

Ток подается на ротор через щетки и коммутатор, как и в любом другом двигателе постоянного тока или универсальном двигателе. Отсутствие железного сердечника повышает эффективность, снижает вес и снижает инерцию, обеспечивая очень быстрое ускорение и замедление.

Двигатели без сердечника часто используются в небольших квадрокоптерах и других игрушках, а также в медицинском оборудовании, робототехнике и везде, где требуется небольшой высокоэффективный и отзывчивый двигатель.

В большинстве ручных электроинструментов используются универсальные двигатели. Компьютерные вентиляторы, двигатели с жесткими дисками и более крупные модели квадрокоптеров и пультов дистанционного управления обычно используют двигатели с электронной коммутацией.

Есть отличная статья с видео, описывающим и демонстрирующим, как работает двигатель постоянного тока.

Асинхронные двигатели

Они проще по конструкции, но их не так легко понять.

Если вы перемещаете магнит по куску металла, движущееся магнитное поле генерирует циркулирующий электрический ток в металле. Этот ток, в свою очередь, создает магнитное поле, которое взаимодействует с приложенным полем таким образом, что создает сопротивление, препятствующее движению.

Небольшой асинхронный двигатель с экранированными полюсами в разобранном виде.

Статор состоит из двух или более катушек, созданных для создания вращающегося магнитного поля.Ротор содержит несколько толстых медных петель для максимального сопротивления, создаваемого вращающимся магнитным полем. Ротор ускоряется до тех пор, пока не начинает вращаться почти так же быстро, как вращающееся магнитное поле.

Асинхронные двигатели работают только от источника переменного тока (который меняет направление 100 раз в секунду), поскольку именно так статор может создавать вращающееся магнитное поле.

Поскольку частота источника переменного тока фиксирована, вы не можете легко изменить скорость асинхронного двигателя. Однако с 4 или 6 (или более) обмотками статора вместо 2 и путем переключения способа подачи питания переменного тока на них можно настроить вращающееся магнитное поле, чтобы вращаться на половину, треть (или другое дробное значение). скорость.

В большинстве асинхронных двигателей статор создает больше восходящего и опускающегося магнитного поля, чем истинное вращающееся магнитное поле, но с небольшим скручиванием в одну сторону при движении вверх, а в другое — при движении вниз. Это означает, что пусковой момент низкий. Следовательно, они обычно используются там, где это не имеет значения, например в вентиляторе, который испытывает небольшое сопротивление воздуха, пока не достигнет полной скорости.

Асинхронный двигатель со стартерной обмоткой.

Есть несколько способов получения скрутки. В двигателе с экранированными полюсами толстая медная петля намотана вокруг части каждого полюса (как видно на первой фотографии).Это приводит к некоторой задержке намагничивания этой части полюса из-за нарастания тока в контуре, что дает необходимое скручивание. Медный контур расходует энергию, поэтому этот метод используется только в небольших двигателях, которые очень часто встречаются в настольных вентиляторах.

Двигатели большего размера имеют смещение второй обмотки статора относительно основной, на которую подается противофазный ток. Конденсатор (большой цилиндрический компонент, который нельзя пропустить) или иногда резистор обеспечивает фазовый сдвиг.На рисунке показан пример двигателя ротационной газонокосилки, на котором хорошо видна вторая обмотка, смещенная на 90 градусов.

(Интересной особенностью показанного двигателя является то, что он имел тормозной механизм, чтобы остановить вращение лезвия после отключения питания. На шпинделе виден металлический диск с пружиной под ним, которая прижимала его к трем видимым тормозным колодкам. вокруг подшипника.При подаче питания магнитное поле тянет этот диск вниз и от тормозных колодок.Корозия диска привела к тому, что тормозное действие стало чрезмерно сильным.Затем плоские поверхности на шпинделе стерли соответствующие плоские поверхности на пластиковом колесе, к которому было прикреплено лезвие. Из-за углового момента лезвия его стопорный болт ослаб.)

Вторая обмотка статора может тратить энергию после запуска двигателя и, следовательно, может быть отключена центробежным переключателем. В качестве альтернативы может быть термистор, который быстро нагревается при протекании тока, и при этом его сопротивление увеличивается, что снижает ток во второй обмотке статора.

Большие промышленные асинхронные двигатели мощностью несколько лошадиных сил часто получают питание от трехфазного источника питания. С 3 обмотками (или кратными 3), питаемыми от 3 фаз, они естественным образом создают вращающееся магнитное поле и, следовательно, самозапускаются.

Есть отличная статья с видео, описывающим и объясняющим, как работают асинхронные двигатели.

Синхронные двигатели

Они похожи на асинхронные двигатели тем, что статор создает вращающееся магнитное поле. Разница в том, что ротор представляет собой постоянный магнит и, следовательно, вынужден вращаться с той же скоростью, что и магнитное поле, вместо того, чтобы отставать по скорости, как в асинхронном двигателе.

Представьте себе две жестяные банки, одну внутри другой. Если вы заполните пространство между ними патокой и поверните внешнюю банку, она потянет за собой внутреннюю, даже если вы будете сопротивляться ее движению. Разница в скорости будет зависеть от применяемого вами сопротивления. Это похоже на асинхронный двигатель. Если вместо патоки вы прикрепите внутреннюю банку к внешней с помощью пружин, внутренняя банка будет вынуждена вращаться с той же скоростью, но будет растягивать пружины и отставать в своем положении, хотя и не по скорости, по мере увеличения сопротивления.Это похоже на синхронный двигатель.

Маленькие синхронные двигатели используются в электромеханических таймерах и часах, где их вращение привязано к частоте сети переменного тока. Крупные промышленные предприятия также иногда используют гораздо более крупные и мощные синхронные двигатели. Автомобильный генератор переменного тока и генераторы на электростанции — это синхронные двигатели, используемые в качестве генераторов.

Поскольку синхронный двигатель не работает должным образом, пока ротор не наберет нужную скорость, необходимо применить некоторые хитрые средства, чтобы запустить его.В небольших часовых и таймерных двигателях это обычно достигается за счет формы железа статора. По мере того, как магнитное поле от катушки статора меняет направление на противоположное с каждым циклом подачи переменного тока, изменение магнетизма постепенно распространяется через железо особой формы таким образом, что оно скручивается.

Бесщеточный двигатель на самом деле представляет собой просто синхронный двигатель, приводимый в действие электронной схемой для управления обмотками статора и создания таким образом вращающегося магнитного поля.

Шаговые двигатели

Часто требуется двигатель, которому вместо непрерывного вращения можно дать команду на вращение на заранее определенную величину и остановку.Примером может служить двигатель, который приводит в движение ролики подачи бумаги в принтере. Они должны продвигать бумагу на ширину печатающей головки и останавливаться после печати каждого ряда пикселей. Аналогичным образом, аналоговые кварцевые часы или часы обычно включают секундную стрелку на секунду каждую секунду. В обоих случаях используются шаговые двигатели.

Существуют разные конфигурации, но самая простая и легкая для понимания состоит из статора, состоящего из двух катушек, расположенных под прямым углом, и ротора с постоянным магнитом внутри них.Первоначально одна катушка находится под напряжением, и постоянный магнит выравнивается с ее магнитным полем. Если другая катушка также находится под напряжением, магнит повернется на 45 градусов в положение между ними и завершит поворот на 90 градусов, когда первая катушка выключится. Повторное включение первой катушки в противоположном направлении приведет к тому, что ротор продолжит движение еще на 45 градусов и так далее. Таким образом, вал, прикрепленный к постоянному магниту, можно поворачивать на 45 градусов за раз по мере необходимости. Путем изменения последовательности его можно повернуть в обратном направлении, если это необходимо.

Диагностика и ремонт

Все типы двигателей могут заклинивать, если подшипники забиваются грязью или пылью, что легко может произойти в электроинструментах. Бритвы, электрические зубные щетки и кухонные приборы могут заклинивать из-за попадания воды и т. Д. Очистка может быть всем, что требуется, но в случае воды предотвратить повторение того же может быть непросто. Выясните, доступны ли запасные уплотнения. Застрявший подшипник часто можно освободить с помощью WD40, а дорожку качения, забитую пылью, можно очистить уайт-спиритом, но в любом случае важно смазать подходящим маслом или консистентной смазкой после очистки и высыхания, поскольку ни WD40, ни уайт-спирит не подходят. хорошие смазки.

Маленькие двигатели, рассчитанные на работу от батарей, часто не предназначены для разборки, хотя это можно сделать, согнув фиксирующие их выступы. Более крупные, например, предназначенные для работы от сети, часто можно разобрать, удалив два длинных болта, проходящих по всей их длине. В случае двигателей постоянного тока и универсальных двигателей при повторной сборке вам нужно будет снять щетки или удерживать их в стороне, чтобы задвинуть ротор на место с коллектором между ними.

В случае заклинивания двигатель потребляет сильный ток. Он спроектирован так, чтобы делать это мгновенно при запуске, но если его не повернуть, он может перегреться и повредить изоляцию, а в худшем случае — сжечь обмотки. Запах гари является явным признаком неисправности, а поврежденная изоляция может привести к нестабильной скорости. Если есть признаки ухудшения изоляции, двигатель следует утилизировать. (Специализированные фирмы перематывают большие промышленные двигатели, но вряд ли это будет рентабельным для отечественного двигателя и простой задачей, которую можно решить самостоятельно.)

Если нет видимых признаков износа, стоит проверить обмотки мультиметром в диапазоне сопротивлений. Низкое показание является нормальным, поскольку приложенное напряжение ограничивается не сопротивлением обмоток, а динамо-эффектом, который всегда ему противодействует.

Распространенной неисправностью двигателей постоянного тока и универсальных двигателей является износ угольных щеток, контактирующих с коллектором, или грязный коллектор. Чрезмерное искрение — верный признак того, что требуется срочное обслуживание.Щетки обычно прижимаются к коммутатору с помощью пружины, но они могут перестать поддерживать хороший контакт, если они изнашиваются сразу или если они не могут соскользнуть в их корпусах по мере износа. Можно получить замену, но вам нужно будет тщательно выбрать правильный размер. Замены могут быть доступны для вашей конкретной марки и модели устройства, в противном случае тщательно измерьте старые щетки и их корпус, и вы сможете найти подходящие замены в Интернете. Если щетка изнашивается вплоть до пружины, искрение может необратимо повредить коммутатор.

В некоторых профессиональных и высококачественных электроинструментах для дома есть щетки, в которые вставлен подпружиненный пластиковый штифт. Когда уголь изнашивается до предела, штифт освобождается, отталкивая изношенную щетку от коллектора, чтобы предотвратить дальнейший износ и необратимые повреждения. Известно, что профессионалы выбрасывают дорогие электроинструменты, которые внезапно перестали работать по этой причине — это простое решение, если вы можете распознать проблему.

Асинхронные двигатели с экранированными полюсами обычно очень надежны, но конденсатор, термистор и центробежные механизмы запуска могут выйти из строя.Если есть конденсатор, он может показать явные признаки неисправности, в противном случае проверьте его, если сможете. По крайней мере, вы можете использовать мультиметр на диапазоне сопротивления, чтобы проверить, что он не закорочен.

Электродвигатель содержит много меди и железа — убедитесь, что вы утилизируете его ответственно!

.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *