Необслуживаемые аккумуляторы: Жидкостные, Гелевые и AGM
Такие аккумуляторы бывают различных типов: Жидкостные, Гелевые и AGM. Начнем с того, что это все кислотные аккумуляторы и принцип их работы не отличается от друг от друга.
12-ти вольтовый Аккумулятор состоит из шести ячеек, в которых находятся электродные блоки, состоящие из пластин (решеток) положительных и отрицательных с нанесенной на них активной массой и разделенных между собой сепаратором, все это залито электролитом. Процесс образования (выработка) электричества происходит при химическом взаимодействии между активной массой, нанесенной на решетки и электролитом.
Основное принципиальное отличие Обычных жидкостных, Гелевых (GEL) и VRLA или SLA созданных по AGM технологии батарей заключается в физическом состоянии электролита:
- Обычные аккумуляторы имеют — жидкий электролит.
- Гелевые (GEL) — загущенный электролит до нетекучего состояния с помощью специальных присадок.
- VRLA или SLA, произведенные по AGM технологии — электролит абсорбирован (впитан) в сепаратор.
Решетки электродов, удерживающие активную массу, легируют сурьмой и мышьяком. Добавки улучшают технологичность литья, повышают твердость и коррозионную стойкость электродов. В то же время сурьма способствует повышенному расходу воды и снижению ЭДС батареи в процессе эксплуатации.
Дальнейшее развитие привело к снижению доли сурьмы в составе сплава, из которого льют решетки. Это привело к появлению малообслуживаемых аккумуляторов (малосурьмянистые технологии), так же увеличился срок службы батареи. Затем из отрицательных пластин сурьму вытеснил кальций. Появились «Гибридные» аккумуляторы стали требовать долива еще реже.
Применение кальция в положительных и отрицательных пластинах (кальциевые технологии) привело к появлению батарей, теоретически не требующих долива на протяжении всего срока эксплуатации. Однако такие батареи выходят из строя от глубоких разрядов. Чтобы повысить стойкость, в свинцово-кальциевый сплав положительных пластин стали добавлять серебро. Применение лабиринтных крышек и пробок, конденсирующих остатки испарения воды и возвращающих ее обратно в аккумулятор, привело к появлению полностью необслуживаемых батарей в течение всего срока их жизни.
Гелевые аккумуляторы появились с началом освоения космоса. Гель, получающийся в результате добавления в серную кислоту двуокиси кремния, позволяет добиться полной герметичности батареи, так как все газовыделение происходит внутри пор в массе геля. Таким батареям нет равных по стойкости к глубоким разрядам, они намного долговечнее традиционных. Но распространения у автомобилистов гелевые аккумуляторы не получили по причине очень высоких требований к бортовому электрооборудованию и из-за резкого падения пускового тока на холоде.
Наиболее современная технология (AGM) вновь вернулась к жидкой кислоте, но теперь электролит удерживается в порах сепаратора из ультратонких стеклянных волокон. Такая конструкция позволяет не только герметизировать корпус, но и сохранить работоспособность батареи даже в случае повреждений наружной оболочки. AGM-батареи нечувствительны к колебаниям температуры, очень стойки к глубоким разрядам, долговечны, виброустойчивы и могут работать хоть лежа на боку, но боятся перезаряда.
ОСОБЕННОСТИ ГЕЛЕВЫХ АККУМУЛЯТОРОВ
Гелевый электролит заполняет пространство между пластинами аккумулятора, но сепаратор не исключается. Рекомбинация газов в гелевых аккумуляторах имеет эффективность до 97%. Гель эффективнее фиксирует материал пластин, снижая их износ в режимах глубоких разрядов, поэтому циклический ресурс гелевых аккумуляторов в 2-3 раза выше, чем у обычных, поэтому их целесообразно применять в тех случаях, где такое применение (циклический режим с глубоким разрядом) востребовано. Гелевые аккумуляторы также могут эксплуатироваться в любом положении (кроме перевернутого), имеют несколько меньший саморазряд, поэтому гелевые аккумуляторы предпочтительно использовать в тех режимах, где разряд производится малым током на протяжении длительного времени.
В гелевом электролите ионы имеют худшие показатели подвижности (в силу большей плотности среды), что отрицательно сказывается на динамических разрядных и зарядных характеристиках гелевых аккумуляторов. Более того, может наблюдаться временный провал в напряжении при резком увеличение нагрузки, что может приводить к неадекватному поведению оборудования; поэтому следует с осторожностью применять гелевые аккумуляторы в системах управления током и т.п. устройствах с коммутацией быстроизменяющихся токов. Гелевые батареи очень чувствительны к качеству зарядки аккумуляторы с гелем внутри можно применять лишь там, где бортовая электрика позволяет очень точно поддерживать режим заряда. Куда там, на отечественных автомобилях даже с исправным реле-регулятором напряжение «гуляет» с 13 до 16 вольт! Да и на большинстве иномарок немногим лучше. А уж если реле-регулятор из строя выйдет, то гелевый аккумулятор можно сразу выбрасывать. Не зря же на нем написано: напряжение заряда не более 14,4 В. Если больше, то гель тает как холодец в тепле и обратно уже не восстанавливается. И вот еще что: у настоящих гелевых батарей, конечно, может быть огромный ток, но только летом. Гель и так вязкий, а на морозе он совсем застывает. В результате характеристики падают наполовину и больше.
Зарядка гелевых аккумуляторов ограничивается очень малыми токами, в противном случае возникает опасность «вспучивания» геля избыточными газами из-за меньшей эффективности рекомбинации и ограниченной теплопроводности. Гелевые аккумуляторы предпочтительней питать от зарядных устройств с высоким качеством напряжения (стабильность, минимум пульсаций) во избежание перезаряда и перегрева, они не переносят даже кратковременных коротких замыканий — любое КЗ (например, при установке аккумулятора Вы случайно замкнули на долю секунды два полюса металлическим гаечным ключом) моментально выводит аккумулятор из строя.
Высокие вибрации приводят к разжижению геля и стеканию его с пластин. Как видим, гелевые аккумуляторы «лушче» (если так можно сказать), только в плане повышенного циклического ресурса и меньшего % саморазряда. К тому же такой тип батарей самый дорогой.
СВИНЦОВО—КИСЛОТНЫЕ, ГЕРМЕТИЗИРОВАННЫЕ, КЛАПАННО-РЕКОМБИНАЦИОННЫЕ АККУМУЛЯТОРЫ (VRLA или SLA)
- VRLA (Valve Regulated Lead Acid) в переводе с английского — Клапанно-Регулируемые Свинцово-Кислотные;
- SLA (Sealed Lead Acid) — Герметизированные Свинцово-Кислотные;
- AGM (Absorbent Glass Mat) — это технология изготовления свинцово-кислотных аккумуляторов, созданная инженерами Gates Rubber Company в начале 1970-х годов. Пористый сорбент из стекловолокна (AGM) — впитывающий сепаратор, использующийся между пластинами в VRLA-батарее.
Особенность аккумуляторов типа VRLA — отсутствие необходимости долива воды в течение всего срока службы и практически полное отсутствие выделения газов (водорода и кислорода) — продуктов электролиза воды, входящей в состав электролита. Поэтому их нередко называют герметизированными необслуживаемыми. Незначительное обслуживание, тем не менее, необходимо: прежде всего, визуальный осмотр, протирание от пыли, подтяжка соединений и контроль напряжений.
Благодаря особенностям конструкции и составу материалов пластин, сепараторов и электролита продукты электролиза воды — молекулы водорода и кислорода — в аккумуляторах данного типа рекомбинируют, превращаясь в молекулы воды и возвращаясь в состав электролита.
Коэффициент рекомбинации при нормальных условиях эксплуатации достаточно высок и может достигать >99 %. Поэтому лишь очень незначительная часть непрорекомбинировавших газов накапливается внутри корпуса аккумулятора и затем при превышении заданного уровня давления стравливается в атмосферу через специальные клапаны.
Преимущества:
- Устойчивость к вибрации, возможность установки в любом положении и в отсутствии необходимости обслуживать, высокий пусковой ток.
- Конструкция не требующая обслуживания.
- Конструкция герметична и имеет клапанную регулировку, предотвращает утечку кислоты и коррозию клемм.
- Более безопасная работа: при правильной зарядке батарей исключается возможность выделения газов и опасность взрыва.
- Герметичная конструкция позволяет устанавливать батарею почти в любом положении (однако установка вверх дном не рекомендуется).
- Уверенная работа при низких температурах (ниже − 40*С), низкий саморазряд (всего на 15 — 20% за год простоя), полная необслуживаемость и долгий, до 12 — 15 лет, срок службы.
- Повышенная виброустойчивость увеличивает срок службы.
- Они обеспечивают число полных (70%) циклов разряда около 500 раз.
Недостатки:
- Не должны храниться в разряженном состоянии, напряжение не должно упасть ниже 10,8 В.
Крайне чувствительны к превышению напряжения заряда.
Для заряда батарей изготовленных по технологии AGM, желательно использовать специальное зарядное устройство с соответствующими параметрами заряда, отличными от заряда классических аккумуляторов с жидким электролитом. AGM-батареи не такие «капризные» как гелевые, но тоже требуют внимания к состоянию генератора и реле-регулятора. Дело в том, что в аккумуляторах этого типа конструктивно очень мало электролита, и если он выкипит, то долить невозможно. - Высокая цена.
Аккумуляторы, производимые с использованием технологии AGM, изготавливаются в спиральной или плоской конфигурации. Спиральные элементы обладают большей площадью поверхностного контакта, что даёт возможность кратковременно выдавать большие токи и быстрее заряжаться. Однако обратной стороной является уменьшение удельной ёмкости аккумулятора (соотношение электрической ёмкости и размеров) по сравнению с плоской конфигурацией. Обе технологии являются перспективными. В настоящий момент наиболее распространены автомобильные аккумуляторы AGM с плоской конфигурацией блоков. Спиральные блоки SpiraCell запатентованы компанией Johnson Controls для серии Optima и не могут использоваться без её разрешения, в отличие от плоских блоков. У спиральных батарей выше характеристики токоотдачи и меньшее внутреннее сопротивление из-за большей рабочей поверхности пластин при тех же внешних габаритах батареи. Простым языком говоря, они мощнее.
Свинцовые аккумуляторы со связанным электролитом, изготовленные по технологии AGM, появились около 40 лет назад — их изобрели для работы в буферном режиме в стационарных системах бесперебойного электроснабжения. Такие батареи хороши с точки зрения безопасности, поскольку практически не выделяют в атмосферу образующиеся при зарядке газы. В 90-х годах прошлого века технология AGM прижилась в автоспорте. Во-первых, вновь из-за безопасности — теперь уже благодаря полностью герметичному корпусу аккумулятора, исключающему вытекание электролита при аварии. А во-вторых, из-за компактности — благодаря малому сопротивлению не изолирующих, а пропитанных электролитом сепараторов большой пусковой ток они выдают при меньшей емкости, то есть с меньшим количеством пластин в пакете. На обычных автомобилях AGM-аккумуляторы появились больше десяти лет назад. В настоящий момент автомобильные стартерные батареи AGM используются в качестве источника питания системы «Старт-Стоп», которой оснащается ряд моделей автомобилей ведущих производителей из-за возможности быстро и отдавать, и принимать большое количество энергии, способности безболезненно выдерживать глубокие разряды (при периодических разрядах больше 50% АGМ — батарея прослужит вчетверо дольше обычной) и не деградировать при частых циклах разрядов-зарядов. Ведь стекловолоконные маты вдобавок ко всему механически удерживают активную массу на пластинах, не давая ей осыпаться. Именно поэтому на машинах с системой «Старт-Стоп» подобный аккумулятор способен проработать четыре-пять лет, а не два-три года, как обычный «жидкий».
Ещё почитать:
Гель или AGM?Аккумуляторы GEL, AGM и особенности их обслуживания
Автомобильный аккумулятор (АКБ). Общее устройство аккумулятора
Неотъемлемой частью каждого автомобиля является аккумуляторная батарея, которая предназначена для питания электрических цепей управления и сервиса бортовой сети, когда двигатель автомобиля не работает. Но самое главное,- приводить в действие стартер, во время заводки авто. Аккумуляторная батарея включается в буфер с автомобильным генератором и во время движения, или просто работы двигателя, является нагрузкой для генератора. Но как только вся совокупная электрическая нагрузка превысит мощность выдаваемую генератором, в действие «вступает» аккумулятор и поддерживает напряжение бортовой сети на уровне 12 вольт.
Обычно для автомобилей применяются кислотно-свинцовые аккумуляторы, которые имеют напряжение 12 вольт и различаются только по емкости заряда. Автомобильный аккумулятор должен обладать несколькими важными параметрами.
- Иметь малое внутренне падение напряжения
- Иметь небольшой саморазряд во время эксплуатации
- Иметь способность выдавать большие токи
- Иметь небольшие габариты и минимальное обслуживание.
Всем этим параметрам и соответствует кислотно-свинцовый аккумулятор, об устройстве которого поговорим ниже.
Устройство аккумулятора автомобиля
Аккумулятор, с номинальным напряжением в 12 вольт состоит из (обычно 6) независимых друг от друга аккумуляторов (банок) меньшего напряжения (2 вольта), собранных в одном корпусе и соединенных последовательно между собой.
- Банка аккумулятора представляет собой набор разно полюсных пластин, которые изолированы друг от друга кислотоупорными сепараторами.
- Корпус аккумулятора изготавливается из кислотоупорных пластмасс или эбонита. В корпусе имеется отсеки для установки банок аккумулятора.
- Полюсная пластина изготавливается из свинца и имеет вид решетки, в ячейки решетки впрессовывается специальный состав (активное вещество) пористой структуры, для увеличения площади соприкосновения с электролитом. Активное вещество изготавливается из свинцового порошка, с добавлением серной кислоты. В отрицательные пластины добавляется еще сернокислый барий. Во время формирования аккумулятора пластины заряжаются, и активное вещество в плюсовых пластинах превращается в диоксид свинца, а в отрицательных – в губчатый свинец.
- Электролит заливается в банки аккумулятора и служит для движения заряженных частиц от полюса к полюсу. Изготавливается из серной кислоты и очищенной воды (дистиллированной).
Принцип работы аккумуляторной батареи
Физика процесса работы аккумулятора очень проста, при подключении нагрузки, в аккумуляторе начинается движение заряженных частиц, что приводит к появлению тока. В условиях заряда от генератора или зарядного устройства, напряжение заряда превышает номинальное значение напряжения аккумулятора, и движение частиц происходит в обратном направлении.
РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:
|
Из каких элементов состоит аккумуляторная батарея
- Категория: Поддержка по аккумуляторным батареям
- Опубликовано 01.03.2016 05:05
- Автор: Abramova Olesya
Электрохимическая батарея состоит из катода, анода и электролита. При зарядке аккумуляторной батареи происходит накопление электронов на аноде, которое создает потенциал напряжения между анодом и катодом. При обычной работе в качестве источника питания ток протекает от катода к аноду через нагрузку. При зарядке аккумулятора ток течет в противоположном направлении.
Электроды батареи связаны между собой двумя различными путями, первый это электрический контур, через который электроны текут питать нагрузку, а второй — через электролит, где ионы движутся между электродами через диэлектрический разделитель (сепаратор). Рассмотрим подробнее эти три компонента батареи.
Анод и катодЭлектрод, который высвобождает электроны в ходе окислительно-восстановительной реакции, называется анод. Электрический потенциал анода гальванического элемента отрицателен по отношению к катоду. Химическая реакция в аккумуляторной батарее является обратимым процессом, и, следовательно, полярность электродов меняется в зависимости от режима работы (заряд/разряд), но обозначение клемм всегда постоянно. В таблицах 1a, b, c и d описывается состав и процессы в литиевых, свинцовых, никелевых и щелочных батареях.
Литий-ионная батарея | Катод | Анод | Электролит |
Материальный состав элементов | Оксиды кобальта, никеля, марганца, железа и алюминия | На углеродной основе | Соли лития в органическом растворителе |
Состав и процессы при заряженном состоянии | Оксид металла с интеркаляционной структурой | Миграция ионов лития к аноду | |
Состав и процессы при разряженном состоянии | Ионы лития возвращаются к положительному электроду | В основном, углеродная основа |
Таблица 1a: Состав и процессы в литий-ионном аккумуляторе.
Свинцово-кислотная батарея | Катод | Анод | Электролит |
Материальный состав элементов | Диоксид свинца | Серый губчатый свинец | Соляная кислота |
Состав и процессы при заряженном состоянии | Диоксид свинца PbO2, электроны присоединяются | Свинец Pb, электроны отсоединяются | Сильная серная кислота |
Состав и процессы при разряженном состоянии | Свинец преобразуется в сульфид свинца, на аноде – с выделением электронов, а на катоде — с присоединением | Слабая серная кислота (разбавленная водой) |
Таблица 1b: Состав и процессы в свинцово-кислотном аккумуляторе.
NiMH, NiCd | Катод | Анод | Электролит |
Материальный состав элементов | Никель | NiMH: водородопоглощающий сплав NiCd: кадмий |
Гидроксид калия |
Таблица 1c: Состав никель-металл-гидридного и никель-кадмиевого аккумуляторах.
Щелочная (алкалиновая) батарейка | Катод | Анод | Электролит |
Материальный состав элементов | Диоксид марганца | Цинк | Водный раствор щелочи |
Таблица 1d: Состав щелочной (алкалиновой) батарейки.
Электролит и сепараторПри затопленной негерметичной системе конструкции аккумулятора, жидкий электролит свободно течет между двумя электродами. В герметичных же конструкциях электролит обычно выступает в роли пропитки для сепаратора, чтобы обеспечивать движение ионов от катода к аноду и в обратном направлении при зарядке. Ионы – это атомы, которые присоединили или потеряли электроны. Потеряв благодаря этому электронейтральность, они приобретают способность двигаться между электродами через сепаратор. Сам же сепаратор является диэлектрическим, то есть не способным к электропроводности. Смотрите также: Какую функцию выполняет в электрической батарее сепаратор? и Для чего в электрической батарее нужен электролит?
Батареи для Tesla и накопителей электроэнергии: кто лидеры инноваций? | Экономика в Германии и мире: новости и аналитика | DW
Если ключевой элемент традиционного автомобиля — двигатель внутреннего сгорания, то во все более популярных электромобилях это — аккумуляторная батарея: от нее зависят дальность пробега, скорость зарядки, вес и, главное, цена машины.
Если в традиционной электроэнергетике принципиальную роль играет турбина, то для развития все более популярных возобновляемых источников энергии (ВИЭ) крайне важны накопители энергии: без них не решить главную проблему ветряных и солнечных электростанций — зависимость от переменчивости погоды.
Илон Маск: новое поколение аккумуляторов и Tesla за 25 000 долларов
Так что батареи и аккумуляторы — это сейчас одно из магистральных направлений технологического развития на планете. Весьма симптоматично, что американский предприниматель Илон Маск решил устроить 22 сентября специальную онлайн-презентацию под названием Tesla Battery Day, а Европейское патентное ведомство (EPO) и Международное энергетическое агентство (IEA) провели совместное исследование «Инновации в области батарей и накопителей электроэнергии». Его результаты опубликовали в тот же день.
Электромобили Tesla на территории завода комапнии в Фримонте ждут отправки покупателям
Для главы компании Tesla аккумуляторные батареи — это ключ к массовому рынку. «У нас нет доступного автомобиля, но он у нас будет. Однако для этого мы должны снизить стоимость батарей», — заявил Илон Маск в ходе презентации, за которой в интернете следили 270 000 зрителей. Он обещал примерно через три года наладить серийное производство нового поколения аккумуляторов, которые будут существенно мощнее и долговечнее нынешних, но обойдутся в два раза дешевле.
И тогда, заверил Илон Маск, «мы сможем выпускать очень убедительный электромобиль по цене 25 тысяч долларов» (это примерно 21 000 евро). Глава Tesla объявил, что на первом этапе выпускать аккумуляторы нового поколения будут вблизи головного завода компании в калифорнийском Фримонте, для чего потребуется специальная монтажная линия. Одновременно предприниматель сообщил, что на гигафабрике Tesla в Неваде будет налажена утилизация отслуживших аккумуляторных батарей.
Кобальт от «Норникеля» может и не понадобиться
Для России особенно важно то, что батареи нового поколения планируется выпускать практически без использования редкого, а потому весьма дорогого металла кобальта. Его единственным российским производителем и экспортером является компания «Норникель» в Норильске.
Кобальтовые слитки на заводе «Норникель». Главные производители этого металла — ДР Конго и Китай
После Battery Day курс акций Tesla, стремительно взлетевший в этом году, что превратило американского производителя электромобилей в самого дорогостоящего автостроителя мира, упал. Биржевых инвесторов и спекулянтов разочаровало то, что Илон Маск говорил о среднесрочной перспективе в три года, а они, похоже, рассчитывали на анонс немедленных прорывов.
Одновременно несколько снизились котировки акций поставщиков батарей для Tesla — японской корпорации Panasonic и южнокорейской LG Chem, входящей в группу LG. Но это тоже не более чем сиюминутное недовольство биржевых игроков: средне- и долгосрочные перспективы этих компаний представляются весьма многообещающими. Об этом свидетельствует совместное исследование Европейского патентного ведомства и Международного энергетического агентства.
Аккумуляторы для электромобилей подешевели почти на 90%
Эксперты двух организаций проанализировали зарегистрированные с 2000 по 2018 годы патенты на изобретения и разработки в сфере аккумуляторных батарей и накопителей энергии, и на основании этого весьма объективного критерия сделали целый ряд выводов.
До 2011 года разработчики сосредотачивались на совершенствовании аккумуляторов для смартфонов
Первый и главный из них: «В последние десять лет патентирование в сфере хранения электроэнергии росло существенно быстрее патентирования в других сферах». Иными словами, именно на этом направлении сосредоточены сейчас особенно крупные материальные и интеллектуальные ресурсы, именно здесь накапливаются многочисленные инновации.
Авторы исследования обнаружили, что число патентов, связанных с аккумуляторными батареями для электромобилей, еще в 2011 году превысило число патентов из области батарей для мобильной бытовой электроники (прежде всего смартфонов), и с тех пор неуклонно растет. Они также подсчитали, что особое внимание изобретателей к литий-ионным технологиям привело к тому, что с 2010 года аккумуляторы для электромобилей подешевели почти на 90%, а аккумуляторы для стационарных установок в электроэнергетике — примерно на две трети.
Япония и Южная Корея — лидеры в области батарейных технологий
Второй ключевой вывод исследования: «Япония и Республика Корея являются лидерами в глобальном соревновании в области батарейных технологий, что заставляет другие страны пытаться добиться конкурентных преимуществ в определенных нишах вдоль цепочки создания дополнительной стоимости при производстве батарей». Если говорить более просто: догнать ушедшие в этой сфере далеко вперед две азиатские страны уже настолько трудно, что остальным приходится довольствоваться узкой специализацией в отдельных сегментах.
Аккумуляторные батареи для электромобилей — это сложная высокотехнологичная продукция
Так, девять из десяти крупнейших обладателей патентов — компании из Азии: семь японских во главе с Panasonic и Toyota, а также южнокорейские Samsung и LG Electronics. Единственный представитель других континентов в Топ-10 — немецкий концерн Bosch, занявший пятое место.
В Топ-25 ближе к концу вошли также немецкие Daimler, BASF и Volkswagen. Всего же в этом списке шесть представителей Европы: это еще ирландская многопрофильная компания Johnson Controls и французский научно-исследовательский институт атомной и альтернативной энергетики CEA. Америка представлена автостроителями General Motors и Ford.
Разные типы аккумуляторов: NMC, NCA и LFP
Вклад Китая в глобальное развитие батарейных технологий, отмечается в исследовании, к 2018 году практически сравнялся с американским и приблизился к европейскому. Явная специфика Европы и США — значительно число патентов регистрируют малые и средние предприятия, а также вузы и государственные научно-исследовательские институты. В Азии подавляющее большинство изобретений приходится на крупные концерны.
Третий вывод исследования касается перспективных направлений инновационной деятельности. В минувшем десятилетии стремительно нарастало число патентов, связанных с литий-никель-марганец-кобальт-оксидными аккумуляторами (NMC). Теперь многообещающей альтернативой, полагают авторы исследования, становятся литий-никель-кобальт-алюминий-оксидные аккумуляторы (NCA), которые, к примеру, производит Panasonic и использует Tesla.
BYD — крупнейший китайский производитель электрических легковых машин и автобусов
Однако стремление снизить долю кобальта или вовсе от него отказаться приведет к тому, что будет расти роль литий-железо-фосфатных аккумуляторов (LFP), на которые тоже делает ставку Tesla, а также, к примеру, китайский автостроитель BYD, указывается в исследовании. Если в 2010 году практически вообще не было патентов, связанных с данной технологией, то в последние годы их число стало заметно нарастать.
Поэтому можно предположить, что ее разработчикам просто еще нужно пару лет. Может быть, как раз те три года, о которых Илон Маск говорил на Tesla Battery Day.
Смотрите также:
Технологии хранения энергии из возобновляемых источников
Электростанция из аккумуляторов
Как хранить в промышленных масштабах излишки электроэнергии, выработанной ветрогенераторами и солнечными панелями? Соединить как можно больше аккумуляторов! В Германии эту технологию с 2014 года отрабатывают в институте общества Фраунгофера в Магдебурге (фото). По соседству, в Шверине, тогда же заработала крупнейшая в Европе коммерческая аккумуляторная электростанция фирмы WEMAG мощностью 10 МВт.
Технологии хранения энергии из возобновляемых источников
Большие батареи на маленьком острове
Крупнейшие аккумуляторные электростанции действуют в США и странах Азии. А на карибском острове Синт-Эстатиус (Нидерландские Антилы) с помощью этой технологии резко снизили завоз топлива для дизельных электрогенераторов. Днем местных жителей, их около 4 тысяч, электричеством с 2016 года снабжает солнечная электростанция, а вечером и ночью — ее аккумуляторы, установленные фирмой из ФРГ.
Технологии хранения энергии из возобновляемых источников
Главное — хорошие насосы
Гидроаккумулирующие электростанции (ГАЭС) — старейшая и хорошо отработанная технология хранения электроэнергии. Когда она в избытке, электронасосы перекачивают воду из нижнего водоема в верхний. Когда она нужна, вода сбрасывается вниз и приводит в действие гидрогенератор. Однако далеко не везде можно найти подходящий водоем и нужный перепад высот. В Хердеке в Рурской области условия подходящие.
Технологии хранения энергии из возобновляемых источников
Место хранения — норвежские фьорды
Оптимальные природные условия для ГАЭС — в норвежских фьордах. Поэтому по такому кабелю с 2020 года подводная высоковольтная линия электропередачи NordLink длиной в 623 километра и мощностью в 1400 МВт будет перебрасывать излишки электроэнергии из ветропарков Северной Германии, где совершенно плоский рельеф, на скалистое побережье Норвегии. И там они будут храниться до востребования.
Технологии хранения энергии из возобновляемых источников
Электроэнергия превращается в газ
Избытки электроэнергии можно хранить в виде газа. Методом электролиза из обычной воды выделяется водород, который с помощью СО2 превращается в метан. Его закачивают в газохранилища или на месте используют для заправки автомобилей. Идея технологии Power-to-Gas родилась в 2008 году в ФРГ, сейчас здесь около 30 опытно-промышленных установок. На снимке — пилотный проект в Рапперсвиле (Швейцария).
Технологии хранения энергии из возобновляемых источников
Водород в сжиженном виде
Идея Power-to-Gas дала толчок разработкам в разных направлениях. Зачем, к примеру, превращать в метан полученный благодаря электролизу водород? Он и сам по себе отличное топливо! Но как транспортировать этот быстро воспламеняющийся газ? Ученые университета Эрлангена-Нюрнберга и фирма Hydrogenious Technologies разработали технологию его безопасной перевозки в цистернах с органической жидкостью.
Технологии хранения энергии из возобновляемых источников
В чем тут соль?
Соль тут в тех круглых резервуарах, которые установлены посреди солнечной электростанции на краю Сахары близ города Уарзазат в Марокко. Хранящаяся в них расплавленная соль выступает в роли аккумуляторной системы. Днем ее нагревают, а ночью используют накопленное тепло для производства водяного пара, подаваемого в турбину для производства электричества.
Технологии хранения энергии из возобновляемых источников
Каверна в роли подземной батарейки
На северо-западе Германии много каверн — пещер в соляных пластах. Одну из них энергетическая компания EWE и ученые университета Йены превратили в полигон для испытания технологии хранения электроэнергии в соляном растворе, обогащенном особыми полимерами, которые значительно повышают эффективность химических процессов. По сути дела, речь идет о попытке создать гигантскую подземную батарейку.
Технологии хранения энергии из возобновляемых источников
Крупнейший «кипятильник» Европы
Человечество давно уже использует тепло для производства электроэнергии. Возобновляемая энергетика поставила задачу, наоборот, превращать электричество, в том числе и избыточное, в тепло (Power-to-Heat). Строительство в Берлине крупнейшего «кипятильника» Европы мощностью 120 МВт для отопления 30 тысяч домашних хозяйств компания Vattenfall намерена завершить к концу 2019 года.
Технологии хранения энергии из возобновляемых источников
Накопители энергии на четырех колесах
Когда по дорогам мира будут бегать миллионы электромобилей с мощными аккумуляторными батареями, они превратятся в еще один крупный накопитель энергии из возобновляемых источников. Этому поспособствуют умные сети энергоснабжения (Smart grid): они будут стимулировать подзарядку по низким ценам в моменты избытка электричества. (На фото — заправка для электромобилей в Китае).
Автор: Андрей Гурков
Состав аккумуляторной батареи
устройство, виды и принцип работы АКБ, а также срок службы и характеристики батареи
Электрические аккумуляторные батареи применяются в любом автомобиле и представляют собой автономный источник питания. АКБ накапливает энергию, которая затем питает бортовую сеть, когда это необходимо, и подает ток на стартер для запуска двигателя.
Назначение аккумулятора в автомобиле
Автомобильный аккумулятор принято обозначать аббревиатурой АКБ, что значит аккумуляторная кислотная батарея. Не все батареи относятся к этому типу, но в автомобилях наиболее распространены именно они.
Автомобильный аккумуляторАккумулятор является важным компонентом в работе любого транспортного средства. Он выполняет следующие основные функции:
- Подача электроэнергии на стартер для запуска двигателя. Аккумулятор способен в течение 30 секунд подавать пусковой ток или ток холодной прокрутки на стартер, который, в свою очередь, запускает двигатель.
- Питание бортовой сети в случае недостаточной мощности (производительности) генератора.
- Автономное питание бортовой сети автомобиля.
Каждый аккумулятор имеет определенную емкость и заряд. При работе двигателя всю нагрузку на электропитание берет на себя генератор. Он же заряжает аккумулятор во время движения. Если мощности не хватает, подключается батарея. Определенное время АКБ может обеспечить автономное питание.
Генератор выходит на оптимальный режим производительности при достижении двигателем частоты вращения коленчатого вала 1600-1800 об/мин и более.
Располагается АКБ, как правило, в подкапотном пространстве автомобиля или закреплен на раме в случае крупного грузового транспорта. Это связано с тем, что кислота, находящаяся внутри, очень агрессивна и опасна для здоровья. Она может просочиться через корпус или выделиться в виде газа. С аккумулятором следует обращаться осторожно.
Более безопасны необслуживаемые АКБ, внутри которых нет жидкого электролита. Такие батареи практически не выделяют вредных паров и их можно использовать где угодно. Среди альтернативных мест размещения аккумулятора можно выделить багажное отделение и под сиденьем водителя.
Параметры АКБ
Обычная автомобильная батарея выдает напряжение в 12В. Этого хватает для питания бортовой сет
принцип работы, из чего состоит, назначение и схема акб
Автор Aluarius На чтение 10 мин. Просмотров 2.3k. Опубликовано
Принципиально устройство аккумулятора больше чем за 150 лет с момента его изобретения не изменилось, хотя современность внесла серьёзные новшества в технологические процессы их изготовления и используемые материалы, из чего состоит аккумулятор.
Автономный источник энергии
Что такое аккумулятор
Аккумулятор – автономный источник электричества, который накапливает, сохраняет и отдает энергию. Аккумуляторная батарея – важный элемент электрооборудования транспортного средства. Назначение акб определяется в запуске двигателя и обеспечении подачи электричества в бортовую сеть. Все электроприборы, когда выключен мотор, и не работает генератор, работают от батареи. Накопитель помогает в пробке, когда энергии генератора не хватает.
Устройство и принцип работы аккумулятора
Для того, чтобы разобраться, как работает аккумулятор, необходимо знать устройство акб, что внутри аккумулятора обеспечивает работу прибора. Основной принцип работы аккумулятора заключается в разности потенциалов при погружении двух пластин в электролит. В 12-ти вольтовой батарее объединены шесть аккумуляторов, каждый из которых вырабатывает 2 вольта. Все они объединены совместным корпусом, который образует единое целое конструкции.
Аккумулятор в разрезеПри работе этой конструкции, пластинки из-за действия серной кислоты выделяют сульфат свинца, в результате чего образуется электрический ток. Также выделяется вода, и поэтому концентрация электролита становится менее плотной. Во время зарядки АКБ процесс осуществляется в обратном порядке, свинец снова обретает металлическую форму, электролит становится более концентрированным. Принцип работы аккумулятора основан на методе двойной сульфатации, который позволяет полностью восстанавливать первоначальные свойства батареи. Срок службы аккумулятора зависит от качества используемых материалов, из чего состоит акб.
Схема строения
Схема строения
Виды аккумуляторов
Классификация акб по составу активного вещества
Свинцовые пластины, используемые в старых аккумуляторах перестали устраивать потребителей. Возникала необходимость по улучшению качества работы акб. Сначала добавили сурьму к свинцу, что позволило заметно продлить срок эксплуатации батареи. На следующем этапе – уменьшили процентное содержания сурьмы до оптимальной концентрации. Такой подход привел к созданию малообслуживаемых аккумуляторов, потому что в них уже намного реже требовался долив воды.
При использовании металлического кальция для покрытия пластин появились кальциевые энергосберегающие источники. В предыдущих моделях потери воды из-за электролиза на 12 вольт требовали постоянного долива, а кальций позволил повысить этот порог до 16 вольт. Так появилась возможность в производстве необслуживаемых аккумуляторов использовать герметичный, неразборной корпус.
- Сурьмянистые батареи относятся к классике из-за повышенного состава сурьмы, которая ускоряет процесс электролиза.
- В малосурьмянистых акб материалом для пластин служит свинец с небольшой примесью сурьмы. В них степень саморазряда значительно меньше, чем в сурьмянистых АКБ.
- При производстве кальциевых источников свинцовые пластины легированы до 0,1% кальцием. Они могут иметь различные заряды, как отрицательный, так и положительный.
- Гибридные источники энергии вытесняют кальциевые. Конструктивные отличия состоят в том, что при их производстве объединили две технологии: одна, когда пластины формируются из сплава свинца и сурьмы, положительные электроды, а другая – когда пластины формируются из сплава свинца и кальция, отрицательные электроды.
- EFB является улучшенной жидкозаполненной батареей. Свинцовые пластины в ЕФБ аккумуляторах в два раза толще, чем у обычных, вследствие чего увеличивается их ёмкость. Каждая из пластин закрыта в пакет из специальной ткани, который наполнен жидким сернокислотным электролитом.
- В гелевых аккумуляторах применяется гелеобразный электролит. Такая технология позволила снизить текучесть электролита, в котором содержится агрессивная серная кислота.
- В литиевых акб используется жидкий электролит, представляющий собой раствор фторсодержащих солей лития в смеси эфиров угольной кислоты.
- Отличительной особенностью AGM является то, что в электролит с помощью специальной технологии между пластинами вставляются стекловолоконные микропористые прокладки.
- Во всех щелочных батареях применяется растворенная в воде щёлочь.
Классификация батарей по типу электролита
Электролиты бывают кислотными, щелочными. Щелочные растворы используются в заправке аккумуляторных батарей. Щелочные аккумуляторные жидкости представляют собой сильные основания, которые проявляют большую активность по отношению к металлам и кислотам. При реакциях с кислотами образуются соль и вода. Растворы щелочей подвергаются гидролизу. Химические свойства позволяют использовать этот тип электропроводящей жидкости для накопления электрической энергии в аккумуляторе.
Кислотные смеси с дистиллированной водой применяются в основном в автомобильных аккумуляторах. Такие составы можно приобрести в специализированных магазинах или же приготовить самостоятельно в домашних условиях. На заводе процесс изготовления таких смесей осуществляется в масштабном производстве по ГОСТу. В домашней обстановке также возможно довольно точно при соблюдении обязательных пропорций и правил техники безопасности смешать кислоту с дистиллированной водой.
Важно! вода при минусовых температурах превращается в лед. Всегда при морозе нужно применять меры, необходимые для предотвращения замерзания аккумулятора.
Основные технические характеристики аккумуляторов
Номинальная емкость аккумулятора
Номинальная емкость элемента – способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Емкость электрического аккумулятора показывает время питания подключенной к нему нагрузки.
Важно! Емкость не характеризует полностью энергию аккумулятора, т.е. энергию, которая может быть накоплена в полностью заряженном аккумуляторе. Чем больше напряжение аккумулятора, тем больше накопленная в нем энергия.
Емкость всегда указывается на корпусе АКБ, а также на упаковке, ведь именно по этому критерию большинство пользователей выбирают нужную модель.
Пусковой ток
Величину, характеризующую параметр тока, протекающего в стартере автомобиля в момент пуска силового узла, принято считать пусковым током. Пусковой ток или стартерный возникает в момент, когда в замке зажигания поворачивается ключ и начинает проворачиваться стартер. Единица измерения величины – Ампер. Он же ток холодной прокрутки является показателем, как аккумулятор поведет себя в морозную погоду и сможет запустить двигатель при минусовых показателях. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре -18°С. При высоких показателях пускового тока увеличиваются шансы завести машину при минусовой температуре.
Полярность
Порядок расположения на крышке аккумулятора присоединительных клемм, которые являются токовыводящими соединительными элементами, называется полярностью. Полюса всего два – положительный и отрицательный, вариантов расположения – прямое и обратное.
Прямая полярность – отечественная разработка. Чтобы ее определить, нужно повернуть аккумулятор таким образом, чтобы этикетка была перед глазами. При расположении плюсовой клеммы слева, а минусовой справа, можно утверждать, что акб с прямой полярностью. На иномарках устанавливаются аккумуляторные батареи обратной полярности.
Прямая, обратная полярностьИсполнение корпуса
Корпус большинства аккумуляторов состоит из ударопрочного полипропилена, который характеризуется как материал легкий, не вступающий в химическую реакцию с агрессивным электролитом АКБ. Полипропилен довольно стоек к перепадам температур, возникающих под капотом автомобиля, нагрев может достигать до +60 ̊С, а при морозах до -30°С. Корпус большинства АКБ состоит из ручки для переноса, пробок, индикатора заряда, клемм для подключения к электросети. Вес АКБ емкостью 55Ач около 16,5 кг. Традиционно появились американский, европейский, азиатский и российский типы корпусов.
Европейские корпусы и американские имеют идентичные габариты. Например, у батарей емкостью 60 Ач общая высота от 17,5 до 19 сантиметров. У азиатских этот показатель немного выше, до 22 сантиметров за счет верхнего расположения электродов. Именно поэтому важно корректно анализировать возможности посадочного места под капотом, чтобы надежно закрепить АКБ прижимной планкой и избежать замыкания при случайном касании токоотводами металлических частей кузова.
У АКБ с европейским типом корпуса клеммы находятся в углублении, их верхний край не выступает над плоскостью крышки. Иногда клеммы дополнительно защищены от внешнего воздействия специальными крышечками. Азиатский тип корпуса – это коробка, на которой клеммы расположились на верхней крышке, верхний край клемм является самой высокой точкой аккумулятора. Какую клемму снимать с аккумулятора первой читайте здесь.
Важно! При приобретении акб нужно знать, что европейские производители указывают габаритные размеры аккумулятора по корпусу. На азиатских корпусах могут указывать высоту батареи с учетом клемм или без них.
Российский стандарт акб
Обозначение | Описание букв |
А | АКБ имеет общую крышку для всего корпуса |
З | Корпус батареи залит и она является полностью заряженной изначально |
Э | Корпус-моноблок АКБ выполнен из эбонита |
Т | Корпус-моноблок АБК выполнен из термопластика |
М | В корпусе использованы сепараторы типа минпласта из ПВХ |
П | В конструкции использованы полиэтиленовые сепараторы-конверты |
Европейские корпусы и американские имеют идентичные габариты
Тип и размер клемм
Распространены аккумуляторы с клеммами трех разных стандартов: тип Euro – Type 1, и Asia –Type 3, «под болт» – американский стандарт. В типе Euro плюсовая клемма имеет диаметр 19,5 мм, минусовая клемма – 17,9 мм. В типе Asia клемма плюс имеет диаметр 12,7 мм, клемма минусовая – 11,1 мм. Клеммы «под болт» находятся на боковой стенке аккумулятора и сверху. Болт, соединённый с проводом, продевается в отверстие клеммы и фиксируется гайкой.
Американский стандартТип крепления
При выборе акб особое внимание следует обращать на тип крепления АКБ, при котором батарея может крепиться снизу или сверху. Вверху крепится элемент с помощью специальной монтажной рамки, которая охватывает аккумулятор. Крепление аккумулятора происходит с помощью планки и двух шпилек. Чаще такой вид установки и фиксации аккумуляторной батареи встречается на автомобилях китайского или корейского производства.
Тип крепления встречается на «азиатах»
Нижнее крепление применимо на европейских автомобилях. На нижней части корпуса акб находится выступ, за который аккумулятор прижимается к платформе с помощью пластины и винта.
Нижнее креплениеНазначение аккумуляторных батарей
Автомобильная аккумуляторная батарея выступает как источником электрического тока, необходимого для пуска двигателя, так и резервным источником питания, в случае, если энергии, вырабатываемой генератором, оказывается мало для электроснабжения авто. Аккумуляторная батарея действует как стабилизатор напряжения, так как она выполняет роль накопителя электроэнергии, отдающего во время пуска двигателя за короткое время большой ток, и пополняемого постепенно генератором автомобиля в процессе подзарядки.
Важно! Перед проверкой системы электроснабжения и электрического пуска, необходимо убедиться в том, что аккумуляторная батарея находится в заряженном состоянии и готова к эксплуатации.
В каких сферах используется
Аккумуляторные батареи используются как дополнительный или основной источник питания. Надежность, простота в использовании позволяет применять батареи в различных областях:
- автомобильная промышленность;
- освещение в аварийном состоянии;
- переносное электрооборудование;
- медицинское оборудование;
- игрушки;
- сигнализация в разных сферах применения;
- телекоммуникационное оборудование.
Применение батареи в игрушках
Роль акб в работе приборов не оспорима. Применение источника энергии практически во всех отраслях доказывает значимость и необходимость знаний о внутреннем содержимом батарей. С использованием в автомобилях широкого разнообразия электроприборов, кондиционеров, мультимедийных центров, генераторы не всегда справляются с обеспечением их энергией. В этом случае подпитка энергией поступает от АКБ, который кроме этого выполняет основную функцию, обеспечивает электроэнергией стартер двигателя. Водителю необходимо знать, как устроен аккумулятор, чтобы выявить сбои в работе источника энергии, назначение аккумулятора, чтобы правильно использовать ресурс, подобрать батарею к условиям эксплуатации и автомобилю. О способах и рекомендациях как проверить аккумулятор читай тут.
Автомобильный аккумулятор — устройство, схема, принцип работы и параметры АКБ
Аккумулятор или сокращённо (АКБ), очень важная деталь в любом автомобиле. Нет ни одной машины с двигателем внутреннего сгорания, где бы его не было.
Он отвечает за всё электрооборудование машины и без него она просто мертва. Далее рассмотрим, что же это такое и из чего он состоит.
Содержание статьи:
Что такое АКБ для автомобиля, предназначение
То, что аккумулятор отвечает за всё электрооборудование в машине, было указано выше, но тут не всё так просто и однозначно. Главная задача батареи обеспечить запуск силового агрегата.
Когда двигатель запущен вся бортовая сеть запитывается от генератора. В середине 20-го века и даже ближе к его концу были двигатели внутреннего сгорания без аккумуляторов, например, моторы мотоциклов. В них запуск осуществлялся за счёт мускульной силы, а дальше все системы работали уже от генератора.
Однако в последнее время, с насыщением автомобилей различными электроприборами, мультимедийными центрами или климатическими системами, генераторы не всегда справляются с обеспечением их энергией. В этом случае подпитка идёт от АКБ.
Но вернёмся к основному предназначению батареи. Как бы там не было главная задача по-прежнему остаётся это обеспечение электроэнергией стартера двигателя.
Читайте также: Что делать если при зарядке аккумулятор начинает кипеть?
При запуске, особенно в холодное время года, батарея серьёзно разряжается. Однако генератор кроме питания электроэнергией бортовой сети машины ещё и обеспечивает зарядку батареи.
Поэтому если генератор вышел из строя, то АКБ очень быстро разряжается. Новой заряженной батареи хватает не более чем на 100 км пробега. Во всех остальных случаях машина с неисправным генератором пройдёт ещё меньше.
Из чего сделан и что внутри аккумулятора
Не смотря, на весь технический прогресс, до сих пор, в автомобилях, используются аккумуляторные батареи, изобретённые в середине 19-го века.
Изобретателем АКБ считается Гастон Планте, которые изобрёл его в 1860 году. Ну а современный вид батареи приобрели в 1878 году, после того как его усовершенствовал Камилл Фор.
С этого времени батареи принципиально не менялись, все изменения были только косметическими, касающиеся их внешнего вида и качества изготовления элементов конструкции.
Данные аккумуляторы называются свинцово-кислотными, и в названии заключается описание принципа действия этих устройств.
Рисунок 19 века, на котором показан один из первых аккумуляторов в разрезе.
Итак, аккумулятор состоит из следующих основных частей:
- Корпуса;
- Крышки;
- Отрицательных электродов;
- Положительных электродов;
- Положительной клемы;
- Отрицательной клемы;
- Соединительных перемычек;
- Заливных пробок;
- Электролита
Далее рассмотрим каждый элемент конструкции.
Итак, корпус и крышка батареи состоит из нейтрального к кислоте пластика.
Отрицательные пластины, впрочем, как и положительные состоят из металлического свинца и выполнены в виде решётки.
В отрицательной пластине, промежутки свинцовой решётки заполнены металлическим свинцом, в виде спрессованного порошка. В положительной – спрессованным порошком диоксида свинца (PbO2).
В промежутке между пластинами располагаются сепараторы, которые представляют собой микропористые пластины, сделанные из эбонита или ревертекса. Оба материала можно считать неким вариантом резины, и делаются они из каучука.
Задача сепараторов заключается в том, чтобы разделять положительные и отрицательные электроды и препятствовать их короткому замыканию, которое может произойти в результате вибраций двигателя и всего автомобиля.
Обе клеммы сделаны из металлического свинца и через них происходит подсоединение батареи к бортовой сети машины.
Читайте также: Что делать если разрядился аккумулятор в машине — проверенные способы как вернуть жизнь АКБ
Соединительные перемычки, так же выполнены из свинца и служат для объединения разных банок в единую батарею.
Для чего нужна заливная пробка, легко догадаться из названия этой детали. Она служит для заливки электролита в банки АКБ.
Ну и последняя в списке, но при этом одна из самых главных деталей аккумулятора является электролит. Он состоит из 30 % раствора серной кислоты (h4SO4) и дистиллированной воды.
Принцип работы АКБ
Принцип работы аккумулятора основан на электрохимической реакции окисления свинца в растворе серной кислоты и воды.
При разрядке батареи на положительной пластине происходит окисление металлического свинца, при этом на отрицательной пластине восстанавливается уже диоксид свинца.
При зарядке происходит обратный процесс, количество диоксида свинца на отрицательной пластине уменьшается, а на положительной пластине увеличивается количество металла.
Так же при разрядке АКБ уменьшается количество серной кислоты в электролите и увеличивается количество воды. При зарядке так же происходит обратный процесс.
Особенности конструкции современных АКБ
Не смотря на то что, принципиально, аккумуляторы, за более чем 150 лет, не изменились, современность внесла серьёзные изменения в технологию их изготовления и в материалы, из которых они делаются.
Рассмотрим их по отдельности:
Сегодня на наиболее качественных батареях небольшие изменения претерпел материал пластин. Теперь пластины делают не из чистого свинца, а из его сплава с серебром. При этом появилась возможность снизить массу батареи на треть, а срок её службы увеличить на 20 %.
Кроме этого, изменилась сама технология их изготовления. Если первые пластины производились путём их литья, то сегодня их делают из тонкого свинцового листа, путём штамповки. Такой метод дешевле и при этом пластины получаются прочнее и тоньше.
Одной из причин выхода АКБ из строя является короткое замыкание положительных и отрицательных пластин.
Замыкание происходит из-за того, что из пластин осыпается активная зона и внизу банок она замыкает. Во избежание этого сепараторы делают в виде конвертов, запаянных снизу, под пластинами. Таким образом, когда активная зона осыпается она остаётся внутри конверта и не замыкает.
В материал же самих сепараторов сегодня добавляется стекловолокно. Это так же позволяет делать их тоньше и прочнее.
Как было указано выше, электролит представляет собой раствор серной кислоты и воды. Под действием низких температур, как известно вода замерзает, однако с электролитом этого не происходит.
Но он всё равно заметно загустевает и теряет свои свойства, из-за чего ёмкость батареи заметно снижается. Что бы избежать этого, сегодня, в электролит добавляют разнообразные присадки.
- Гелевые электролиты
Аккумуляторы с гелиевыми электролитами можно считать вершиной эволюции кислотных батарей и именно поэтому для них, отведен отдельный раздел. Такие АКБ называются попросту, гелевыми. В этих устройствах электролит модифицирован настолько, что представляет собой нечто наподобие желе.
Такая модификация, в комплексе с другими вышеописанными инновациями дала поистине волшебные результаты. Батареи стали практически вечными, невосприимчивыми к переворачиванию, практически не теряющими свои свойства зимой и при этом на много легче по массе.
Читайте также: Как правильно менять Антифриз в машине
Правда цена по сравнению с аккумуляторами старого поколения возросла от 5 до 10 раз. Но это того стоит. И всё равно стоят они не запредельные деньги, где-то в пределах 100 – 200 условных единиц.
Параметры и характеристики аккумуляторной батареи
Параметры и характеристики аккумуляторов зашифрованы в их маркировке и сейчас мы разберём, что она обозначает.
Этот вопрос мы рассмотрим на примере самой распространённой АКБ 6СТ-55.
Итак, в названии аккумулятора, цифра 6 обозначает, что АКБ состоит из 6-и банок.
- СТ – обозначает что батарея стартерная.
- 55 – обозначает ёмкость батареи, которая составляет 55 Ампер*час.
Для того что бы понимать какой аккумулятор вам нужен, необходимо знать два параметра:
- Тип ДВС;
- Объём двигателя вашей машины;
Далее рассмотрим для каких двигателей, какие аккумуляторы подходят. Это таблица для бензиновых моторов:
- Двигатели объёмом до 1,6 литра. Для них подходят АКБ 6СТ-45;
- Двигатели объёмом от 1,6 до 2,5 литров. Для них подходит 6СТ-55;
- Двигатели объёмом от 2,5 до 3 литров. Для них подходит 6СТ-60;
- Двигатели объёмом от 3 до 3,5 литров. Для них подходит 6СТ-75;
- Двигатели объёмом более 3,5 литров. Для них подходит 6СТ-90.
Для дизельных силовых агрегатов эти параметры несколько иные:
- Двигатели объёмом до 1,5 литра. Для них подходит 6СТ-55;
- Двигатели объёмом от 1,5 до 2,0 литров. Для них подходит 6СТ-60;
- Двигатели объёмом от 2-х до 2,7 литров. Для них подходит 6СТ-75;
- Двигатели объёмом от 2,7 до 3,5 литров. Для них подходит 6СТ-90;
- Двигатели объёмом от 3,5 до 6,5 литров. Для них подходит 6СТ-132;
- Двигатели объёмом более 6,5 литров. Для них подходит 6СТ-192 и больше.
Как можно увидеть, из-за разных принципов работы дизельных и бензиновых двигателей для них используются аккумуляторы разной ёмкости.
Для дизельных силовых агрегатов вам потребуются более ёмкие батареи.
Аккумуляторы будущего
Как уже упоминалось выше современные батареи по принципу действия точно такие же, как те, что были разработаны в середине 19-го века.
Однако технологии не стоят на месте и, судя по всему, в самое ближайшее время для двигателей внутреннего сгорания (ДВС) появятся АКБ, созданные на новых принципах. Далее они будут бегло перечислены.
- Гелевые аккумуляторы
Об этих батареях достаточно подробно было рассказано выше. Эти батареи уже продаются, и их любой может купить.
Гелевая АКБ
- Литий-ионные аккумуляторы
Эти батареи широко известны по мобильным телефонам и иным гаджетам. Однако, сегодня, существуют разработки и для автомобилей. Но, не смотря на все свои достоинства, в автотехнике данный вид АКБ не прижился из-за ряда принципиальных недостатков.
- Во-первых, они резко теряют свою мощность из-за низкой температуры.
- Во-вторых, для зарядки таких батарей требуется строгое соответствие зарядному току, что требует переделки электронной части генераторов.
- Ну и самое главное, данные АКБ имеют стоимость в 15 раз дороже обычного кислотного аккумулятора.
Литий-ионная АКБ, чешской компании Варта
- Графен-полимерные аккумуляторы
Это, пожалуй, самые перспективные батареи для использования, как в автомобилях, оснащённых ДВС, так и электрической силовой установкой. В производстве этих АКБ использованы нанотехнологии.
Эти аккумуляторы имеют поистине чудесные свойства. Они имеют ёмкость, практически в три раза больше литий-ионных и при этом на много меньшую стоимость, так как в их производстве не используется дорогостоящий литий. Кроме этого они не теряют своих свойств под действием низких температур.
Опытная графен-полимерная АКБ
Резюме: Выше перечислены только три самых раскрученных или правильней будет сказать, распиаренные технологии.
В мире ведутся работы над батареями, известно что в разработке более тридцати новых схем. Не исключено, что среди этих ещё испытывающихся аккумуляторов могут оказаться некоторые с ещё более интересными свойствами. Как говорится поживем — увидим.
Аккумуляторные батареи. Виды и устройство. Применение
АКБ или аккумуляторные батареи – это оборудование, которое состоит из нескольких аккумуляторов. Оно может накапливать, хранить и расходовать энергию. Благодаря обратимости химических процессов, происходящих внутри аккумулятора, такие устройства могут заряжаться и разряжаться многократно.
Сфера применения аккумуляторов весьма обширна. Они применяются в автомобилях и различной бытовой технике, например, в пультах ДУ и ноутбуках. Но также и в качестве резервных источников питания в медицинской сфере, производстве, космической отрасли, дата-центрах.
Виды и типы АКБ
Сегодня производят около 30 типов аккумуляторов. Такое большое количество обуславливается возможностью применять в качестве электродов и электролитов различные химические элементы. Именно от материала электрода и состава электролита зависят все характеристики аккумулятора.
Мы не будем приводить все типы, а лишь дадим небольшую таблицу с описанием наиболее распространенных:
Устройство1 — Отрицательный электрод
2 — Разделительный слой
3 — Положительные электроды
4 — Отрицательный контакт
5 — Предохранительный клапан
6 — Положительные электроды
7 — Положительный контакт
Аккумуляторные батареи состоят из нескольких банок аккумуляторов, соединенных либо параллельно, либо последовательно. Последовательное соединение применяют в целях увеличения напряжения, а параллельное для увеличения силы тока.
Каждый из отдельно взятого аккумулятора в АКБ состоит из двух электродов и электролита, помещенных в корпус из специального материала.
Электрод с отрицательным зарядом – анод, с положительным зарядом – катод. Анод содержит восстановитель, катод – окислитель. Внутри корпуса аккумулятора стоит разделительная пластина, которая не позволяет электродам замыкаться.
Электролит – водный раствор, в который погружены оба электрода.
При разрядке аккумулятора восстановитель анода начинает окисляться и выделяются электроны. Электроны затем попадают в электролит и оттуда движутся к катоду, при этом создавая разрядный ток. Попадая в катод электроны восстанавливают его окислитель. Простыми словами можно описать процесс так: электроны идут от отрицательного электрода к положительному и создают разрядный ток.
При зарядке аккумулятора электроды меняются своим химическим составом и происходит обратная реакция. Электроны здесь двигаются от положительного анода к отрицательному катоду.
Особенности разных типов АКБСвинцово-кислотные аккумуляторыРазработан Гастоном Планте в 19 веке. Эти аккумуляторные батареи сегодня наиболее актуальны благодаря дешевизне и универсальности. Сфера их применения обширна ввиду большого количества разновидностей этого типа. В качестве отрицательно заряженных электродов здесь используется оксид свинца. Положительные электроды выполняются из свинца. Электролит – серная кислота.
У свинцовых-кислотных батарей есть следующие разновидности:
- LA – аккумуляторы с напряжением 6 или 12 Вольт. Традиционное устройство для осуществления запуска двигателей автомобилей. Требуют постоянного обслуживания и вентиляции.
- VRLA – напряжением 2, 4, 6 или 12 Вольт. Клапанно-регулируемая свинцово-кислотная аккумуляторная батарея. Как видно из названия этот АКБ укомплектован разгрузочным клапаном. Его роль – минимизировать выделение газа и расход воды. Такие батареи можно устанавливать в жилых помещениях.
- AGM VRLA – как и предыдущий тип оснащен клапаном, но имеет совсем другие свойства. В аккумуляторах, сделанных по технологии AGM роль сепаратора играет стекловолокно. Его микропоры пропитаны жидким электролитом. Такие АКБ не требуют обслуживания и устойчивы к вибрациям.
- GEL VRLA – подвид свинцово-кислотных аккумуляторов с гелеобразным электролитом. Благодаря этому увеличен их ресурс заряда/разряда. Не требуют обслуживания.
- OPzV – герметичные аккумуляторы используемые в области телекоммуникации и для аварийного освещения. Электролит, как и в предыдущем случае гелевый. В электродах содержится кальций, благодаря которому срок службы такого типа батарей – 20 лет.
- OPzS – катод таких аккумуляторов имеет трубчатую структуру. Это существенно повышает циклический ресурс этого типа батарей. Служит также около 20 лет. Выпускается в виде АКБ с напряжением от 2 до 125 В.
Был впервые выпущен Sony в 1991 году и с тех пор активно применяется в бытовой технике, электронных устройствах. Практически все мобильные телефоны, ноутбуки, фотоаппараты и видеокамеры оснащены таким видом батарей. Роль катода здесь играет литий-ферро-фосфатная пластина. Отрицательный анод – каменноугольный кокс. Положительный ион лития переносит заряд в таких батареях. Он может проникать в кристаллическую решетку других материй и образовывать с ними химическую связь. Преимуществом этого типа является высокая энергоемкость, низкий саморазряд и отсутствие нужды в обслуживании.
Литий-ионные аккумуляторные батареи также, как и их свинцовые аналоги имеют большое количество подтипов. В данном случае подтипы отличаются между собой составом катода и анода. Напряжение литий-ионных аккумуляторов варьируется в пределах от 2,4 до 3,7 В.
Одним из самых известных подтипов является литий-полимерные аккумуляторные батареи. Они появились сравнительно недавно и быстро завоевал популярность. Она обусловлена тем, что в литий-полимерных батареях используется твердый полимерный электролит. Это позволяет создавать батареи любой формы. При этом стоимость этих батарей всего лишь на 15% выше обычных литий-ионных.
Похожие темы:
Виды и типы аккумуляторных батарей — подробно!
- Категория: Поддержка по аккумуляторным батареям
- Опубликовано 25.06.2015 19:00
- Автор: Abramova Olesya
Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.
Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.
Рисунок 1. Вольтов столб из шести элементов. |
Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта |
Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.
Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.
Основные виды аккумуляторов приведены в таблице №1.
Тип |
Применение |
Обозначение |
Рабочая температура, ºC |
Напряжение элемента, В |
Удельная энергия, Вт∙ч/кг |
Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный) |
Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д. |
Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S) |
-20 … +40 |
3,2-4,2 |
280 |
никель-солевой |
Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии |
Na/NiCl |
-50 … +70 |
2,58 |
140 |
никель-кадмиевый |
Электрокары, речные и морские суда, авиация |
Ni-Cd |
–50 … +40 |
1,2-1,35 |
40 – 80 |
железо-никелевый |
Резервное электропитание, тяговые для электротранспорта, цепи управления |
Ni-Fe |
–40 … +46 |
1,2 |
100 |
никель-водородный |
Космос |
Ni-h4 |
|
1,5 |
75 |
никель-металл-гидридный |
электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника. |
Ni-MH |
–60 … +55 |
1,2-1,25 |
60 – 72 |
никель-цинковый |
Фотоаппараты |
Ni-Zn |
–30 … +40 |
1,65 |
60 |
свинцово-кислотный |
Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д. |
Pb |
–40 … +40 |
2, 11-2,17 |
30 – 60 |
серебряно-цинковый |
Военная сфера |
Ag-Zn |
–40 … +50 |
1,85 |
<150 |
серебряно-кадмиевый |
Космос, связь, военные технологии |
Ag-Cd |
–30 … +50 |
1,6 |
45 – 90 |
цинк-бромный |
|
Zn-Br |
|
1,82 |
70 – 145 |
цинк-хлорный |
|
Zn-Cl |
–20 … +30 |
1,98-2,2 |
160 – 250 |
Таблица №1. Классификация аккумуляторных батарей.
Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.
Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.
Свинцово-кислотные аккумуляторные батареи
Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.
Принцип действия свинцово-кислотных батарей
Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция. В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.
Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.
Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.
Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).
Типы свинцово-кислотных батарей
-
Lead–Acid, обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.
-
Valve Regulated Lead–Acid (VRLA), необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.
-
Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA), необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.
Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.
Рисунок №4. AGM VRLA аккумуляторы EverExceed.
-
GEL Valve Regulated Lead–Acid (GEL VRLA), необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.
Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.
Рисунок №5. GEL VRLA аккумулятор EverExceed.
-
OPzV, необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.
Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.
Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.
Рисунок №6. Строение OPzV аккумулятора EverExceed. -
OPzS, малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.
Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.
Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.
Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.
Рисунок №7. OPzS аккумулятор Victron Energy.
Характеристики свинцово-кислотных аккумуляторов
Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.
Тип |
LA |
VRLA |
AGM VRLA |
GEL VRLA |
OPzV |
OPzS |
Емкость, Ампер/час |
10 – 300 |
1 – 300 |
1 – 3000 |
1 – 3000 |
50 – 3500 |
50 – 3500 |
Напряжение, Вольт |
6, 12 |
4, 6, 12 |
2, 4, 6, 12 |
2, 6, 12 |
2 |
2 |
Оптимальная глубина разряда, % |
|
30 |
<40 |
<50 |
<60 |
<60 |
Допустимая глубина разряда, % |
|
<75 |
<80 |
<90 |
<90 |
<100 |
Циклический ресурс, D.O.D.=50% |
|
<250-300 |
<1000 |
<1400 |
<3200 |
<3300 |
Оптимальная температура, °С |
0 … +45 |
+15 … +25 |
+10 … +25 |
+10 … +25 |
0 … +30 |
0 … +30 |
Диапазон рабочих температур, °С |
–50 … +70 |
–35 … +60 |
–40 … +70 |
–40 … +70 |
–40 … +70 |
–40 … +70 |
Срок службы, лет при +20°С |
<7 |
<7 |
5 – 15 |
8 – 15 |
15 – 20 |
17 – 25 |
Саморазряд, % |
3 – 5 |
2 – 3 |
1 – 2 |
1 – 2 |
1 – 2 |
1 – 2 |
Макс. ток заряда, % от емкости |
10 – 20 |
20 – 25 |
20 – 30 |
15 – 20 |
15 – 20 |
10 – 15 |
Минимальное время заряда, ч |
8 – 12 |
6 – 10 |
6 – 10 |
8 – 12 |
10 – 14 |
10 – 15 |
Требования к обслуживанию |
3 – 6 мес. |
нет |
нет |
нет |
нет |
1 – 2 года |
Средняя стоимость, $, 12В/100Ач. |
70 – 150 |
200 – 250 |
250 – 380 |
350 – 500 |
1000 – 1400 |
1500 – 3500 |
Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.
Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).
Литий-ионные (литиевые) аккумуляторные батареи
История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.
Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.
Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.
Принцип действия литиевых (литий-ионных) батарей
Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.
Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.
Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.
Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.
Типы литий-ионных аккумуляторов
Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.
Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.
-
Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как ан
устройство, разновидности, назначение, принцип работы
Аккумулятор представляет собой устройство, которое накапливает энергию в химической форме при подключении к источнику постоянного тока, а затем отдает ее, преобразуя в электричество. Его используют многократно за счет способности к восстановлению и обратимости химических реакций. Разряжается – снова заряжают. Применяются аккумуляторы в качестве автономных и резервных источников питания для электротехнического оборудования и различных устройств.
Устройство аккумулятора
В автомобилях обычно применяют свинцово-кислотные аккумуляторы. Рассмотрим их устройство.
Все элементы располагаются в корпусе, который изготавливают из полипропилена. Корпус состоит из емкости, разделенной на шесть ячеек, и крышки, оснащенной дренажной системой для стравливания давления и отвода газа. На крышку выводится два полюса (клеммы) – положительный и отрицательный.
Содержимое каждой ячейки представляет собой пакет из 16 свинцовых пластин, полярность которых чередуется. Восемь положительных пластин, объединенных бареткой, являются плюсовым электродом (катодом), восемь отрицательных – минусовым (анодом). Каждый электрод выводится к соответствующей клемме аккумулятора.
Пакеты пластин в ячейках погружены в электролит – раствор серной кислоты и воды плотностью 1,28 г/см3.
Между пластинами электродов, для предотвращения замыкания, вставлены сепараторы – пористые пластины, которые не препятствуют циркуляции электролита и не взаимодействуют с ним.
Отдельная пластина электрода – это решетка из металлического свинца, в которую впрессован (намазан) реагент. Активная масса катода – диоксид свинца (PbO2), анода – губчатый свинец.
Принцип действия аккумуляторов
Принцип действия аккумулятора основан на образовании разности потенциалов между двумя электродами, погруженными электролит. При подключении нагрузки (электротехнических устройств) к клеммам аккумулятора в реакцию вступают электролит и активные элементы электродов. Происходит процесс перемещения электронов, который, по сути, и является электротоком.
При разряде аккумулятора (подключении нагрузки) губчатый свинец анода выделяет положительные двухвалентные ионы свинца в электролит. Избыточные электроны перемещаются по внешней замкнутой электрической цепи к катоду, где происходит восстановление четырехвалентных ионов свинца до двухвалентных.
При их соединении с отрицательными ионами серного остатка электролита, образуется сульфат свинца на обоих электродах.
Ионы кислорода от диоксида свинца катода и ионы водорода из электролита соединяются, образуя молекулы воды. Поэтому плотность электролита понижается.
При заряде происходят обратные реакции. Под воздействием внешнего напряжения ионы двухвалентного свинца положительного электрода отдают по два электрона и окисляются в четырехвалентные. Эти электроны движутся к аноду и нейтрализуют ионы двухвалентного свинца, восстанавливая губчатый свинец. На катоде, путем промежуточных реакций, снова образуется двуокись свинца.
Химические реакции в одной ячейке вырабатывают напряжение 2 В, поэтому на клеммах аккумулятора из 6 ячеек и получается 12 В.
Из видео Вы сможете более подробно узнать, как работает аккумулятор:
Читайте также, как правильно выбрать аккумулятор по емкости, особенности литий-ионных и никиль-кадмиевых аккмуляторов
типов литий-ионных батарей — Battery University
Ознакомьтесь с множеством различных типов литий-ионных батарей.
Литий-ионный назван в честь его активных материалов; слова либо написаны полностью, либо сокращены их химическими символами. Ряд букв и цифр, соединенных вместе, может быть трудно запомнить и еще сложнее произнести, а химический состав батареи также обозначается сокращенными буквами.
Например, оксид лития-кобальта, один из наиболее распространенных Li-ионов, имеет химические символы LiCoO 2 и аббревиатуру LCO.Для простоты для этой батареи также можно использовать сокращенную форму Li-кобальта. Кобальт является основным активным материалом, придающим этой батарее характер. Другие литий-ионные химические соединения имеют аналогичные сокращенные названия. В этом разделе перечислены шесть наиболее распространенных Li-ion. Все показания являются средними оценками на момент написания.
Оксид лития-кобальта (LiCoO
2 ) — LCO Его высокая удельная энергия делает Li-кобальт популярным выбором для мобильных телефонов, ноутбуков и цифровых фотоаппаратов.Батарея состоит из катода из оксида кобальта и графитового угольного анода. Катод имеет слоистую структуру, и во время разряда ионы лития перемещаются от анода к катоду. При зарядке поток меняется на противоположный. Недостатком литий-кобальта является относительно короткий срок службы, низкая термическая стабильность и ограниченные нагрузочные возможности (удельная мощность). Рисунок 1 иллюстрирует структуру.
Рисунок 1 : Структура Li-кобальта. Катод имеет слоистую структуру. Во время разряда ионы лития перемещаются от анода к катоду; при зарядке поток идет от катода к аноду. Источник: Cadex |
Недостатком литий-кобальта является относительно короткий срок службы, низкая термическая стабильность и ограниченные нагрузочные возможности (удельная мощность). Как и другие литий-ионные соединения со смесью кобальта, литий-кобальт имеет графитовый анод, который ограничивает срок службы за счет изменения границы раздела твердого электролита (SEI), утолщения анода и литиевого покрытия при быстрой зарядке и зарядке при низкой температуре.Новые системы включают никель, марганец и / или алюминий для увеличения срока службы, возможностей загрузки и стоимости.
Литий-кобальт нельзя заряжать и разряжать при токе, превышающем его C-рейтинг. Это означает, что аккумулятор 18650 емкостью 2400 мАч можно заряжать и разряжать только при 2400 мА. Принудительная быстрая зарядка или приложение нагрузки выше 2400 мА вызывает перегрев и чрезмерное напряжение. Для оптимальной быстрой зарядки производитель рекомендует C-rate 0,8C или около 2000 мА. (См. BU-402: Что такое C-rate).Обязательная схема защиты аккумулятора ограничивает скорость заряда и разряда до безопасного уровня около 1С для энергетического элемента.
Гексагональный паук (рис. 2) суммирует характеристики литий-кобальта с точки зрения удельной энергии или емкости, которая связана со временем работы; удельная мощность или способность отдавать большой ток; безопасность; производительность при высоких и низких температурах; продолжительность жизни , отражающая жизненный цикл и долговечность; а стоит .Другими интересными характеристиками, не показанными в паутине, являются токсичность, способность к быстрой зарядке, саморазряд и срок хранения. (См. BU-104c: Батарея восьмиугольника — Что делает батарею батареей).
Литий-кобальт теряет популярность по сравнению с литий-марганцем, но особенно с NMC и NCA из-за высокой стоимости кобальта и улучшенных характеристик за счет смешения с другими активными катодными материалами. (См. Описание NMC и NCA ниже.)
Какая лучшая батарея для солнечного хранения?
Последнее обновление 23.10.2020
Существуют определенные характеристики, которые вы должны использовать при оценке вариантов ваших солнечных батарей, например, на сколько хватит солнечной батареи или сколько энергии она может обеспечить. Ниже вы узнаете обо всех критериях, которые следует использовать для сравнения вариантов накопления энергии в вашем доме, а также различных типов солнечных батарей.
Как сравнить варианты солнечного накопления
При рассмотрении вариантов «солнечная энергия плюс накопитель» вы столкнетесь со множеством сложных технических характеристик продукта. Наиболее важные параметры, которые следует использовать при оценке, — это емкость и номинальная мощность аккумулятора, глубина разряда (DoD), эффективность в оба конца, гарантия и производитель.
Вместимость и мощность
Емкость — это общее количество электроэнергии, которое может хранить солнечная батарея, измеряется в киловатт-часах (кВтч).Большинство домашних солнечных батарей спроектировано так, чтобы их можно было штабелировать, что означает, что вы можете включить несколько батарей в свою систему хранения «солнечная энергия плюс», чтобы получить дополнительную емкость.
Хотя емкость говорит вам, насколько велика ваша батарея, она не говорит вам, сколько электроэнергии может обеспечить батарея в данный момент. Чтобы получить полную картину, вам также необходимо принять во внимание номинальную мощность аккумулятора. В контексте солнечных батарей номинальная мощность — это количество электричества, которое батарея может доставить за один раз.Он измеряется в киловаттах (кВт).
Батарея большой емкости и малой мощности будет обеспечивать низкое количество электроэнергии (достаточное для работы нескольких важных устройств) в течение длительного времени. Батарея малой емкости и высокой мощности может проработать весь ваш дом, но только в течение нескольких часов.
Глубина разряда (DoD)
Большинству солнечных батарей необходимо постоянно сохранять некоторый заряд из-за их химического состава. Если вы используете 100% заряда аккумулятора, срок его службы значительно сократится.
Глубина разряда (DoD) батареи относится к количеству использованной емкости батареи. Большинство производителей указывают максимальное значение DoD для оптимальной производительности. Например, если батарея на 10 кВтч имеет степень разряда 90 процентов, вам не следует использовать более 9 кВтч батареи перед ее зарядкой. Вообще говоря, более высокий уровень DoD означает, что вы сможете использовать большую часть емкости аккумулятора.
КПД в оба конца
КПД батареи в оба конца представляет собой количество энергии, которое может быть использовано в процентах от количества энергии, которое потребовалось для ее хранения.Например, если вы подаете в батарею пять кВтч электроэнергии и можете получить обратно только четыре кВтч полезной электроэнергии, батарея будет иметь 80-процентный КПД в оба конца (4 кВтч / 5 кВтч = 80%). Вообще говоря, более высокая эффективность приема-передачи означает, что вы получите большую экономическую выгоду от своей батареи.
Срок службы батареи и гарантия
Для большинства случаев использования домашнего накопителя энергии ваша батарея будет «циклически» (заряжаться и разряжаться) ежедневно. Способность аккумулятора удерживать заряд будет постепенно снижаться, чем больше вы его используете.Таким образом, солнечные батареи похожи на батарею в вашем сотовом телефоне — вы заряжаете свой телефон каждую ночь, чтобы использовать его в течение дня, и по мере того, как ваш телефон стареет, вы начнете замечать, что батарея вмещает не так много заряд, как и когда он был новым. Например, батарея может иметь гарантию на 5 000 циклов или 10 лет при 70 процентах ее первоначальной емкости. Это означает, что по истечении гарантии аккумулятор потеряет не более 30 процентов своей первоначальной способности накапливать энергию.
На вашу солнечную батарею предоставляется гарантия, которая гарантирует определенное количество циклов и / или лет полезного использования. Поскольку производительность батареи со временем естественным образом ухудшается, большинство производителей также гарантируют, что батарея сохранит определенную емкость в течение срока действия гарантии. Поэтому простой ответ на вопрос «на сколько хватит моей солнечной батареи?» в том, что это зависит от марки батареи, которую вы покупаете, и от того, сколько емкости она потеряет со временем.
Производитель
Много различных типов организаций разрабатывают и производят солнечные батареи, от автомобильных компаний до технологических стартапов.Хотя крупная автомобильная компания, выходящая на рынок накопителей энергии, вероятно, имеет более длительную историю производства продукции, они могут не предлагать самые революционные технологии. Напротив, у технологического стартапа может быть совершенно новая высокопроизводительная технология, но меньше послужного списка, подтверждающего долговременную функциональность батареи.
Выберете ли вы аккумулятор, произведенный передовым стартапом или производителем с долгой историей, зависит от ваших приоритетов. Оценка гарантий, связанных с каждым продуктом, может дать вам дополнительные рекомендации при принятии решения.
Автомобильные компании стремятся использовать накопители энергии
Домашняя технология накопления энергии и электромобили во многом похожи: обе они используют современные аккумуляторы для создания более эффективных и экологически безопасных продуктов, которые могут снизить выбросы парниковых газов.
По мере того, как электромобили становятся все более популярными, все больше компаний выделяют значительные средства на исследования и разработки на разработку аккумуляторов, и они расширяют свою деятельность в области накопления энергии.Tesla — первый массовый образец (с батареей Powerwall), но Mercedes-Benz и BMW также выводят на рынок автономные батареи в 2017 году.
Как долго работают солнечные батареи?
Есть два способа ответить на этот вопрос, и первый — определить, как долго солнечная батарея может питать ваш дом. Во многих случаях полностью заряженная батарея может проработать ваш дом в течение ночи, когда солнечные батареи не производят энергию. Чтобы сделать более точный расчет, вам необходимо знать несколько переменных, в том числе, сколько энергии потребляет ваше домохозяйство в данный день, какова емкость и номинальная мощность вашей солнечной батареи, а также подключены ли вы к электросети. сетка.
В качестве простого примера мы определим размер батареи, необходимой для обеспечения адекватного решения для солнечных батарей и накопителей, используя средние данные по стране от Управления энергетической информации США. Среднее домашнее хозяйство в США будет потреблять около 30 киловатт-часов (кВтч) энергии в день, а типичная солнечная батарея может обеспечить около 10 кВтч энергии. Таким образом, очень простой ответ: если бы вы приобрели три солнечные батареи, вы могли бы работать в своем доме целый день, не имея ничего, кроме поддержки батареи.
На самом деле ответ намного сложнее. Вы также будете вырабатывать электроэнергию с помощью своей солнечной системы в течение дня, которая будет обеспечивать высокую мощность в течение 6-7 часов в день в часы пиковой нагрузки солнечного света. С другой стороны, большинство аккумуляторов не могут работать с максимальной емкостью и обычно достигают максимума при 90% DoD (как описано выше). В результате ваша батарея на 10 кВтч, вероятно, будет иметь полезную емкость 9 кВтч.
В конечном счете, если вы соединяете батарею с солнечной панелью, одна или две батареи могут обеспечить достаточную мощность в ночное время, когда ваши панели не работают.Однако без использования возобновляемых источников энергии вам может потребоваться 3 или более батарей, чтобы обеспечить питание всего дома в течение 24 часов. Кроме того, если вы устанавливаете домашнее хранилище энергии для отключения от электросети, вам следует установить резервное питание на несколько дней, чтобы учесть дни, когда у вас может быть пасмурная погода.
Срок службы солнечной батареи
Общий срок службы солнечной батареи составляет от 5 до 15 лет. Если вы установите солнечную батарею сегодня, вам, вероятно, придется заменить ее хотя бы один раз, чтобы обеспечить срок службы вашей фотоэлектрической системы от 25 до 30 лет.Однако, поскольку срок службы солнечных панелей значительно увеличился за последнее десятилетие, ожидается, что солнечные батареи последуют этому примеру по мере роста рынка решений для хранения энергии.
Правильное обслуживание также может существенно повлиять на срок службы вашей солнечной батареи. Солнечные батареи в значительной степени подвержены влиянию температуры, поэтому защита батареи от замерзания или жары может продлить срок ее службы. Когда фотоэлектрическая батарея опускается ниже 30 ° F, для достижения максимального заряда потребуется большее напряжение; когда та же самая батарея поднимается выше порогового значения 90 ° F, она перегревается и требует уменьшения заряда.Чтобы решить эту проблему, многие ведущие производители аккумуляторов, такие как Tesla, предоставляют возможность регулирования температуры. Однако, если аккумулятор, который вы покупаете, не подходит, вам необходимо рассмотреть другие решения, например, защищенные от земли корпуса. Усилия по качественному обслуживанию могут определенно повлиять на срок службы вашей солнечной батареи.
Какие лучшие батареи для солнечных батарей?
Батареи, используемые в домашних накопителях энергии, обычно имеют один из трех химических составов: свинцово-кислотный, литий-ионный и соленая вода.В большинстве случаев литий-ионные батареи являются лучшим вариантом для системы солнечных батарей, хотя другие типы батарей могут быть более доступными.
Свинцово-кислотный
Свинцово-кислотные батареи— это испытанная технология, которая десятилетиями использовалась в автономных энергосистемах. Несмотря на то, что они имеют относительно короткий срок службы и более низкую степень разряда по сравнению с другими типами батарей, они также являются одним из наименее дорогих вариантов, имеющихся в настоящее время на рынке в секторе домашних накопителей энергии. Для домовладельцев, которые хотят отключиться от сети и нуждаются в установке большого количества накопителей энергии, свинцово-кислотный вариант может быть хорошим вариантом.
Литий-ионный
Большинство новых технологий хранения энергии в домашних условиях, например, используют литий-ионный химический состав в той или иной форме. Литий-ионные батареи легче и компактнее, чем свинцово-кислотные. По сравнению со свинцово-кислотными аккумуляторами они также имеют более высокий уровень DoD и более длительный срок службы. Однако литий-ионные аккумуляторы дороже своих свинцово-кислотных аналогов.
Морская вода
Новинка в индустрии бытовых накопителей энергии — это аккумулятор для морской воды.В отличие от других домашних аккумуляторов энергии, аккумуляторы для морской воды не содержат тяжелых металлов, вместо этого они используют соленые электролиты. В то время как батареи, в которых используются тяжелые металлы, в том числе свинцово-кислотные и литий-ионные батареи, необходимо утилизировать с помощью специальных методов, аккумулятор для морской воды можно легко переработать. Однако, как новая технология, морские батареи относительно непроверены, и одна компания, которая производит солнечные батареи для домашнего использования (Aquion), объявила о банкротстве в 2017 году.
Найдите лучшую солнечную батарею для своего дома
EnergySage провела обзор всех лучших солнечных батарей, доступных для вашего дома.Воспользуйтесь нашими подробными обзорами солнечных батарей.
Начните свое солнечное путешествие сегодня с EnergySage
EnergySage — это национальный онлайн-рынок солнечной энергии: когда вы регистрируете бесплатную учетную запись, мы связываем вас с солнечными компаниями в вашем районе, которые конкурируют за ваш бизнес с индивидуальными ценами на солнечную энергию, адаптированными к вашим потребностям. Ежегодно в EnergySage приходят более 10 миллионов человек, чтобы узнать о солнечной энергии, сделать покупки и инвестировать в нее. Зарегистрируйтесь сегодня, чтобы узнать, сколько солнечной энергии можно сэкономить.
.Утилизация батарей — Простая английская Википедия, бесплатная энциклопедия
Различные виды старых батарей Рабочий перерабатывает свинец от батарей.Многие батареи выбрасываются вместе с обычными отходами после использования. Утилизация батарей — это процесс отдельного сбора таких батарей, чтобы их можно было утилизировать должным образом. Батареи содержат такие металлы, как свинец, медь или цинк. В том виде, в котором они используются в батареях, эти металлы очень вредны для окружающей среды — большинство из них токсичны.Сбор батарей позволяет извлечь некоторые металлы, которые затем можно использовать повторно, а не выбрасывать. Детали, которые нельзя извлечь или повторно использовать, утилизируют менее вредным для окружающей среды способом. По этой причине во многих странах действуют правила, согласно которым определенный процент всех батарей необходимо повторно использовать.
Курсивом обозначены типы кнопочных ячеек.
Жирным шрифтом обозначены вторичные типы.
Все цифры в процентах; из-за округления они не могут в сумме дойти до 100.
— Большая химическая энциклопедия
Рис. 5. Варианты конструкции сетки свинцово-кислотной батареи, показывающие выступы A, ножки B, рамки C и провод D для (а) прямолинейной конструкции, (b) угловой наконечник радиальный, (c) радиальный центральный выступ, (d) металлический просечно-вытяжной уголок, и (e) композит пластик / свинец. |
Р. Т. Джонсон и. Р. Пирсон, «Влияние состава сети на характеристики свинцово-кислотных аккумуляторов», iu LJ Pearce, ed. Power Sources 11, International Power Sources Symposium Committee, 1987. [Pg.580] Аккумуляторы можно разделить на три основных типа или категории, а именно автомобильные (SLI), стационарные и двигательные (промышленные).Кроме того, существует множество специальных батарей, которые нельзя легко отнести к одному из вышеперечисленных типов. Поскольку эти типы батарей изготавливаются из разных материалов и имеют разные конструкции, чтобы соответствовать требованиям их предполагаемого конечного использования, для каждой из них требуется особый сепаратор с особым составом материала, механической конструкцией, а также физическими, химическими и электрохимическими свойствами, адаптированными для батареи и его соответствующие конкретные виды использования. Эти батареи обычно доступны в версиях с заливным электролитом или с клапаном (герметичными).В этом разделе представлены типы … [Pg.208]
Использование Аккумуляторы, керамические цементы и флюсы, керамика и глазури, стекло, хромовые пигменты, нефтепереработка, лаки, краски, эмали, пробирка руд драгоценных металлов, производство красного свинец, цемент (с глицерином), кислотостойкие составы, составы спичечной головки, другие соединения свинца, ускоритель каучука. [Pg.762]
Фаза магнели TiO (x = 1,67-1,9) является проводящей. Запатентованный материал этого состава в виде сплошных листов или сот был запатентован для использования в качестве токоприемников в монополярных или биполярных свинцово-кислотных аккумуляторах [15].Ячеистая структура удерживает пасту и тем самым улучшает адгезию пасты и механическую стабильность пластины, а также электропроводность. Материал устойчив при потенциалах положительной пластины [16,17]. [Pg.118]
Благоприятный эффект сжатия для увеличения срока службы батарей VRLA был подтвержден в проекте, осуществленном Консорциумом передовых свинцово-кислотных батарей (ALABC) [17]. Работа также показала, что состав микротонкодисперсного стеклянного сепаратора имеет важное влияние на срок службы, а именно более высокий… [Pg.174]
Анализ полного жизненного цикла может использоваться для установления относительного воздействия аккумуляторных систем на окружающую среду и здоровье человека на протяжении всего их срока службы, от производства сырья до окончательной утилизации отработанной аккумуляторной батареи. Тремя наиболее важными факторами, определяющими влияние на общий жизненный цикл, по-видимому, являются состав батареи, производительность батареи и степень, в которой использованные батареи перерабатываются по истечении срока их полезного использования. Эта оценка исследует как аккумуляторные, так и неперезаряжаемые батареи, и включает свинцово-кислотные, никель-кадмиевые, никель-металлогидридные, литий-ионные, углеродно-цинковые и щелочно-марганцевые батареи.[Pg.1]
Наконец, следует учитывать преобразование первичного металла в продукт и форму, которая фактически используется в аккумуляторной системе. Например, электродные материалы в свинцово-кислотных аккумуляторах обычно представляют собой литые свинцовые сетки или сетки из свинцового сплава. Материалы, используемые в батареях NiCd, представляют собой оксид кадмия и никелевые пены или сетки с большой площадью поверхности. Технически все эти факторы следует учитывать для проведения подробного анализа жизненного цикла. Однако, опять же, эти различия, как правило, довольно малы по сравнению с основными переменными — составом, производительностью и вариантом утилизации отработанных батарей.[Pg.10]
Влияние фазового состава паст на характеристики свинцово-кислотных аккумуляторов изучалось рядом авторов. [Pg.278]
Активный материал содержит вещества, которые образуют реакцию заряда-разряда. В положительном электроде свинцово-кислотных аккумуляторов активным материалом в заряженном состоянии является диоксид свинца (PbOj), который превращается в сульфат свинца (PbS04) при разряде электрода. Активный материал является наиболее важной частью батареи, и технология батарей должна быть нацелена на оптимальную конструкцию и производительность для предполагаемого применения.Это касается не только химического состава, но и физической структуры и ее стабильности. Для выполнения этих требований были разработаны специальные методы, и основные продукты, а также производственный процесс обычно определяются индивидуальным производителем батарей. [Pg.163]
Удельная скорость коррозии — это сложная величина, на которую влияет не только состав сплава, но и ряд дополнительных параметров, таких как его металлографическая структура.В целом чистый свинец имеет самую низкую скорость коррозии. Обзор сплавов, которые особенно применяются в свинцово-кислотных аккумуляторных батареях с клапаном, приведен в работе. 32. [Pg.86]
Состав пасты и функции ее компонентов для NAM свинцово-кислотных аккумуляторов … [Pg.73]
.
Информация о батареях на основе никеля — Battery University
Узнайте о различиях между никель-кадмиевым и никель-металлогидридным.
В течение 50 лет портативные устройства работали почти исключительно на никель-кадмиевом (NiCd). Это привело к появлению большого количества данных, но в 1990-х годах никель-металлогидрид (NiMH) взял верх, чтобы решить проблему токсичности, в остальном надежного NiCd. Многие характеристики NiCd были переданы в лагерь NiMH, предлагая квази-замену, поскольку эти две системы похожи.Из-за экологических норм, никель-кадмиевый металл сегодня ограничен специальными применениями.
Никель-кадмиевый (NiCd)
Изобретенная Вальдемаром Юнгнером в 1899 году никель-кадмиевая батарея имела несколько преимуществ по сравнению со свинцово-кислотной, а затем единственной другой перезаряжаемой батареей; однако материалы для NiCd были дорогими. Разработка шла медленно, но в 1932 году были предприняты шаги по нанесению активных материалов внутри пористого никелированного электрода. Дальнейшие усовершенствования произошли в 1947 году за счет поглощения газов, образующихся во время зарядки, что привело к созданию современной герметичной батареи NiCd.
В течение многих лет никель-кадмиевые батареи были предпочтительным выбором для радиоприемников двусторонней связи, оборудования скорой медицинской помощи, профессиональных видеокамер и электроинструментов. В конце 1980-х годов NiCd сверхвысокой емкости потряс мир своей емкостью, которая была на 60 процентов выше, чем у стандартного NiCd. Этого удалось добиться за счет упаковки большего количества активного материала в ячейку, но этот выигрыш был затенен более высоким внутренним сопротивлением и уменьшенным количеством циклов.
Стандартный никель-кадмиевый аккумулятор остается одним из самых надежных и щадящих аккумуляторов, и авиационная промышленность остается верна этой системе, но для достижения долговечности за ней требуется надлежащий уход.NiCd, а отчасти также NiMH, обладают эффектом памяти, который вызывает потерю емкости, если не выполнять периодический полный цикл разряда. Батарея, кажется, запоминает предыдущую поданную энергию, и после того, как установлен порядок, она не хочет отдавать больше. (См. BU-807: Как восстановить никелевые батареи). По данным RWTH, Ахен, Германия (2018), стоимость никель-кадмиевых батарей составляет около 400 долларов за кВт / ч. В таблице 1 перечислены преимущества и ограничения стандартного никель-кадмиевого сплава.
Преимущества | Прочный, с большим количеством циклов при надлежащем обслуживании Единственный аккумулятор, который можно сверхбыстро заряжать без особых нагрузок Хорошие характеристики нагрузки; прощает при злоупотреблении Длительный срок хранения; может храниться в разряженном состоянии, перед использованием необходимо грунтовать Простое хранение и транспортировка; не подлежит нормативному контролю Хорошие низкотемпературные характеристики Экономичная цена; NiCd — самая низкая цена за цикл Доступен в широком диапазоне размеров и вариантов производительности |
Ограничения | |
= Kht / dX) vΗvO || H # kx2Pf3} 4g} R $! Ւ \ V конечный поток endobj 63 0 объект > endobj 65 0 объект > endobj 68 0 объект > endobj 62 0 объект > endobj 64 0 объект > поток xz: Eq ߷ if2Fbk0ƒu3c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c1c rt1c1, v_3c1 @? L7-gA 7a >>> / {zh3c11A Uh7 (; ݒ} 1 c1f5ф4HAcqw2IJn9È -А w [CZh3cy » 1? Pt «Y24c1Ԁ% kῧ2_ @ i’à + mԒc1rM = {gMCki7GԡaC $ Ŋdc1cV @ zĢDLbZfh | @I) 25-9: xJaCYc1c ‘vTF! G | J> :.- «w (jzuo1c9DoH; h» R_V * ‘& qj! qj’; y # ۻ c1Ƙ @ ĆME $! ðx, RfqZ4 {آ $ 0 qO $ β3D & \ ɖ ~ Rc1c (odtěQBL! 2d, + {: d54,0J] bZ & » F! K \ i 揨 @} c1Ƙ7Q #z {9T7` «P» K [nnhВ94) ErŮ? «K n $ SHJ: K% xN09c1Ƙ
.Тяговые литий-ионные батареи Tesla, что внутри?
Тяговые литий-ионные батареи Tesla, что внутри?
Тесла Моторс является создателем поистине революционных экомобилей — электромобилей, которые не только выпускаются серийно, но и обладают уникальными показателями, позволяющими их использование буквально ежедневно. Сегодня мы заглянем внутрь тяговой аккумуляторной батареи электромобиля Tesla Model S, узнаем, как она устроена и раскроем магию успеха этой аккумуляторной батареи.
Поставка батарей клиентам осуществляется в таких вот ящиках из ОСБ.
Самая крупная и дорогая запчасть для Tesla Model S – блок тяговой аккумуляторной батареи.
Блок тяговой аккумуляторной батареи находится в днище автомобиля (по сути это пол электромобиля — машины), за счёт чего Tesla Model S имеет очень низкий центр тяжести и великолепную управляемость. Батарея крепится к силовой части кузова при помощи мощных кронштейнов (см. фото ниже) или выполняет роль силовой – несущей части кузова авто.
По данным североамериканского Агентства по защите окружающей US Environmental Protection Agency (EPA) одного заряда тяговой литий-ионной аккумуляторной батареи Tesla с номинальным напряжением 400В DC, ёмкостью 85 кВт·ч хватает на 265 миль (426 км) пробега, что позволяет преодолевать наибольшую дистанцию среди подобных электромобилей. При этом от 0 до 100 км/ч подобная машина разгоняется всего за 4,4 секунды.
Секрет успеха Tesla Model S – это высокоэффективные цилиндрические литий-ионные батареи высокой энергоёмкости, поставщик базовых элементов известная японская фирма Panasonic. Вокруг этих батарей ходит немало слухов.
Один из них – это не влезай, убьёт!
Один из владельцев и энтузиастов Tesla Model S из США решил полностью разобрать использованную батарею для Tesla Model S энергоёмкостью 85 кВт·ч, чтобы детально изучить её конструкцию. Кстати, её стоимость, как запчасти, в США составляет 12 000 USD.
Сверху блок батареи размещено тепло и звука изоляционное покрытие, которое закрывается толстой полиэтиленовой плёнкой. Снимаем это покрытие, в виде ковра и готовимся к разборке. Для работы с батареей необходимо иметь изолированный инструмент и пользоваться резиновой обувью, и резиновыми защитными перчатками.
Батарея Tesla. Разбираем!
Тяговая аккумуляторная батарея Tesla (блок тяговой аккумуляторной батареи) состоит 16 батарейных модулей, каждый номинальным напряжением 25В (исполнение батарейного блока — IP56). Шестнадцать батарейных модулей соединены последовательно в батарею с номинальным напряжением 400В. Каждый батарейный модуль состоит из 444 элементов (аккумуляторов) 18650 Panasonic (вес одного аккумулятора 46 г), которые соединены по схеме 6s74p (6 элементов последовательно и 74 таких групп параллельно). Всего в тяговой аккумуляторной батарее Tesla – 7104 таких элементов (аккумуляторов). Батарея защищена от окружающей среды посредством использования металлического корпуса с алюминиевой крышкой. На внутренней стороне общей алюминиевой крышки имеются пластиковые накладки, в виде плёнки. Общая алюминиевая крышка крепится винтами с металлическими, и резиновыми прокладками, которые герметизируются, дополнительно силиконовым герметиком. Блок тяговой аккумуляторной батареи разделен на 14 отсеков, в каждом отсеке размещен батарейный модуль. В каждом отсеке сверху и снизу батарейных модулей размещены листы прессованной слюды. Листы слюды обеспечивают хорошую изоляцию батареи электрическую, и тепловую от корпуса электромобиля. Отдельно спереди батареи под своей крышкой размещены два таких же батарейных модуля. В каждом из 16 батарейных модулей имеется встроенный блок BMU, который соединён с общей системой BMS, которая управляет работой, следит за параметрами, а так же обеспечивает защиту всей аккумуляторной батареи. Общие выводные клеммы (терминал) находится в задней части блока тяговой батареи.
До того, как полностью её разобрать, было замерено электрическое напряжение (оно составили около 313,8В), что говорит о том, что батарея разряжена, но находится в рабочем состоянии.
Батарейные модули отличается высокой плотностью элементов (аккумуляторов) 18650 Panasonic, которые там размещены и точностью подгонки деталей. Весь процесс сборки на заводе Tesla проходит в полностью стерильном помещении, с использованием роботов, выдерживается даже определенная температура и влажность.
Каждый батарейный модуль состоит из 444 элементов (аккумуляторов), которые по виду крайне схожих с простыми пальчиковыми батарейками — это литий-ионные цилиндрические аккумуляторы 18650, производства компании Panasonic. Энергоемкость каждого батарейного модуля из таких элементов составляет 5,3 кВт·ч.
В аккумуляторах 18650 Panasonic положительный электрод — графит, а отрицательный электрод — никель, кобальт и оксид алюминия.
Тяговая аккумуляторная батарея Tesla весит 540 кг, а её размеры равны 210 см в длину, 150 см в ширину, и 15 см в толщину. Количество энергии (5,3 кВт·ч), вырабатываемой всего одним блоком (из 16 батарейных модулей), равно количеству, производимому сотней аккумуляторов от 100 портативных компьютеров. К минусу каждого элемента (аккумулятора) в качестве соединителя припаяна проволочка (внешний токовый ограничитель), который при превышении тока (или при коротком замыкании) сгорает и защищает цепь, при этом не работает только группа (из 6 аккумуляторов), в которой был этот элемент, все остальные аккумуляторы продолжают работать.
Тяговая аккумуляторная батарея Tesla охлаждается и подогревается с помощью жидкостной системы на основе антифриза.
При сборке своих батарей Тесла применяет элементы (аккумуляторы), произведенные компанией Panasonic в различных странах, таких, как Индия, КНР и Мексика. Финальная доработка и размещение в корпус батарейного отсека, производятся в Соединенных Штатах. Компания Tesla предоставляет гарантийной обслуживание своей продукции (в том числе и аккумуляторной батареи) на срок до 8 лет.
На фото (сверху) элементы — аккумуляторы 18650 Panasonic (завальцовка у элементов со стороны плюса «+»).
Таким образом, мы узнали, из чего состоит тяговая аккумуляторная батарея Tesla Model S.
Благодарим за внимание!
Электромобили спровоцировали борьбу за металлы
Прогнозируемый рост мирового спроса на электромобили заставляет автопроизводителей озаботиться наличием сырья для выпуска аккумуляторов. К нему относятся литий, никель, кобальт, графит и редкоземельные металлы. Поэтому производители электромобилей и аккумуляторов стремятся обеспечить их поставки, договариваясь с горнодобывающими компаниями.
По данным Международного энергетического агентства (МЭА), в прошлом году в мире было 2 млн электромобилей. К 2040 г. их число достигнет минимум 40 млн, прогнозирует МЭА. И крупнейшие горнодобывающие компании уже начали менять свой бизнес, чтобы обеспечить поставку материалов для литий-ионных аккумуляторов. Нынешний год должен стать «переломным моментом» для электромобилей, заявила BHP Billiton.
В сентябре китайский автопроизводитель Great Wall Motor подписал соглашение с австралийской Pilbara Minerals об обеспечении себе поставок лития на пять лет. В октябре другая австралийская горнодобывающая компания, Galaxy Resources, сообщила, что ведет переговоры о долгосрочных поставках лития с несколькими производителями автомобилей и аккумуляторов. В их число входит Panasonic, выпускающая аккумуляторы для Tesla. «Это подчеркивает, какое стратегическое значение для мировой автомобильной промышленности приобретает доступ к крупным, надежным и высококачественным источникам материалов для аккумуляторов в странах с низким риском», – заявил гендиректор Pilbara Кен Бринсден.
Спекулянты тоже не остаются в стороне, так как эти металлы сильно дорожают; их возросшая активность на рынке еще больше толкает цены вверх. Инвесткомпания Cobalt 27 уже закупила более 2000 т кобальта. Этот металл подорожал более чем на 190% за последние полтора года. Обеспечить поставки кобальта труднее всего, поскольку 65% его добычи приходится на Демократическую Республику Конго (ДРК), одну из беднейших стран мира. По прогнозам аналитиков UBS, спрос на кобальт удвоится к 2020 г. примерно до 200 000 т в год. Поэтому потребуются новые проекты, чтобы избежать его дефицита в долгосрочной перспективе. «Без кобальта из ДРК вообще нельзя будет говорить о производстве электромобилей – вот насколько рынку нужно больше этого металла», – утверждает Саймон Мурс из Benchmark Mineral Intelligence.
Литий хоть и более доступен, но в ближайшие годы тоже может возникнуть нехватка его предложения. Спрос на литий вырастет в четыре раза до 779 000 т к 2025 г., по оценкам Goldman Sachs. Но удовлетворить его будет трудно, так как «многие проекты, которые были анонсированы с фанфарами, не смогли привлечь достаточного финансирования», отмечают аналитики банка. Литий сейчас добывается в горах Австралии и пустынях Южной Америки. Но не все его запасы пригодны для производства аккумуляторов, отмечает гендиректор Neo Lithium Вальдо Перес. Например, у Боливии огромные запасы лития, но они содержат много примесей магния. Поэтому «Боливия определенно не подходит», говорит Перес.
Главную неопределенность для сырьевых рынков представляет то, какой будет технология выпуска аккумуляторов. Их производители сокращают использование кобальта из-за высокой цены и проблем с поставками. В сентябре британская Johnson Matthey заявила, что разработала более эффективные аккумуляторы с использованием лития и никеля и меньшим содержанием кобальта. Как отмечает инвестбанк Liberum, никель помогает повысить мощность аккумуляторов и при этом стоит в шесть раз дешевле кобальта, а его предложение примерно в 20 раз выше. По прогнозам Мурса из Benchmark Mineral Intelligence, спрос на никель вырастет с 75 000 т в 2016 г. до 400 000 т к 2025 г.
В долгосрочной перспективе производители аккумуляторов намерены изменить их конструкцию. Британская Dyson планирует выйти на рынок электромобилей к 2020 г. с помощью твердотельных аккумуляторов, которые должны хранить и отдавать больше энергии. Toyota тоже стремится начать использовать твердотельные аккумуляторы в своих автомобилях в начале 2020-х гг. Они заменят аккумуляторы с жидким электролитом.
«Всем хочется в будущем иметь чудесные химические вещества, не связанные с этими редкими материалами, но сейчас они недоступны, – говорит Стивен Айриш из британской Hyperdrive, занимающейся аккумуляторами. – Все задаются вопросом, произойдет ли революция в производстве аккумуляторов. Но на самом деле речь идет о серии постепенных улучшений».
Перевел Алексей Невельский
Что внутри батареи
Главная »Что внутри батареи?
Что внутри батареи?
Обычной батарее для выработки электричества необходимы 3 части:
- Анод — минус АКБ
- Катод — плюс батареи
- Электролит — химическая паста, которая разделяет анод и катод и преобразует химическую энергию в электрическую.
Внутри каждой батареи есть восстанавливаемые ресурсы, независимо от ее типа
Возьмем, к примеру, одноразовую щелочную батарею.Это неперезаряжаемые батареи, которые бывают AAA, AA, C, D, 9 вольт и различных размеров кнопочных элементов.
В среднем батарея на 25% состоит из стали (корпуса). Знаете ли вы, что сталь можно перерабатывать бесконечно? Наш механический процесс позволяет восстановить 100% стали в каждой батарее для повторного использования.
Аккумулятор на 60% состоит из таких материалов, как цинк (анод), марганец (катод) и калий. Эти материалы — все элементы земли. Эта комбинация материала на 100% восстанавливается и повторно используется в качестве питательного микроэлемента при производстве удобрений для выращивания кукурузы.
Остальные 15% по весу составляют бумага и пластик (этикетка и защитная крышка). Эти материалы отправляются на предприятие по переработке отходов для производства электроэнергии.
Утилизируя щелочные батареи в Raw Materials Company, вы можете быть уверены, что 100% каждой батареи используется повторно и никакие материалы не будут отправлены на свалку.
Вы живете в Онтарио, Канада?
Если да, то вы можете найти ближайший к вам магазин по переработке батарей.Просто введите свой почтовый индекс или название города в наш инструмент поиска. Если вы живете за пределами Онтарио, обратитесь в местный муниципалитет, чтобы найти ближайший пункт переработки.
Спасибо
Мы получили ваше сообщение и вскоре ответим вам.
Быстрые ссылки
Для вашего удобства здесь приведены важные ссылки, связанные с этой страницей.
Знаете ли вы?
Отработанные батареи составляют менее 1% всех отходов, обнаруживаемых на городских свалках.Этот 1% аккумуляторов отвечает за 88% всех токсичных тяжелых металлов, обнаруженных на свалках.
Узнайте больше о нашей технологии и о том, как вместе мы превращаем отходы в ценный ресурс.
Достижения в составе аккумуляторных батарей
Хотя термин «батарея» не использовался до экспериментов Бенджамина Франклина в 1749 году, то, что сейчас называется «багдадскими батареями», впервые было использовано в Месопотамии около 200 г. до н.э. Они состояли из сосуда, содержащего покрытый медью железный стержень и кислотный агент, такой как уксус.Их точное назначение неизвестно, но могло быть религиозным или лечебным по своей природе.
Первая современная батарея, известная теперь как гальваническая батарея, была изобретена в 1799 году. Эта батарея состояла из чередующихся слоев меди и цинка, разделенных пропитанной рассолом тканью или бумагой. В 1836 году она была усовершенствована как ячейка Даниэля, в которой был стеклянный сосуд, содержащий медный диск, раствор сульфата меди, цинковый диск и раствор сульфата цинка. Ячейка Даниэля работала достаточно хорошо, поэтому ее использовали для питания телефонов и дверных звонков до того, как электричество стало обычным явлением.
Аккумуляторы, производимые серийно, поступили на рынок в 1898 году и были произведены компанией National Carbon Company. Эта компания в конечном итоге превратилась в Eveready Battery Company, которая существует до сих пор. Технология аккумуляторов продолжает развиваться, и на горизонте ждут еще более захватывающих достижений.
Современные батареиВсе батареи имеют две клеммы, положительную и отрицательную. Внутри корпуса батареи анод подключен к отрицательной клемме, а катод — к положительной клемме.Между ними находится разделитель, чтобы они не соприкасались, а электролит позволяет электрическому заряду течь между ними. Коллектор проводит заряд к внешней стороне батареи и через «нагрузку», то есть независимо от того, что батарея питает.
Серия химических реакций происходит внутри батареи, когда нагрузка замыкает цепь: окисление на аноде высвобождает электроны, а восстановление на катоде поглощает эти электроны. Какие химические вещества задействованы, зависит от типа батареи:
- Дешевые сухие батареи: Батарейки низкого уровня AAA, AA, C и D часто бывают угольно-цинковыми.Анод изготовлен из цинка, а катод — из диоксида магния. Раствор электролита может быть хлоридом цинка или хлоридом аммония.
- Сухие батареи высшего класса: Более дорогие батареи AA, C и D обычно называют щелочными батареями, потому что раствор электролита имеет щелочную природу (pH больше 7). Анод изготовлен из цинкового порошка, катод — из диоксида магния и раствора электролита гидроксида калия. Эти батареи имеют большую емкость, чем угольно-цинковые батареи, а также более длительный срок хранения.Они также реже протекают.
- Перезаряжаемые свинцово-кислотные батареи: Перезаряжаемые свинцово-кислотные батареи имеют анод из свинца и катод из диоксида свинца. Раствор электролита состоит из разбавленной серной кислоты. Свинцово-кислотные батареи, являющиеся первыми коммерчески жизнеспособными перезаряжаемыми батареями, используются в самых разных областях, включая автомобили, жилые дома, инвалидные коляски с электроприводом и даже солнечные аккумуляторы. Однако все чаще их заменяют перезаряжаемые литий-ионные батареи из-за превосходных свойств этих батарей.
- Перезаряжаемые литий-ионные батареи: Анод литий-ионной батареи сделан из углерода (обычно, хотя и не всегда, графита), а катод — из оксида лития. Раствор электролита представляет собой соль лития в органическом растворителе. Литий-ионные аккумуляторы — это самые современные аккумуляторы, которые в настоящее время используются в коммерческих целях. У них значительно большая емкость, чем у свинцово-кислотных аккумуляторов, они намного эффективнее и имеют гораздо больший срок службы.
Поскольку технологии продолжают быстро развиваться, батареи должны идти в ногу со временем.Некоторые из наиболее многообещающих достижений будут в технологии литий-ионных аккумуляторов. Исследователи экспериментируют с различными соединениями, которые могут накапливать больше лития, а также с различными типами углерода для оптимизации характеристик анода.
Еще одна перспективная технология — это литий-серные аккумуляторные батареи. С серой в качестве катода и металлическим литием в качестве анода эти батареи только сейчас создаются, но их теоретическая плотность энергии кажется невероятно высокой.
Твердотельные батареи заменят раствор электролита в традиционных батареях твердым, высокопроводящим составом электролита. Новые негорючие полимеры с высокой емкостью могут революционизировать безопасность, вес и даже срок хранения. Вполне возможно, что твердотельная технология может появиться одновременно с литий-серной технологией, создав совершенно новый класс батарей, предназначенных для электромобилей, аэрокосмической промышленности и других отраслей с тяжелыми нагрузками.
Noah Chemicals предоставляет клиентам самые чистые химические вещества.Чтобы поговорить с квалифицированным химиком о нестандартных химикатах и оптовых заказах, свяжитесь с нами сегодня!
Что такое аккумулятор? — learn.sparkfun.com
Добавлено в избранное Любимый 22Введение
Батареи представляют собой совокупность одной или нескольких ячеек, химические реакции которых создают поток электронов в цепи. Все батареи состоят из трех основных компонентов: анода (сторона «-»), катода (сторона «+») и какого-то электролита (вещество, которое химически реагирует с анодом и катодом).
Когда анод и катод батареи подключены к цепи, между анодом и электролитом происходит химическая реакция. Эта реакция заставляет электроны проходить через цепь и возвращаться к катоду, где происходит другая химическая реакция. Когда материал катода или анода расходуется или больше не может быть использован в реакции, батарея не может производить электричество. В этот момент ваша батарея «разряжена».
Батареи, которые необходимо выбросить после использования, известны как первичные батареи .Батареи, которые можно перезаряжать, называются вторичными батареями и .
Литий-полимерные батареи, например, заряжаемые
Без батарей ваш квадрокоптер пришлось бы привязать к стене, вам пришлось бы вручную проверять машину, а ваш контроллер Xbox должен был бы быть постоянно подключен к розетке (как в старые добрые времена). Батареи позволяют хранить потенциальную электрическую энергию в переносном контейнере.
Батареи бывают разных форм, размеров и химического состава.
Изобретение современной батареи часто приписывают Алессандро Вольта. На самом деле все началось с удивительной аварии, связанной с рассечением лягушки.
Что вы узнаете
В этом руководстве будут подробно рассмотрены следующие темы:
- Как были изобретены батарейки
- Из каких частей состоит аккумулятор
- Как работает аккумулятор
- Общие термины, используемые для описания батарей
- Различные способы использования батарей в схемах
Рекомендуемая литература
Есть несколько концепций, с которыми вы, возможно, захотите ознакомиться перед тем, как начать читать это руководство:
Хотите изучить различные батареи?
Мы вас прикрыли!
Щелочная батарея 9 В
В наличии PRT-10218Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac.Даже не думайте пытаться перезарядить их. Используйте их с…
1История
Термин Батарея
Исторически, слово «батарея» использовалось для описания «серии подобных объектов, сгруппированных вместе для выполнения определенной функции», как в артиллерийской батарее. В 1749 году Бенджамин Франклин впервые использовал этот термин для описания серии конденсаторов, которые он соединил вместе для своих экспериментов с электричеством.Позже этот термин будет использоваться для любых электрохимических ячеек, связанных вместе с целью обеспечения электроэнергии.
Батарея «конденсаторов» Лейденской банки, соединенных вместе(Изображение любезно предоставлено Альвинруном из Wikimedia Commons)
Изобретение батареи
В один роковой день 1780 года итальянский физик, врач, биолог и философ Луиджи Гальвани рассекал лягушку, прикрепленную к медному крючку. Когда он коснулся лягушачьей лапы железным отростком, нога дернулась.Гальвани предположил, что энергия исходит от самой ноги, но его коллега-ученый Алессандро Вольта считал иначе.
Вольта выдвинул гипотезу, что импульсы лягушачьей лапки на самом деле вызываются разными металлами, пропитанными жидкостью. Он повторил эксперимент, используя ткань, пропитанную рассолом, вместо трупа лягушки, что привело к аналогичному напряжению. Вольта опубликовал свои открытия в 1791 году, а позже создал первую батарею, гальваническую батарею, в 1800 году.
Гальваническая свая состояла из пакета цинковых и медных пластин, разделенных тканью, пропитанной рассолом
СтопкаVolta страдала от двух основных проблем: из-за ее веса электролит вытекал из ткани, а особые химические свойства компонентов привели к очень короткому сроку службы (около часа).Следующие двести лет уйдут на совершенствование конструкции Вольты и решение этих проблем.
Исправления к вольтовым сваям
Уильям Круикшанк из Шотландии решил проблему утечки, положив гальваническую батарею на бок, чтобы сформировать «желобную батарею».
Лотковая батарея решила проблему утечки гальванической сваи
Вторая проблема, короткий срок службы, была вызвана разложением цинка из-за примесей и скоплением пузырьков водорода на меди.В 1835 году Уильям Стерджен обнаружил, что обработка цинка ртутью предотвратит разложение.
Британский химик Джон Фредерик Дэниелл использовал второй электролит, который вступал в реакцию с водородом, предотвращая накопление на медном катоде. Батарея Даниэля с двумя электролитами, известная как «ячейка Даниэля», станет очень популярным решением для обеспечения энергией зарождающихся телеграфных сетей.
Коллекция клеток Даниэля из 1836 г.
Первая аккумуляторная батарея
В 1859 году французский физик Гастон Планте создал батарею из двух прокатанных листов свинца, погруженных в серную кислоту.Путем реверсирования электрического тока через батарею химия вернется в исходное состояние, создав первую перезаряжаемую батарею.
Позже, в 1881 году, Камилла Альфонс Фор улучшила конструкцию Планте, превратив листы свинца в пластины. Эта новая конструкция упростила производство аккумуляторов, и свинцово-кислотные аккумуляторы получили широкое распространение в автомобилях.
-> Дизайн обычного «автомобильного аккумулятора» существует уже более 100 лет
(Изображение любезно предоставлено Эмилианом Робертом Виколом из Wikimedia Commons) <-
Сухая камера
Вплоть до конца 1800-х годов электролит в батареях был в жидком состоянии.Это сделало транспортировку аккумуляторов очень осторожным делом, и большинство аккумуляторов никогда не предназначались для перемещения после подключения к цепи.
В 1866 году Жорж Лекланше создал батарею с цинковым анодом, катодом из диоксида марганца и раствором хлорида аммония в качестве электролита. Хотя электролит в элементе Лекланше был все еще жидким, химический состав батареи оказался важным шагом для изобретения сухого элемента.
Карл Гасснер придумал, как создать электролитную пасту из хлорида аммония и гипса.Он запатентовал новую «сухую» батарею в 1886 году в Германии.
Эти новые сухие элементы, обычно называемые «угольно-цинковыми батареями», производились массово и пользовались огромной популярностью до конца 1950-х годов. Хотя углерод не используется в химической реакции, он играет важную роль в качестве электрического проводника в углеродно-цинковой батарее.
-> Угольно-цинковая батарея 3 В 1960-х годов
(Изображение любезно предоставлено PhFabre из Wikimedia Commons) <-
В 1950-х годах Льюис Урри, Пол Марсал и Карл Кордеш из компании Union Carbide (позже известной как «Eveready», а затем «Energizer») заменили электролит хлористого аммония щелочным веществом на основе химического состава батареи, сформулированного Вальдемаром. Юнгнер в 1899 году.Щелочные батареи с сухими элементами могут содержать больше энергии, чем угольно-цинковые батареи того же размера, и имеют более длительный срок хранения.
Щелочные батареи приобрели популярность в 1960-х годах, обогнали угольно-цинковые батареи и с тех пор стали стандартными первичными элементами для потребительского использования.
-> Щелочные батареи бывают разных форм и размеров
(Изображение любезно предоставлено Aney ~ commonswiki из Wikimedia Commons) <-
Аккумуляторы 20-го века
В 1970-х годах компания COMSAT разработала никель-водородную батарею для использования в спутниках связи.Эти батареи хранят водород в газообразной форме под давлением. Многие искусственные спутники, такие как Международная космическая станция, по-прежнему используют никель-водородные батареи.
Исследования нескольких компаний с конца 1960-х годов привели к созданию никель-металлгидридной (NiMH) батареи. NiMH батареи были выпущены на потребительский рынок в 1989 году и стали более дешевой альтернативой никель-водородным аккумуляторным элементам меньшего размера.
Компания Asahi Chemical из Японии построила первую литий-ионную батарею в 1985 году, а Sony создала первую коммерческую литий-ионную батарею в 1991 году.В конце 1990-х годов был создан мягкий гибкий корпус для литий-ионных аккумуляторов, в результате чего возникли «литий-полимерные» или «LiPo» аккумуляторы.
Химические реакции в литий-полимерной батарее практически такие же, как и в литий-ионной батарее
Очевидно, что было изобретено, произведено и устарело гораздо больше химикатов батарей. Если вы хотите узнать больше о современных и популярных технологиях аккумуляторов, ознакомьтесь с нашим руководством по технологиям аккумуляторов.
Компоненты
Батареисостоят из трех основных компонентов: анода , катода и электролита . Сепаратор часто используется для предотвращения соприкосновения анода и катода, если электролита недостаточно. Для хранения этих компонентов аккумуляторы обычно имеют какой-то кожух .
Хорошо, большинство батарей на самом деле не разделены на три равные части, но идею вы поняли.Лучшее поперечное сечение щелочной ячейки можно найти в Википедии.И анод, и катод относятся к типу электродов . Электроды — это проводники, через которые электричество входит или выходит из компонента в цепи.
Анод
Электроны выходят из анода в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет в анод .
На аккумуляторах анод обозначен как отрицательная (-) клемма
В батарее химическая реакция между анодом и электролитом вызывает накопление электронов на аноде.Эти электроны хотят перейти к катоду, но не могут пройти через электролит или сепаратор.
Катод
Электроны текут в катод в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет из катода.
На батареях катод помечен как положительный (+) вывод
В батареях в химической реакции внутри катода или вокруг него используются электроны, образующиеся на аноде.Электроны могут попасть на катод только через цепь, внешнюю по отношению к батарее.
Электролит
Электролит — это вещество, часто жидкость или гель, которое способно переносить ионы между химическими реакциями, происходящими на аноде и катоде. Электролит также препятствует потоку электронов между анодом и катодом, так что электроны легче проходят через внешнюю цепь, чем через электролит.
-> В щелочных батареях может протекать электролит, гидроксид калия, если они подвергаются воздействию высоких температур или обратного напряжения
(Изображение любезно предоставлено Вильямом Дэвисом из Wikimedia Commons) <-
Электролит имеет решающее значение в работе аккумулятора.Поскольку электроны не могут проходить через него, они вынуждены проходить через электрические проводники в виде цепи, соединяющей анод с катодом.
Сепаратор
Сепараторы представляют собой пористые материалы, которые предотвращают соприкосновение анода и катода, что может вызвать короткое замыкание в батарее. Сепараторы могут быть изготовлены из различных материалов, включая хлопок, нейлон, полиэстер, картон и синтетические полимерные пленки. Сепараторы не вступают в химическую реакцию ни с анодом, ни с катодом, ни с электролитом.
В гальванической куче использовалась ткань или картон (разделитель), пропитанные солевым раствором (электролитом) для разделения электродов
Ионы в электролите могут быть положительно заряженными, отрицательно заряженными и иметь различные размеры. Могут быть изготовлены специальные сепараторы, которые пропускают одни ионы, но не пропускают другие.
Кожух
Большинству батарей требуется способ удерживать химические компоненты. Кожухи, также известные как «кожухи» или «оболочки», представляют собой просто механические конструкции, предназначенные для удержания внутренних компонентов батареи.
Свинцово-кислотный аккумулятор в пластиковом корпусе
Корпуса батареймогут быть изготовлены практически из чего угодно: из пластика, стали, чехлов из мягкого полимерного ламината и так далее. В некоторых батареях используется токопроводящий стальной корпус, который электрически соединен с одним из электродов. В случае обычного щелочного элемента AA стальной корпус соединен с катодом.
Операция
Батареи обычно требуют нескольких химических реакций для работы.По крайней мере, одна реакция происходит внутри или вокруг анода, и одна или несколько реакций происходят внутри или вокруг катода. Во всех случаях реакция на аноде производит дополнительные электроны в процессе, называемом окислением , а реакция на катоде использует дополнительные электроны во время процесса, известного как восстановление .
Когда переключатель замкнут, цепь замыкается, и электроны могут течь от анода к катоду. Эти электроны активируют химические реакции на аноде и катоде.
По сути, мы разделяем определенный вид химической реакции, реакцию окисления-восстановления или окислительно-восстановительную реакцию, на две отдельные части. При переносе электронов между химическими веществами происходят окислительно-восстановительные реакции. Мы можем использовать движение электронов в этой реакции, чтобы они выходили за пределы батареи и питали нашу цепь.
Анодное окисление
Эта первая часть окислительно-восстановительной реакции, окисление, происходит между анодом и электролитом и производит электроны (обозначены как e — ).
В некоторых реакциях окисления образуются ионы, например, в литий-ионной батарее. В других химических реакциях расходуются ионы, как в обычных щелочных батареях. В любом случае ионы могут свободно проходить через электролит, а электроны — нет.
Катодное восстановление
Другая половина окислительно-восстановительной реакции, восстановление, происходит в катоде или рядом с ним. Электроны, образующиеся в результате реакции окисления, расходуются во время восстановления.
В некоторых случаях, например, в литий-ионных батареях, положительно заряженные ионы лития, образующиеся во время реакции окисления, расходуются во время восстановления.В других случаях, например, в щелочных батареях, во время восстановления образуются отрицательно заряженные ионы.
Электронный поток
В большинстве батарей некоторые или все химические реакции могут происходить, даже если батарея не подключена к цепи. Эти реакции могут повлиять на срок годности батареи.
По большей части, реакции будут происходить с полной силой только тогда, когда между анодом и катодом замыкается электрически проводящая цепь. Чем меньше сопротивление между анодом и катодом, тем больше электронов может течь и тем быстрее протекают химические реакции.
Короткое замыкание в аккумуляторе (в данном случае даже случайное) может быть опасным. Известно, что литий-ионные батареи перегреваются и даже задыхаются или загораются при коротком замыкании.
Мы можем пропускать эти движущиеся электроны через различные электрические компоненты, известные как «нагрузка», чтобы достичь чего-то полезного. В анимационном ролике в начале этого раздела мы зажигаем виртуальную лампочку движущимися электронами.
Батарея разряжена
Химические вещества в батарее в конечном итоге достигают состояния равновесия. В этом состоянии химические вещества больше не будут реагировать, и в результате аккумулятор больше не будет генерировать электрический ток. На данный момент аккумулятор считается «мертвым».
Первичные элементы необходимо утилизировать, когда батарея разряжена. Вторичные элементы можно перезаряжать, и это достигается путем подачи через батарею обратного электрического тока.Перезарядка происходит, когда химические вещества выполняют еще одну серию реакций, чтобы вернуть их в исходное состояние.
Терминология
Люди часто используют общий набор терминов, говоря о напряжении батареи, емкости, возможности источника тока и так далее.
Ячейка
Элемент относится к одному аноду и катоду, разделенным электролитом, используемым для выработки напряжения и тока. Батарея может состоять из одной или нескольких ячеек.Например, одна батарея AA — это одна ячейка. Автомобильные аккумуляторы содержат шесть ячеек по 2,1 В.
Обычная 9-вольтовая батарея содержит шесть щелочных элементов по 1,5 В, установленных друг над другом
Первичная
Первичные клетки содержат химический состав, который нельзя обратить вспять. В результате аккумулятор необходимо выбрасывать после того, как он разрядился.
Среднее
Вторичные элементы можно перезаряжать, и их химический состав возвращается в исходное состояние.Эти элементы, также известные как «перезаряжаемые батареи», можно использовать много раз.
Номинальное напряжение
Номинальное напряжение аккумулятора — это напряжение, указанное производителем.
Например, щелочные батареи типа AA указаны как имеющие напряжение 1,5 В. В этой статье Mad Scientist Hut показано, что их испытанные щелочные батареи начинаются с напряжения около 1,55 В, а затем медленно теряют напряжение по мере разряда. В этом примере номинальное напряжение «1,5 В» относится к максимальному или пусковому напряжению батареи.
Этот аккумуляторный блок Storm для квадрокоптеров показывает кривую разряда для их LiPo-элементов, начиная с 4,2 В и снижаясь до 2,8 В по мере разряда. Номинальное напряжение, указанное для большинства литий-ионных и LiPo элементов, составляет 3,7 В. В этом случае номинальное напряжение «3,7 В» относится к среднему напряжению аккумулятора в течение его цикла разряда.
Вместимость
Емкость аккумулятора — это величина электрического заряда, который он может доставить при определенном напряжении. Большинство батарей рассчитаны на ампер-часы (Ач) или миллиампер-часы (мАч).
Этот LiPo аккумулятор рассчитан на 1000 мАч, что означает, что он может обеспечить 1 ампер в течение 1 часа, прежде чем он будет считаться разряженным.
Большинство графиков разряда батареи показывают зависимость напряжения батареи от емкости, например, эти тесты батареи AA, проведенные PowerStream. Чтобы выяснить, достаточно ли емкости аккумулятора для питания вашей схемы, найдите самое низкое допустимое напряжение и найдите соответствующий номинал мАч или Ач.
C-скорость
Многие батареи, особенно мощные литий-ионные, обозначают ток разряда как «C-Rate», чтобы более четко определить характеристики батареи.C-Rate — это скорость разряда относительно максимальной емкости аккумулятора.
1С — это количество тока, необходимое для разрядки аккумулятора за 1 час. Например, аккумулятор емкостью 400 мАч, обеспечивающий ток 1С, будет обеспечивать 400 мА. 5C для той же батареи будет 2 A.
Большинство батарей теряют емкость при более высоком потреблении тока. Например, этот график информации о продукте от Chargery показывает, что их LiPo-элемент имеет меньше мАч при более высоких показателях C-Rates.
ПРИМЕЧАНИЕ: Общий совет гласит, что вы должны заряжать LiPo батареи при 1С или меньше.
MIT предлагает фантастическое руководство по спецификациям и терминологии аккумуляторов, которое идет намного дальше этого обзора.
Использование
Однокамерный
Некоторые схемы могут питаться от одного элемента, но убедитесь, что батарея может обеспечивать достаточное напряжение и ток.
Этот щит фотонной батареи питается от одного элемента LiPoЕсли напряжение слишком высокое или слишком низкое для вашей схемы, вам, вероятно, понадобится преобразователь постоянного тока в постоянный.
серии
Чтобы увеличить напряжение между выводами батареи, вы можете расположить элементы последовательно. Последовательность означает штабелирование ячеек встык, соединение анода одного с катодом следующего.
Последовательно соединяя батареи, вы увеличиваете общее напряжение. Сложите напряжение всех ячеек, чтобы определить рабочее напряжение. Емкость остается прежней.
В этом примере четыре ячейки 1,5 В подключены последовательно.Напряжение на нагрузке составляет 6 В, а общий набор аккумуляторов имеет емкость 2000 мАч.
В большинстве бытовых электронных устройств, в которых используются щелочные батареи, батареи устанавливаются последовательно. Например, этот держатель батареек 2x AA может поднять номинальное напряжение до 3 В для проекта.
ПРИМЕЧАНИЕ: Если вы заряжаете литий-ионные или литий-полимерные батареи последовательно, вам необходимо обязательно использовать специальные схемы, известные как «балансировщик», чтобы гарантировать равномерное напряжение между элементами.Некоторые зарядные устройства, такие как это, имеют балансиры для безопасной зарядки.Параллельно
Если напряжение одного элемента соответствует нагрузке, вы можете добавить батареи параллельно, чтобы увеличить емкость. Обратите внимание, что это также означает увеличение доступного тока (C-Rate).
Будьте осторожны при параллельном подключении аккумуляторов! Все элементы должны иметь одинаковое номинальное напряжение и одинаковый уровень заряда. Если есть какие-либо различия в напряжении, может произойти короткое замыкание, что приведет к перегреву и, возможно, возгоранию.
В этом примере четыре ячейки 1,5 В подключены параллельно. Напряжение на нагрузке остается на уровне 1,5 В, но общая емкость увеличивается до 8000 мАч.
Серияи параллельная
Если вы хотите увеличить напряжение и емкость, вы можете комбинировать последовательные и параллельные батареи. Еще раз убедитесь, что уровень напряжения одинаков для батарей, включенных параллельно, так как может произойти короткое замыкание.
В этом примере полное напряжение на нагрузке составляет 3 В, а общая емкость аккумуляторов составляет 4000 мАч.
В больших аккумуляторных блоках, особенно литий-ионных, вы часто видите конфигурацию, указанную с использованием «S» и «P» для последовательного и параллельного подключения. Конфигурация схемы выше — 2S2P. В качестве практического примера современные электромобили используют массивные массивы батарей, соединенных последовательно и параллельно.
Ресурсы и движение вперед
К настоящему времени вы должны понимать, как были изобретены батареи и как они работают. Батареи — это один из способов обеспечения вашего проекта электроэнергией, и они могут быть невероятно полезны, если вам нужен портативный источник питания.
Если вы хотите больше узнать о батареях, вот еще несколько уроков:
Хотите увидеть аккумуляторы в действии? Взгляните на эти проекты, в которых используются разные батареи в разных конфигурациях:
Simon Splosion Wireless
Это учебное пособие, демонстрирующее один из многих методов «взлома» Саймона Сэйса. Мы выделим технику, чтобы взять ваш Simon Says Wireless.
Аккумуляторные реакции и химия | HowStuffWorks
Многое происходит внутри батареи, когда вы вставляете ее в фонарик, пульт дистанционного управления или другое беспроводное устройство.Хотя процессы, с помощью которых они производят электричество, немного отличаются от батареи к батарее, основная идея остается той же.
Когда нагрузка замыкает цепь между двумя выводами, батарея вырабатывает электричество посредством серии электромагнитных реакций между анодом, катодом и электролитом. Анод подвергается реакции окисления , в которой два или более ионов (электрически заряженные атомы или молекулы) из электролита объединяются с анодом, образуя соединение и высвобождая один или несколько электронов.В то же время катод проходит через реакцию восстановления , в которой катодное вещество, ионы и свободные электроны также объединяются с образованием соединений. Хотя это действие может показаться сложным, на самом деле это очень просто: реакция на аноде создает электроны, а реакция на катоде их поглощает. Чистый продукт — электричество. Батарея будет продолжать вырабатывать электричество до тех пор, пока на одном или обоих электродах не закончится вещество, необходимое для протекания реакций.
В современных батареях для стимуляции реакций используются различные химические вещества. Обычный химический состав батарей включает:
- Цинк-угольные батареи : Цинк-углеродная химия характерна для многих недорогих батарей типа AAA, AA, C и D с сухими элементами. Анод — цинк, катод — диоксид марганца, а электролит — хлорид аммония или хлорид цинка.
- Щелочная батарея : Этот химический состав также характерен для сухих батарей AA, C и D.Катод состоит из смеси диоксида марганца, а анод — из цинкового порошка. Он получил свое название от электролита гидроксида калия, который является щелочным веществом.
- Литий-ионный аккумулятор (перезаряжаемый) : Литиевая химия часто используется в высокопроизводительных устройствах, таких как сотовые телефоны, цифровые камеры и даже электромобили. В литиевых батареях используются различные вещества, но наиболее распространенной комбинацией является катод из оксида лития-кобальта и угольный анод.
- Свинцово-кислотный аккумулятор (перезаряжаемый) : это химический состав, используемый в типичном автомобильном аккумуляторе. Электроды обычно изготавливаются из диоксида свинца и металлического свинца, а электролит — это раствор серной кислоты.
Лучший способ понять эти реакции — увидеть их собственными глазами. Перейдите на следующую страницу, чтобы узнать о некоторых практических экспериментах с аккумулятором.
Твердотельная батарея — обзор
Твердые электролиты
Одним из ключевых компонентов, обеспечивающих возможность перезаряжаемой технологии ASSB, является твердый электролит.Твердые электролиты, подробно описанные в разделе 4, должны удовлетворять таким технологическим требованиям, как высокая ионная проводимость в сочетании с незначительной электронной проводимостью, широким диапазоном напряжений, химической совместимостью с материалами катода и анода, а также относительно простое производство в больших масштабах с низкой стоимостью. (Manthiram et al., 2017). Обычно твердые литиевые или натрий-ионные проводники подразделяются на три класса, которые могут дополнять друг друга для удовлетворения этих требований: (1) неорганические стеклообразные или керамические соединения; (2) органические полимеры и (3) композитные или гибридные электролиты, состоящие из комбинации первых двух классов материалов (Manthiram et al., 2017; Hou et al., 2018a; Zheng et al., 2018).
Перенос ионов в твердых неорганических электролитах определяется концентрацией подвижных ионов и вакансий, относительными размерами связанных проводящих путей в кристаллических структурах с точечными дефектами Шоттки и Френкеля, а также свойствами диффузии ионов на границах зерен (Hou et al. , 2018а, б; Zheng et al., 2018). Перспективные твердые неорганические литий-ионные электролиты включают аморфный оксинитрид фосфора лития (LiPON) с проводимостью при комнатной температуре до нескольких мСм см — 1 стеклокерамика на основе сульфида лития, фосфат типа NASICON [Li 1 + x Al x Ti 2 — x (PO 4 ) 3 (LATP)] и оксид типа граната [Li 7 La 3 Zr 2 O 12 (LLZO)] керамические электролиты.Типичные твердые неорганические электролиты для Na (-ион) ASSB, также обладающие относительно высокой ионной проводимостью при комнатной температуре более 1 мСм см — 1 , включают Na-β ″ -оксид алюминия, суперионные проводники Na [NASICON, т.е. Na 3,1 Zr 1,95 Mg 0,05 Si 2 PO 12 (Song et al., 2016)], сульфиды (например, Na 3 PS 4, Na 10,8 Sn 1,9 PS 11,8 ) и комплексные гидриды (например, боргидрид натрия) (Yu et al., 2018b; Hou et al., 2018a, b).
Твердые полимерные электролиты, как правило, имеют значительно более низкую ионную проводимость, чем керамические электролиты, но демонстрируют механическую гибкость, малый вес, удобство процесса изготовления и возможность изменения объема электродов во время заряда / разряда. В твердых полимерных электролитах соли Li или Na сольватированы полимерными цепями, например, в полимерах на основе полиэтиленоксида (PEO) или полисилоксана, и ионы Li или Na перемещаются через связанные полимерные цепи.Ионная проводимость твердого полимерного электролита связана с количеством подвижных ионов и сегментарными движениями полимерных цепей. Перенос ионов в связанных полимерных цепях может быть заблокирован сегментами кристаллической цепи, которые образуются ниже температуры стеклования ( T г ). T г можно снизить, например, добавив наноразмерные наполнители. Однако относительно низкая ионная проводимость при комнатной температуре по-прежнему представляет собой главный недостаток полимерных электролитов (Zheng et al., 2018; Hou et al., 2018a, b).
Композитные или гибридные электролиты, сочетающие в себе преимущества (стеклокерамических) и полимерных ионных проводников, обеспечивают улучшенную ионную проводимость с высокой гибкостью для снижения межфазного сопротивления между твердыми электролитами и электродами (Zheng et al., 2018; Hou et al. , 2018а, б).
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Литий-ионный аккумулятор Предполагается, что это технология чехарда для электрификации трансмиссии и обеспечить стационарное хранение решения, позволяющие эффективно использование возобновляемых источников энергии.В технология уже используется для малой мощности такие приложения, как потребительские электроника и электроинструменты. Обширный исследования и разработки улучшили технологии до стадии, когда кажется очень вероятным, что безопасный и надежный литий-ионные батареи скоро будут бортовой гибридный электрический и электрический транспортных средств и подключенных к солнечным батареям и ветряные мельницы. Однако безопасность технология по-прежнему вызывает беспокойство, сервис жизни еще недостаточно, и стоит слишком высоки.Эта статья резюмирует современный литий-ионный аккумулятор технология для неспециалистов. В нем перечислены материалы и обработка для аккумуляторов и суммирует связанные с этим затраты с ними. Этот документ должен способствовать общее понимание материалов и обработка и необходимость преодоления оставшиеся препятствия на пути к успеху введение на рынок. ВВЕДЕНИЕ Мировой спрос на батареи в основном движимый бытовой электроникой и прогнозируется рост количества электроинструментов в 6.9% годовых до 2010 г. 73,6 миллиарда долларов. 1 Эффективное использование низкоэмиссионных и безэмиссионные источники энергии, такие как как возобновляемый, но непостоянный ветер и солнечная энергия, требует стационарного, высокопроизводительного, долговечного и неприхотливого обслуживания накопитель электроэнергии решения. В 2006 году Германия, ведущая нация в использовании энергии ветра как часть его общего производства энергии портфель, потратил впустую 15% своего ветроэнергетического энергии из-за отсутствия подходящих хранение электроэнергии. 2 Гибридные электромобили (HEV) и полностью электрические транспортные средства (электромобили) могут снизить зависимость США от иностранной нефти и будет способствовать увеличению спроса на батареи в будущее. Подсчет эффективности двигателя и включая производство электроэнергии, Электромобили могут сократить потребление бензина до одной четвертой сегодняшнего потребления и может снизить зависимость США на импортную нефть до одной шестой части сегодняшний уровень. 3 В центре внимания U.S. Департамент Energys (DOE) Автомобильные технологии Программа на литий-ионной основе электрохимическое накопление энергии за счет электрохимический потенциал и теоретические емкость, обеспечиваемая этой системой. Литий-ионные батареи могут обеспечить надежная аккумуляторная технология хранения. Изменения в этой программе включают литий-ионный, литий-ионный полимер, и литий-металлическая технология. Краткосрочные цели DOE для HEV с усилителем достигнуты или превышены в восьми из 11 областей, показывая огромные успех программы.В восемь областей включают разрядный импульс мощность, регенеративная импульсная мощность, доступная энергия, эффективность, срок службы, система вес, объем системы и собственное увольнять. Тем не менее, три цели кажутся сложнее и остаются неудовлетворенными: рабочая температура от 30С до 52C, срок службы 15 лет и цена продажи ниже 500–800 долларов за штуку система на 100000 единиц, произведенных на год. 4 Для гибридных электромобилей с подзарядкой от сети (PHEV) в среднесрочной перспективе и для электромобилей в долгосрочной перспективе, достижения далеки от встречи с цели, а также значительный материал и обработка технологические барьеры необходимо быть преодоленным.Рисунок 1 иллюстрирует Министерство энергетики США и Консорциум передовых аккумуляторов США (USABC) цели и вехи встретились для приложений HEV и EV. Программа DOE ориентирована на преодоление технических барьеров, связанных с аккумуляторной технологией HEV, а именно стоимость, производительность, безопасность и жизнь: 6
Исторически, электрохимия и приборостроение доминировало разработка аккумуляторов. Вышеупомянутый барьеры производительности проблемы, связанные с материалами. Плохая низкая температура производительность — это распространение проблема при низкой температуре. Утрата мощность из-за использования в основном проблема связано с механическим поведением, трещина инициирование и рост с последующим фатальным разрушение и последующее покрытие и пассивация поверхностей.Кроме того, разработка и обработка материалов развитие должно быть решаются согласованно, чтобы сократить стоить и создать безопасную аккумуляторную технологию. Поэтому материаловеды и инженеры-технологи медленно входят арена, на которой цель надежная, безопасная и долговечная электрическая энергия хранилище будет достигнуто. ПРИНЦИП БАТАРЕИ И ОСНОВНЫЕ НАПРАВЛЕНИЯ
Наименьший рабочий элемент в батарее электрохимическая ячейка, состоящая катода и анода разделены и подключен электролитом.В электролит проводит ионы, но является изолятором электронам. В заряженном состоянии анод содержит высокую концентрацию интеркалированного лития, в то время как катод обеднен литием. В течение разряд, ион лития покидает анод и мигрирует через электролит к катоду, в то время как связанный с ним электрон собирается током коллектор, который будет использоваться для питания электрического устройство (показано на рисунке 2). Конструкции и комбинации ячеек по модулям и пакам сильно различаются.Чтобы установить базовое понимание, это В документе показаны основные конструкции ячеек и затем сосредотачивается на материалах, обработке, и производство с особым упором на батарейках для транспортировки. Электроды в литий-ионных элементах всегда твердые материалы. Можно различать типы клеток по к их электролитам, которые могут быть жидкие, гелевые или твердотельные компоненты. Электролиты в гелевом и твердом состоянии. ячейки представляют собой структурный компонент и не нужны дополнительные разделители для эффективного разделения электродов и предотвращение коротких замыканий.Ячейки бывают кнопочными, цилиндрическими и призматические формы (см. рис. 3). Хороший обзор форм и материалов ячеек предоставлено J. Besenhard et al. 9 Для приложений с низким и низким энергопотреблением, ячейка часто представляет собой полная батарея. Для высокой энергии и большой мощности приложения, такие как транспорт или стационарное хранилище, ряд ячейки упакованы в модуль, а количество модулей упаковано в аккумулятор. Тонкопленочные батареи МАТЕРИАЛЫ Катодные материалы Материалы анода Электролиты Сепараторы со встроенным тепловым отключением механизмы, и дополнительные внешние сложное управление температурным режимом системы добавлены в модули и аккумуляторные батареи. Ионные жидкости находятся под рассмотрение из-за их термического стабильность, но есть серьезные недостатки, например, растворение лития из анод. Полимерные электролиты ионные проводящие полимеры. Они часто смешанный в композитах с керамикой наночастицы, что приводит к более высокой проводимости и устойчивость к более высоким напряжения.Кроме того, из-за их высокого вязкость и квазитвердое поведение, полимерные электролиты могут ингибировать литий дендриты из растущих 13 и могли поэтому может использоваться с металлическим литием аноды. Электролиты твердые литий-ионные проводящие кристаллы и керамические стекла. Они показывают очень плохую низкотемпературную производительность, потому что литий подвижность в твердом теле значительно снижена при низких температурах. Кроме того, твердые электролиты требуют специального осаждения условия и температурные процедуры добиться приемлемого поведения, сделав они чрезвычайно дороги в использовании, хотя они устраняют необходимость в сепараторы и риск теплового разгона. Сепараторы Хороший обзор материалов сепараторов и потребности обеспечивает П. Арора и З. Чжан. 14 Как следует из названия, разделитель аккумулятора разделяет два электроды физически друг от друга, таким образом избегая короткого замыкания. В этом случае жидкого электролита сепаратор пеноматериал, пропитанный электролит и удерживает его на месте. Это должен быть электронный изолятор при минимальном сопротивлении электролита, максимальная механическая стабильность, и химическая стойкость к деградации в высоко электрохимически активном среда.Кроме того, разделитель часто имеет функцию безопасности, называемую термической неисправность; при повышенных температурах, он тает или закрывает поры, чтобы закрыть вниз литий-ионный транспорт без теряет механическую устойчивость. Сепараторы либо синтезируются в листах и собран с электродами или наносится на один электрод на месте. С точки зрения затрат последний метод является предпочтительным, но предполагает некоторый другой синтез, обработка и механические проблемы. Твердотельные электролиты и некоторые полимеры электролиты не нуждаются в сепараторе. ОБРАБОТКА И ПРОИЗВОДСТВО Разряд аккумулятора основан на диффузии ионов лития с анода к катоду через токоприемник, как показано на рисунке 2. Этот движущийся механизм в первую очередь основан на диффузионные процессы: доставка лития ионы на поверхность анода, переходя к и распространение через электролит, и переход на и диффузия в катод.Распространение самый ограничивающий фактор в сильноточных разрядка и зарядка, а также при низких температурах представление. Кроме того, интеркаляция и деинтеркаляция процессы создают изменение объема в активные электродные материалы. Это повторилось процесс из-за цикла может инициировать трещины и могут привести к возможному разрушению в результате непригодного активного электрода материал из-за отключения токоприемник или короткое замыкание а в случае литий-металлических батарей — угроза безопасности из-за шероховатости анода и роста дендритов. Работы по обработке материалов и производство для повышения производительности и управлять неизбежным объемом изменения привели к составному материалы с микро- и наноразмерными частицы. Наночастицы могут вместить изменение громкости с минимальным риск возникновения трещин и их микромасштабные агломераты и композиты приводит к минимальному распространению длины пути через медленную диффузию фазы (электроды). Сильное внимание уделяется от плотности упаковки, чтобы максимально увеличить активную содержание материала, открытая пористость для доступа электролит и электронная непрерывность чтобы гарантировать обмен заряда на токоприемники. Ячейки цилиндрические изготавливаются. и собран следующим образом. Электролиты формируются из паст активных материалы порошки, связующие, растворители, и добавки и подаются на покрытие машины выкладывать на токоприемник фольга, например алюминиевая для катодная сторона и медь для анода боковая сторона. Последующее ведение календаря для однородная толщина и частицы после размера следует разрезать до нужного ширина. Затем компоненты уложены на сепаратор-анод-катод-сепаратор стопки с последующей намоткой на цилиндрические ячейки, вставки в цилиндрические корпуса, и сварка проводки таб.Затем ячейки заполняются электролит. Электролит должен смачиваться разделитель, впитайте и намочите электроды. Процесс смачивания и замачивания это самый медленный шаг и поэтому является определяющим фактором скорости линии. Все остальные необходимые изоляторы, затем прикрепляются пломбы и предохранительные устройства. и подключен. Тогда клетки заряжаются с первого раза и тестируются. Часто необходимо вентилировать клетки во время первая зарядка. Далее следуют первые циклы зарядки. сложные протоколы для улучшения производительность, поведение на велосипеде и срок службы ячеек.В последнее время усилия были произведены в сочетании и гибридная обработка, такая как прямое осаждение разделителей на электроды и быстрые термообработки. АНАЛИЗ РАСХОДОВ НА АККУМУЛЯТОРЫ ДЛЯ ТРАНСПОРТИРОВКИ Требования к аккумуляторной батарее для
HEV отличаются от таковых для
PHEV и электромобили. 6 Программа DOE
целевые производственные цены от $ 500 до
800 долларов США за аккумуляторные блоки HEV и 1700 долларов США
до 3400 долларов за аккумуляторные блоки PHEV. Из таблицы I можно оценить, что емкость ячеек примерно зависит от масса. Хотя упаковка в составе всего для большой батареи меньше чем у маленькой батареи, общая масса батареи на 10 Ач составляет примерно 325 г, а общая масса ячейки 100 Ач составляет примерно 3430 г. Таким образом, расчет стоимости материалы можно получить, увеличив масштаб затраты на материалы в ячейке 18650 на в 10 раз для HEV и в раз 100 для электромобилей.Большинство конструкций батарей в результате батарейки в общей сложности около 100 ячеек в нескольких модулях (например, как 12 × 8, 10 × 10 или аналогичный).
Например, затраты на материалы для элемента 18650 на основе LiCoO 2 (включая обработка материалов) может быть оценивается примерно в 1,28 доллара за весь клетка. 15 Обработка материалов очень сложна отделить от стоимости материалов и поэтому включается в стоимость материалов в этом разделе. Кроме того, стоимость обработки материалов меняется резко с разными материалами и поэтому может считаться зависящим от материала.Однако новая обработка методы могут снизить текущий максимум стоимость сырья. Затраты на производство и оплату труда Итого Оценка показывает, что для достижения целей, необходимы огромные усилия, чтобы снизить стоимость обработки, стоимость материалов, и количество необходимого материала. ЗАКЛЮЧЕНИЕ Нет сомнений в том, что литий-ионный клеточная химия предлагает одни из лучших варианты хранения электроэнергии для приложения с высокой и высокой мощностью такие как транспортные и стационарные хранение за счет их электрохимических потенциал, теоретические возможности и плотность энергии.Однако по оценкам стоимость батареи для примера приложения HEV все еще вдвое выше целевой цены учреждено USABC и DOE. С ростом цен на нефть немного выше цена, которую цель может уже получить достаточно потребительского признания для успешный выход на рынок. Однако цена еще впереди вниз. Есть четкие потребности в областях разработки материалов, оптимизации, и обработка. Расчеты выше отдельно между материалами и затраты на оплату труда.Однако это практически невозможно разделить затраты на сырье от затрат на обработку материалов, потому что мы никогда не используем чистое сырье в процесс; скорее, мы используем материальные соединения которые подходят для применения и это наименее дорогие в производство. Кроме того, даже сырье и материальные соединения имеют обработано. Таким образом, новые недорогие методы обработки этих материалов и соединения должны быть разработаны чтобы свести к минимуму сырые батареи стоимость материала. Требуются работы по гибридным технологиям такие как сочетание недорогих навозной жижи техники с методами лечения заменить задачи, которые в настоящее время выполняется в два разных этапа. Высокоскоростной процедуры, такие как лучистая обработка, необходимо оптимизировать, чтобы заменить медленные печные процедуры. Инвестиции затраты и время производства должны быть минимизированным, чтобы сделать их выполнимыми для аккумуляторные приложения. Кроме того, гибрид материалы, которые могут выполнять функции из двух или более компонентов в настоящее время в использовании должны быть разработаны и встроены в батареи (например,г., цельный или высоковязкие электролиты, не нужны сепараторы, имеют усиленный литий обменное поведение, намочите электрод, и образуют хорошую связь). БЛАГОДАРНОСТИ Автор выражает благодарность. поддержка Дэвида Хауэлла (Энергия Руководитель программы НИОКР по хранению, Транспортное средство Программа технологий, Управление энергетики Эффективность и возобновляемые источники энергии, Департамент энергетики) и Раймонд Боеман (директор транспортной программы, Окриджская национальная лаборатория), руководство от Крейга Блю и плодотворные дискуссии с Нэнси Дадни и многие другие коллеги.Это исследование в Национальной лаборатории Ок-Ридж, под управлением ООО «ЮТ-Баттель» для Министерство энергетики США под контракт DE-AC05-00OR22725, имеет спонсируется Vehicle Technologies Программа для Управления энергетики Эффективность и возобновляемые источники энергии. ССЫЛКИ 1. World Batteries, Промышленное исследование с прогнозами до
2010 и 2015 (Исследование № 2095) (Кливленд, Огайо: Freedonia
Группа, 2006). |