Виды аккумуляторов: Виды и типы аккумуляторных батарей — подробно!

Содержание

Виды и типы аккумуляторных батарей — подробно!

Категория: Поддержка по аккумуляторным батареям
Опубликовано 25.06.2015 19:00
Автор: Abramova Olesya

Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.

Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.

Рисунок 1. Вольтов столб из шести элементов.

Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта

Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.

Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.

Основные виды аккумуляторов приведены в таблице №1.

Тип

Применение

Обозначение

Рабочая температура, ºC

Напряжение элемента, В

Удельная энергия, Вт∙ч/кг

Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный)

Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д.

Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S)

-20 … +40

3,2-4,2

280

никель-солевой

Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии

Na/NiCl

-50 … +70

2,58

140

никель-кадмиевый

Электрокары, речные и морские суда, авиация

Ni-Cd

–50 … +40

1,2-1,35

40 – 80

железо-никелевый

Резервное электропитание, тяговые для электротранспорта, цепи управления

Ni-Fe

–40 … +46

1,2

100

никель-водородный

Космос

Ni-h3

 

1,5

75

никель-металл-гидридный

электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Ni-MH

–60 … +55

1,2-1,25

60 – 72

никель-цинковый

Фотоаппараты

Ni-Zn

–30 … +40

1,65

60

свинцово-кислотный

Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д.

Pb

–40 … +40

2, 11-2,17

30 – 60

серебряно-цинковый

Военная сфера

Ag-Zn

–40 … +50

1,85

<150

серебряно-кадмиевый

Космос, связь, военные технологии

Ag-Cd

–30 … +50

1,6

45 – 90

цинк-бромный

 

Zn-Br

 

1,82

70 – 145

цинк-хлорный

 

Zn-Cl

–20 … +30

1,98-2,2

160 – 250

Таблица №1. Классификация аккумуляторных батарей.

Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.

Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.

Свинцово-кислотные аккумуляторные батареи

Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.

Принцип действия свинцово-кислотных батарей

Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция.

В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.

Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.

Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.

Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).

Типы свинцово-кислотных батарей

  • Lead–Acid, обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.

  • Valve Regulated Lead–Acid (VRLA), необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.

  • Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA), необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.

    Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.

    Рисунок №4. AGM VRLA аккумуляторы EverExceed.

  • GEL Valve Regulated Lead–Acid (GEL VRLA), необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.

    Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.

    Рисунок №5. GEL VRLA аккумулятор EverExceed.

     

     

     

  • OPzV, необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.

    Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.

    Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.


    Рисунок №6. Строение OPzV аккумулятора EverExceed.

  • OPzS, малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.

    Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.

    Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.

    Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.

    Рисунок №7. OPzS аккумулятор Victron Energy.

Характеристики свинцово-кислотных аккумуляторов

Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.

Тип

LA

VRLA

AGM VRLA

GEL VRLA

OPzV

OPzS

Емкость, Ампер/час

10 – 300

1 – 300

1 – 3000

1 – 3000

50 – 3500

50 – 3500

Напряжение, Вольт

6, 12

4, 6, 12

2, 4, 6, 12

2, 6, 12

2

2

Оптимальная глубина разряда, %

 

30

<40

<50

<60

<60

Допустимая глубина разряда, %

 

<75

<80

<90

<90

<100

Циклический ресурс, D. O.D.=50%

 

<250-300

<1000

<1400

<3200

<3300

Оптимальная температура, °С

0 … +45

+15 … +25

+10 … +25

+10 … +25

0 … +30

0 … +30

Диапазон рабочих температур, °С

–50 … +70

–35 … +60

–40 … +70

–40 … +70

–40 … +70

–40 … +70

Срок службы, лет при +20°С

<7

<7

5 – 15

8 – 15

15 – 20

17 – 25

Саморазряд, %

3 – 5

2 – 3

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток заряда, % от емкости

10 – 20

20 – 25

20 – 30

15 – 20

15 – 20

10 – 15

Минимальное время заряда, ч

8 – 12

6 – 10

6 – 10

8 – 12

10 – 14

10 – 15

Требования к обслуживанию

3 – 6 мес.

нет

нет

нет

нет

1 – 2 года

Средняя стоимость, $, 12В/100Ач.

70 – 150

200 – 250

250 – 380

350 – 500

1000 – 1400

1500 – 3500

Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.

Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).

Литий-ионные (литиевые) аккумуляторные батареи

История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.

Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.

Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.

Принцип действия литиевых (литий-ионных) батарей

Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.

Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.

Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.

Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.

Типы литий-ионных аккумуляторов

Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.

Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.

  • Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как анод – из графита. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются от анода к катоду. Недостатком этого типа является относительно короткий срок службы, невысокая термическая стабильность и лимитированная мощность элемента.

    Литий-кобальтовые батареи не могут разряжаться и заряжаться током, превосходящим номинальную емкость, поэтому аккумулятор с емкостью 2,4Ач может работать с током 2,4А. Если для заряда будет применяться большая сила тока, то это вызовет перегрев. Оптимальный зарядный ток составляет 0,8C, в данном случае 1,92А. Каждый литий-кобальтовый аккумулятор комплектуется схемой защиты, которая ограничивает заряд и скорость разряда и лимитирует ток на уровне 1C.

    На графике (Рис. 10) отражены основные свойства литий-кобальтовых аккумуляторов с точки зрения удельной энергии или мощности, удельная мощность или способность обеспечивать высокий ток, безопасности или шансы воспламенения при высокой нагрузке, рабочая температура окружающей среды, срок службы и циклический ресурс, стоимость.

    Рисунок №10. Диаграмма основных свойств LiCoO2 аккумуляторов.

     

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов. 

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов.

    Гибкость конструкции позволяет инженерам оптимизировать свойства батареи и достичь длительного срока службы, высокой емкости (удельная энергия), возможности обеспечивать максимальный ток (удельная мощность). Например, с длительным сроком эксплуатации типоразмер элемента 18650 имеет емкость 1,1Ач, тогда как элементы, оптимизированные на повышенную емкость, – 1,5Ач, но при этом они имеют меньший срок службы.

    На графике (Рис. 12) отраженны не самые впечатляющие характеристики литий-марганцевых аккумуляторов, однако современные разработки позволили существенно повысить эксплуатационных характеристики и сделать этот тип конкурентным и широко применяемым.

    Рисунок №11. Диаграмма основных свойств LiMn2O4 аккумуляторов.

    Современные аккумуляторы литий-марганцевого типа могут производиться с добавлениями других элементов – литий-никель-марганец-кобальт оксид (NMC), подобная технология существенно продлевает срок службы и повышает показатели удельной энергии. Этот состав привносит лучшие свойства из каждой системы, так называемые LMO (NMC) применяются для большинства электромобилей, таких как Nissan, Chevrolet, BMW и т. д. 

  • Литий-Никель-Марганец-Кобальт оксид (LiNiMnCoO2 или NMC) – ведущие производители литий-ионных батарей сосредоточились на сочетании никеля-марганца-кобальта в качестве материалов катода (NMC). Похожий на литий-марганцевый тип, эти аккумуляторы могут быть адаптированы для достижения показателей высокой удельной энергии или высокой удельной мощности, однако, не одновременно. К примеру, элемент NMC типа 18650 в состоянии умеренной нагрузки имеет емкость 2,8Ач и может обеспечить максимальный ток 4-5А; NMC элемент, оптимизированный к параметрам повышенной мощности, имеет всего 2Втч, но может обеспечить непрерывный ток разряда до 20А. Особенность NMC заключается в сочетании никеля и марганца, в качестве примера можно привести поваренную соль, в которой основные ингредиенты натрий и хлорид, которые в отдельности являются токсичными веществами.

    Никель известен своей высокой удельной энергией, но низкой стабильностью. Марганец имеет преимущество формирования структуры шпинели и обеспечивает низкое внутреннее сопротивление, но при этом обладает низкой удельной энергией. Комбинируя эти два металла, можно получать оптимальные характеристика NMC аккумулятора для разных режимов эксплуатации.

    NMC аккумуляторы прекрасно подходят для электроинструмента, электровелосипедов и других силовых агрегатов. Сочетание материалов катода: треть никеля, марганца и кобальта обеспечивают уникальные свойства, а также снижают стоимость продукта в связи с уменьшением содержания кобальта. Другие подтипы, как NCM, CMN, CNM, MNC и MCN имеют отличное соотношение тройки металлов от 1/3-1/3-1/3. Обычно, точное соотношение держится производителем в секрете.

    Рисунок №12. Диаграмма основных свойств LiNiMnCoO2 аккумуляторов.

  • Литий-Железо-Фосфатные (LiFePO4) – в 1996 в университете штата Техас (и другими участниками) был применен фосфат в качестве катодного материала для литиевых аккумуляторов. Литий-фосфат предлагает хорошие электрохимические характеристики с низким сопротивлением. Это стало возможным с нано-фосфатом материала катода. Основными преимуществами являются высокий протекающий ток и длительный срок службы к тому же, хорошая термическая стабильность и повышенная безопасность.

    Литий-железо-фосфатные аккумуляторы терпимее к полному разряду и менее подвержены «старению», чем другие литий-ионные системы. Также LFP более устойчивы к перезаряду, но как и в других аккумуляторах литий-ионного типа, перезаряд может вызвать повреждение. LiFePO4 обеспечивает очень стабильное напряжение разряда – 3,2В, это же позволяет использовать всего 4 элемента для создания батареи стандарта 12В, что в свою очередь позволяет эффективно заменять свинцово-кислотные батареи. Литий-железо-фосфатные аккумуляторы не содержат кобальт, это существенно снижает стоимость продукта и делает его более экологически чистым. В процессе разряда обеспечивает высокий ток, а также может быть заряжен номинальным током всего за один час до полной емкости. Эксплуатация при низких температурах окружающей среды снижает производительность, а температура свыше 35ºС – несколько сокращается срок службы, но показатели намного лучше, чем у свинцово-кислотных, никель-кадмиевых или никель-металлогидридных аккумуляторов. Литий-фосфат имеет больший саморазряд, чем другие литий-ионные аккумуляторы, которые могут вызвать потребность балансировки батарейных кабинетов.

    Рисунок №13. Диаграмма основных свойств LiFePO4 аккумуляторов.

     

  • Литий-Никель-Кобальт-Оксид Алюминия (LiNiCoAlO2) – литий-никель-кобальто-оксид алюминиевые батареи (NCA) появились в 1999 году. Этот тип обеспечивает высокую удельную энергию и достаточную удельную мощность, а также длительный срок службы. Однако существуют риски воспламенения, в следствие чего был добавлен алюминий, который обеспечивает более высокую стабильность электрохимических процессов, протекающих в аккумуляторе при высоких токах разряда и заряда.

    Рисунок №14. Диаграмма основных свойств LiNiCoAlO2 аккумуляторов.

  • Литий-титанат (Li4Ti5O12) – аккумуляторы с анодами из литий-титаната были известны с 1980-х годов. Катод состоит из графита и имеет сходство с архитектурой типичной литий-металлической батареи. Литий-титанат имеет напряжение элемента 2,4В, может быть быстро заряжен и обеспечивает высокий разрядный ток 10C, который в 10 раз превышает номинальную емкость батареи.

    Литий-титанатные аккумуляторы отличаются повышенным циклическим ресурсом по сравнению с другими Li-ion видами батарей. Обладают высокой безопасностью, а также способны работать при низких температурах (до –30ºC) без ощутимого снижения рабочих характеристик.

    Недостаток заключается в достаточно высокой стоимости, а также в небольшом показателе удельной энергии, порядка 60-80Втч/кг, что вполне сопоставимо с никель-кадмиевыми аккумуляторами. Области применения: электрические силовые агрегаты и источники бесперебойного питания.

    Рисунок №15. Диаграмма основных свойств Li4Ti5O12 аккумуляторов.

  • Литий-полимерные аккумуляторы (Li-pol, Li-polymer, LiPo, LIP, Li-poly) – литий полимерные аккумуляторы отличаются от литий-ионных тем, что в них используется специальный полимерный электролит. Возникший ажиотаж к этому виду батарей с 2000-х годов длится до сегодняшнего времени. Основан он не безосновательно, т. к. при помощи специальных полимеров удалось создать батарею без жидкого или гелеобразного электролита, это дает возможность создавать батареи практически любой формы. Но основная проблема заключается в том, что твердый полимерный электролит обеспечивает плохую проводимость при комнатной температуре, а лучшие свойства демонтирует в разогретом состоянии до 60°С. Все попытки ученых обнаружить решение этой задачи оказали тщетны.

    В современных литий-полимерных батареях применяется небольшое количество гелевого электролита для лучшей проводимости при нормальной температуре. А принцип работы построен на одном из описанных выше типов. Самым распространенным является литий-кобальтовый тип с полимерным гелеобразным электролитом, который применяется в большинстве случаев.

    Основная разница между литий-ионными аккумуляторами и литий-полимерными заключается в том, что микропористый полимерный электролит заменяется традиционным разделительным сепаратором. Литий-полимер имеет немного больший показатель удельной энергии и дает возможность создавать тонкие элементы, но стоимость на 10-30% выше, чем литий-ионных. Существенная разница есть и в структуре корпуса. Если для литий-полимерных применяется тонкая фольга, которая дается возможность создавать настолько тонкие элементы питания, что они похожи на кредитные карты, то литий-ионные собираются в жестком металлическом корпусе для плотной фиксации электродов.

    Рисунок №17. Внешний вид Li-polymer аккумулятора для мобильного телефона.

Характеристики литий-ионных аккумуляторов

В таблице отсутствует максимальная емкость элементов, т. к. технология литий-ионных аккумуляторов не позволяет производить мощные отдельные элементы. Когда необходима высокая емкость или постоянный ток, батареи соединятся параллельно и последовательно при помощи перемычек. Состояние обязательно должна контролировать система батарейного мониторинга. Современные батарейные кабинеты для ИБП и солнечных электростанций на основе литиевых элементов могут достигать напряжения 500-700В постоянного тока с емкостью около 400А/ч, а также емкости 2000 – 3000Ач с напряжением 48 или 96В.

Параметр \ Тип

LiCoO2

LiMn2O4

LiNiMnCoO2

LiFePO4

LiNiCoAlO2

Li4Ti5O12

Напряжение элемента, Вольт;

3.6

3.7

3.6-3.7

3.2

3.6

2.4

Оптимальная глубина разряда, %;

85-90

85-90

85-90

85-90

85-90

85-90

Допустимая глубина разряда, %;

100

100

100

100

100

100

Циклический ресурс, D.O.D.=80%;

700 — 1000

1000 — 2000

1000 — 2000

1000 — 2000

1000 — 2000

5000 — 8000

Оптимальная температура, °С;

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

Диапазон рабочих температур, °С;

–10 …+60

–10 …+45

–10 …+55

–10 …+60

–10 …+55

–10 …+45

Срок службы, лет при +20°С;

5 – 7

10

10

20 — 25

20 — 25

18 — 25

Саморазряд в мес., %

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток разряда

1C

10C/30C 5с

2C

25 — 30C

1C

10C/30С 5с

Макс. ток заряда

0,7-1C

0,7-1C

0,7-1C

1C

0,7C

1C

Минимальное время заряда, ч

2 — 3

2 — 2.5

2 — 3

2 — 3

2 — 3

2 — 3

Требования к обслуживанию

нет

нет

нет

нет

нет

нет

Уровень стоимости

высокий

средний

средний

низкий

средний

высокий

Никель-кадмиевые аккумуляторные батареи

Изобретателем является шведский ученый Вальдемар Юнгнер, который запатентовал технологию производства никель кадмиевого типа в 1899 году. D 1990 году возник патентный спор с Эдисоном, который Юнгнер проиграл в силу того, что не владел таким средствами, как его оппонент. Компания «Ackumulator Aktiebolaget Jungner», основанная Вальдемаром, оказалась на грани банкротства, однако, сменив название на «Svenska Ackumulator Aktiebolaget Jungner», предприятие все же продолжило свое развитие. В настоящее время предприятие, основанное разработчиком, носит название «SAFT AB» и производит одни из самых надежных никель-кадмиевых аккумуляторов в мире.

Никель-кадмиевые аккумуляторы относятся к очень долговечному и надежному типу. Существуют обслуживаемые и необслуживаемые модели с емкостью от 5 до 1500Ач. Обычно поставляются в виде сухо-заряженных банок без электролита с номинальным напряжением 1,2В. Несмотря на схожесть конструкции со свинцово-кислотными, никель- кадмиевые батареи имеют ряд существенных преимуществ в виде стабильной работы при температуре от –40°С, возможности выдерживать высокие пусковые токи, а также оптимизированы моделями для быстрого разряда. Ni-Cd батареи устойчивы к глубокому разряду, перезаряду и не требуют моментального заряда как свинцово-кислотный тип. Конструктивно производятся в ударопрочном пластике и хорошо переносят механические повреждения, не боятся вибрации и т.п.

Принцип действия никель-кадмиевых батарей

Щелочные аккумуляторы, электроды которых состоят из гидрата окиси никеля с добавлениями графита, окиси бария и порошкового кадмия. В качестве электролита, как правило, выступает раствор с 20%-ным содержанием калия и добавлением моногидрата лития. Пластины разделены изолирующими сепараторами во избежании замыкания, одна отрицательно заряженная пластина расположена между двумя положительно заряженными.

В процессе разряда никель-кадмиевой батареи происходит взаимодействие между анодом с гидратом окиси никеля и ионами электролита, образуя гидрат закиси никеля. В это же время катод из кадмия образует гидрат окиси кадмия, тем самым создавая разность потенциалов до 1,45В обеспечивая напряжение внутри аккумулятора и во внешней замкнутой цепи.

Процесс заряда никель-кадмиевых аккумуляторов сопровождается окислением активной массы анодов и переходом гидрата закиси никеля в гидрат окиси никеля. Одновременно катод восстанавливается с образованием кадмия.

Достоинством принципа действия никель-кадмиевой батареи является то, что все составляющие, которые образуются в процессе циклов разряда и заряда, почти не растворяются в электролите, а также не вступают в какие-либо побочные реакции.

Рисунок №16. Строение Ni-Cd аккумулятора.

Типы никель-кадмиевых аккумуляторов

В настоящее время батареи Ni-Cd используют чаще всего в промышленности, где требуется обеспечивать питанием разнообразные приложения. Некоторые производители предлагают несколько подвидов никель-кадмиевых аккумуляторов, которые обеспечивают наилучшую работу в определенных режимах:

  • время разряда 1,5 – 5 часов и более – обслуживаемые батареи;

  • время разряда 1,5 – 5 часов и более – необслуживаемые батареи;

  • время разряда 30 – 150 минут – обслуживаемые батареи;

  • время разряда 20 – 45 минут – обслуживаемые батареи;

  • время разряда 3 – 25 минут – обслуживаемые батареи.

Характеристики никель-кадмиевых аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

1 – 1500

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

60 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

2300

Оптимальная температура, °С;

0 … +20

Диапазон рабочих температур, °С;

-50 … +70

Срок службы, лет при +20°С;

25

Саморазряд в мес., %

4

Макс. ток разряда

10 C5

Макс. ток заряда

0.4 C5

Минимальное время заряда, ч

5

Требования к обслуживанию

Малообслуживаемые или необслуживанемые

Уровень стоимости

средняя (300 – 400$ 100Ач)

Высокие технические характеристики делают этот тип аккумуляторных батарей очень привлекательным для решения производственных задач, когда требуется высоконадежный источник резервного питания с длительным сроком службы.

Никелево-железные аккумуляторные батареи

Впервые были созданы Вальдемаром Юнгнером в 1899 году, когда он пытался найти более дешевый аналог кадмию в составе никель-кадмиевых батарей. После долгих испытаний Юнгнер отказался от применения железа, т. к. заряд осуществлялся слишком медленно. Несколькими годами позднее, Томас Эдисон создал никель-железный аккумулятор, который осуществлял питание электромобилей «Baker Electric» и «Detroit Electric».

Дешевизна производства позволили никель-железным аккумуляторам стать востребованными в электротранспорте в качестве тяговых батарей, также применяются для электрификации пассажирских вагонов, питания цепей управления. В последние годы о никель-железных аккумуляторах заговорили с новой силой, т. к. они не содержат токсичных элементов вроде свинца, кадмия, кобальта и т. д. В настоящее время некоторые производители продвигают их для систем возобновляемой энергетики.

Принцип действия никелево-железных батарей

Аккумуляция электроэнергии происходит при помощи никель оксида-гидроксида, применяемого в качестве положительных пластин, железа – в качестве отрицательных пластин и жидкого электролита в виде едкого калия. Никелевые стабильные трубки или «карманы» содержат активное вещество

Никелево-железный тип очень надежный, т.к. выдерживает глубокие разряды, частые перезаряды, а также может находится в недозаряженном состоянии, что очень пагубно для свинцово-кислотных батарей.

Характеристики никелево-железных аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

10 – 1000

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

50 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

1800 — 2300

Оптимальная температура, °С;

+15 … +25

Диапазон рабочих температур, °С;

-40 … +60

Срок службы, лет при +20°С;

20

Саморазряд в мес., %

15

Макс. ток разряда

0.25C 5

Макс. ток заряда

0.25C 5

Минимальное время заряда, ч

12 – 16

Требования к обслуживанию

Малообслуживаемые

Уровень стоимости

средняя, низкая

Использованные материалы

Исследования компании Boston Consulting Group

Техническая документация ТМ Bosch, Panasonic, EverExceed, Victron Energy, Varta, Leclanché, Envia, Kokam, Samsung, Valence и других.

Виды и типы аккумуляторных батарей — подробно!

Категория: Поддержка по аккумуляторным батареям
Опубликовано 25.06.2015 19:00
Автор: Abramova Olesya

Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.

Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.

Рисунок 1. Вольтов столб из шести элементов.

Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта

Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.

Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.

Основные виды аккумуляторов приведены в таблице №1.

Тип

Применение

Обозначение

Рабочая температура, ºC

Напряжение элемента, В

Удельная энергия, Вт∙ч/кг

Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный)

Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д.

Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S)

-20 … +40

3,2-4,2

280

никель-солевой

Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии

Na/NiCl

-50 … +70

2,58

140

никель-кадмиевый

Электрокары, речные и морские суда, авиация

Ni-Cd

–50 … +40

1,2-1,35

40 – 80

железо-никелевый

Резервное электропитание, тяговые для электротранспорта, цепи управления

Ni-Fe

–40 … +46

1,2

100

никель-водородный

Космос

Ni-h3

 

1,5

75

никель-металл-гидридный

электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Ni-MH

–60 … +55

1,2-1,25

60 – 72

никель-цинковый

Фотоаппараты

Ni-Zn

–30 … +40

1,65

60

свинцово-кислотный

Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д.

Pb

–40 … +40

2, 11-2,17

30 – 60

серебряно-цинковый

Военная сфера

Ag-Zn

–40 … +50

1,85

<150

серебряно-кадмиевый

Космос, связь, военные технологии

Ag-Cd

–30 … +50

1,6

45 – 90

цинк-бромный

 

Zn-Br

 

1,82

70 – 145

цинк-хлорный

 

Zn-Cl

–20 … +30

1,98-2,2

160 – 250

Таблица №1. Классификация аккумуляторных батарей.

Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.

Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.

Свинцово-кислотные аккумуляторные батареи

Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.

Принцип действия свинцово-кислотных батарей

Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция. В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.

Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.

Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.

Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).

Типы свинцово-кислотных батарей

  • Lead–Acid, обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.

  • Valve Regulated Lead–Acid (VRLA), необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.

  • Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA), необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.

    Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.

    Рисунок №4. AGM VRLA аккумуляторы EverExceed.

  • GEL Valve Regulated Lead–Acid (GEL VRLA), необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.

    Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.

    Рисунок №5. GEL VRLA аккумулятор EverExceed.

     

     

     

  • OPzV, необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.

    Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.

    Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.


    Рисунок №6. Строение OPzV аккумулятора EverExceed.

  • OPzS, малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.

    Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.

    Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.

    Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.

    Рисунок №7. OPzS аккумулятор Victron Energy.

Характеристики свинцово-кислотных аккумуляторов

Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.

Тип

LA

VRLA

AGM VRLA

GEL VRLA

OPzV

OPzS

Емкость, Ампер/час

10 – 300

1 – 300

1 – 3000

1 – 3000

50 – 3500

50 – 3500

Напряжение, Вольт

6, 12

4, 6, 12

2, 4, 6, 12

2, 6, 12

2

2

Оптимальная глубина разряда, %

 

30

<40

<50

<60

<60

Допустимая глубина разряда, %

 

<75

<80

<90

<90

<100

Циклический ресурс, D.O.D.=50%

 

<250-300

<1000

<1400

<3200

<3300

Оптимальная температура, °С

0 … +45

+15 … +25

+10 … +25

+10 … +25

0 … +30

0 … +30

Диапазон рабочих температур, °С

–50 … +70

–35 … +60

–40 … +70

–40 … +70

–40 … +70

–40 … +70

Срок службы, лет при +20°С

<7

<7

5 – 15

8 – 15

15 – 20

17 – 25

Саморазряд, %

3 – 5

2 – 3

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток заряда, % от емкости

10 – 20

20 – 25

20 – 30

15 – 20

15 – 20

10 – 15

Минимальное время заряда, ч

8 – 12

6 – 10

6 – 10

8 – 12

10 – 14

10 – 15

Требования к обслуживанию

3 – 6 мес.

нет

нет

нет

нет

1 – 2 года

Средняя стоимость, $, 12В/100Ач.

70 – 150

200 – 250

250 – 380

350 – 500

1000 – 1400

1500 – 3500

Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.

Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).

Литий-ионные (литиевые) аккумуляторные батареи

История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.

Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.

Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.

Принцип действия литиевых (литий-ионных) батарей

Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.

Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.

Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.

Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.

Типы литий-ионных аккумуляторов

Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.

Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.

  • Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как анод – из графита. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются от анода к катоду. Недостатком этого типа является относительно короткий срок службы, невысокая термическая стабильность и лимитированная мощность элемента.

    Литий-кобальтовые батареи не могут разряжаться и заряжаться током, превосходящим номинальную емкость, поэтому аккумулятор с емкостью 2,4Ач может работать с током 2,4А. Если для заряда будет применяться большая сила тока, то это вызовет перегрев. Оптимальный зарядный ток составляет 0,8C, в данном случае 1,92А. Каждый литий-кобальтовый аккумулятор комплектуется схемой защиты, которая ограничивает заряд и скорость разряда и лимитирует ток на уровне 1C.

    На графике (Рис. 10) отражены основные свойства литий-кобальтовых аккумуляторов с точки зрения удельной энергии или мощности, удельная мощность или способность обеспечивать высокий ток, безопасности или шансы воспламенения при высокой нагрузке, рабочая температура окружающей среды, срок службы и циклический ресурс, стоимость.

    Рисунок №10. Диаграмма основных свойств LiCoO2 аккумуляторов.

     

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов. 

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов.

    Гибкость конструкции позволяет инженерам оптимизировать свойства батареи и достичь длительного срока службы, высокой емкости (удельная энергия), возможности обеспечивать максимальный ток (удельная мощность). Например, с длительным сроком эксплуатации типоразмер элемента 18650 имеет емкость 1,1Ач, тогда как элементы, оптимизированные на повышенную емкость, – 1,5Ач, но при этом они имеют меньший срок службы.

    На графике (Рис. 12) отраженны не самые впечатляющие характеристики литий-марганцевых аккумуляторов, однако современные разработки позволили существенно повысить эксплуатационных характеристики и сделать этот тип конкурентным и широко применяемым.

    Рисунок №11. Диаграмма основных свойств LiMn2O4 аккумуляторов.

    Современные аккумуляторы литий-марганцевого типа могут производиться с добавлениями других элементов – литий-никель-марганец-кобальт оксид (NMC), подобная технология существенно продлевает срок службы и повышает показатели удельной энергии. Этот состав привносит лучшие свойства из каждой системы, так называемые LMO (NMC) применяются для большинства электромобилей, таких как Nissan, Chevrolet, BMW и т. д. 

  • Литий-Никель-Марганец-Кобальт оксид (LiNiMnCoO2 или NMC) – ведущие производители литий-ионных батарей сосредоточились на сочетании никеля-марганца-кобальта в качестве материалов катода (NMC). Похожий на литий-марганцевый тип, эти аккумуляторы могут быть адаптированы для достижения показателей высокой удельной энергии или высокой удельной мощности, однако, не одновременно. К примеру, элемент NMC типа 18650 в состоянии умеренной нагрузки имеет емкость 2,8Ач и может обеспечить максимальный ток 4-5А; NMC элемент, оптимизированный к параметрам повышенной мощности, имеет всего 2Втч, но может обеспечить непрерывный ток разряда до 20А. Особенность NMC заключается в сочетании никеля и марганца, в качестве примера можно привести поваренную соль, в которой основные ингредиенты натрий и хлорид, которые в отдельности являются токсичными веществами.

    Никель известен своей высокой удельной энергией, но низкой стабильностью. Марганец имеет преимущество формирования структуры шпинели и обеспечивает низкое внутреннее сопротивление, но при этом обладает низкой удельной энергией. Комбинируя эти два металла, можно получать оптимальные характеристика NMC аккумулятора для разных режимов эксплуатации.

    NMC аккумуляторы прекрасно подходят для электроинструмента, электровелосипедов и других силовых агрегатов. Сочетание материалов катода: треть никеля, марганца и кобальта обеспечивают уникальные свойства, а также снижают стоимость продукта в связи с уменьшением содержания кобальта. Другие подтипы, как NCM, CMN, CNM, MNC и MCN имеют отличное соотношение тройки металлов от 1/3-1/3-1/3. Обычно, точное соотношение держится производителем в секрете.

    Рисунок №12. Диаграмма основных свойств LiNiMnCoO2 аккумуляторов.

  • Литий-Железо-Фосфатные (LiFePO4) – в 1996 в университете штата Техас (и другими участниками) был применен фосфат в качестве катодного материала для литиевых аккумуляторов. Литий-фосфат предлагает хорошие электрохимические характеристики с низким сопротивлением. Это стало возможным с нано-фосфатом материала катода. Основными преимуществами являются высокий протекающий ток и длительный срок службы к тому же, хорошая термическая стабильность и повышенная безопасность.

    Литий-железо-фосфатные аккумуляторы терпимее к полному разряду и менее подвержены «старению», чем другие литий-ионные системы. Также LFP более устойчивы к перезаряду, но как и в других аккумуляторах литий-ионного типа, перезаряд может вызвать повреждение. LiFePO4 обеспечивает очень стабильное напряжение разряда – 3,2В, это же позволяет использовать всего 4 элемента для создания батареи стандарта 12В, что в свою очередь позволяет эффективно заменять свинцово-кислотные батареи. Литий-железо-фосфатные аккумуляторы не содержат кобальт, это существенно снижает стоимость продукта и делает его более экологически чистым. В процессе разряда обеспечивает высокий ток, а также может быть заряжен номинальным током всего за один час до полной емкости. Эксплуатация при низких температурах окружающей среды снижает производительность, а температура свыше 35ºС – несколько сокращается срок службы, но показатели намного лучше, чем у свинцово-кислотных, никель-кадмиевых или никель-металлогидридных аккумуляторов. Литий-фосфат имеет больший саморазряд, чем другие литий-ионные аккумуляторы, которые могут вызвать потребность балансировки батарейных кабинетов.

    Рисунок №13. Диаграмма основных свойств LiFePO4 аккумуляторов.

     

  • Литий-Никель-Кобальт-Оксид Алюминия (LiNiCoAlO2) – литий-никель-кобальто-оксид алюминиевые батареи (NCA) появились в 1999 году. Этот тип обеспечивает высокую удельную энергию и достаточную удельную мощность, а также длительный срок службы. Однако существуют риски воспламенения, в следствие чего был добавлен алюминий, который обеспечивает более высокую стабильность электрохимических процессов, протекающих в аккумуляторе при высоких токах разряда и заряда.

    Рисунок №14. Диаграмма основных свойств LiNiCoAlO2 аккумуляторов.

  • Литий-титанат (Li4Ti5O12) – аккумуляторы с анодами из литий-титаната были известны с 1980-х годов. Катод состоит из графита и имеет сходство с архитектурой типичной литий-металлической батареи. Литий-титанат имеет напряжение элемента 2,4В, может быть быстро заряжен и обеспечивает высокий разрядный ток 10C, который в 10 раз превышает номинальную емкость батареи.

    Литий-титанатные аккумуляторы отличаются повышенным циклическим ресурсом по сравнению с другими Li-ion видами батарей. Обладают высокой безопасностью, а также способны работать при низких температурах (до –30ºC) без ощутимого снижения рабочих характеристик.

    Недостаток заключается в достаточно высокой стоимости, а также в небольшом показателе удельной энергии, порядка 60-80Втч/кг, что вполне сопоставимо с никель-кадмиевыми аккумуляторами. Области применения: электрические силовые агрегаты и источники бесперебойного питания.

    Рисунок №15. Диаграмма основных свойств Li4Ti5O12 аккумуляторов.

  • Литий-полимерные аккумуляторы (Li-pol, Li-polymer, LiPo, LIP, Li-poly) – литий полимерные аккумуляторы отличаются от литий-ионных тем, что в них используется специальный полимерный электролит. Возникший ажиотаж к этому виду батарей с 2000-х годов длится до сегодняшнего времени. Основан он не безосновательно, т. к. при помощи специальных полимеров удалось создать батарею без жидкого или гелеобразного электролита, это дает возможность создавать батареи практически любой формы. Но основная проблема заключается в том, что твердый полимерный электролит обеспечивает плохую проводимость при комнатной температуре, а лучшие свойства демонтирует в разогретом состоянии до 60°С. Все попытки ученых обнаружить решение этой задачи оказали тщетны.

    В современных литий-полимерных батареях применяется небольшое количество гелевого электролита для лучшей проводимости при нормальной температуре. А принцип работы построен на одном из описанных выше типов. Самым распространенным является литий-кобальтовый тип с полимерным гелеобразным электролитом, который применяется в большинстве случаев.

    Основная разница между литий-ионными аккумуляторами и литий-полимерными заключается в том, что микропористый полимерный электролит заменяется традиционным разделительным сепаратором. Литий-полимер имеет немного больший показатель удельной энергии и дает возможность создавать тонкие элементы, но стоимость на 10-30% выше, чем литий-ионных. Существенная разница есть и в структуре корпуса. Если для литий-полимерных применяется тонкая фольга, которая дается возможность создавать настолько тонкие элементы питания, что они похожи на кредитные карты, то литий-ионные собираются в жестком металлическом корпусе для плотной фиксации электродов.

    Рисунок №17. Внешний вид Li-polymer аккумулятора для мобильного телефона.

Характеристики литий-ионных аккумуляторов

В таблице отсутствует максимальная емкость элементов, т. к. технология литий-ионных аккумуляторов не позволяет производить мощные отдельные элементы. Когда необходима высокая емкость или постоянный ток, батареи соединятся параллельно и последовательно при помощи перемычек. Состояние обязательно должна контролировать система батарейного мониторинга. Современные батарейные кабинеты для ИБП и солнечных электростанций на основе литиевых элементов могут достигать напряжения 500-700В постоянного тока с емкостью около 400А/ч, а также емкости 2000 – 3000Ач с напряжением 48 или 96В.

Параметр \ Тип

LiCoO2

LiMn2O4

LiNiMnCoO2

LiFePO4

LiNiCoAlO2

Li4Ti5O12

Напряжение элемента, Вольт;

3.6

3.7

3.6-3.7

3.2

3.6

2.4

Оптимальная глубина разряда, %;

85-90

85-90

85-90

85-90

85-90

85-90

Допустимая глубина разряда, %;

100

100

100

100

100

100

Циклический ресурс, D.O.D.=80%;

700 — 1000

1000 — 2000

1000 — 2000

1000 — 2000

1000 — 2000

5000 — 8000

Оптимальная температура, °С;

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

Диапазон рабочих температур, °С;

–10 …+60

–10 …+45

–10 …+55

–10 …+60

–10 …+55

–10 …+45

Срок службы, лет при +20°С;

5 – 7

10

10

20 — 25

20 — 25

18 — 25

Саморазряд в мес., %

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток разряда

1C

10C/30C 5с

2C

25 — 30C

1C

10C/30С 5с

Макс. ток заряда

0,7-1C

0,7-1C

0,7-1C

1C

0,7C

1C

Минимальное время заряда, ч

2 — 3

2 — 2.5

2 — 3

2 — 3

2 — 3

2 — 3

Требования к обслуживанию

нет

нет

нет

нет

нет

нет

Уровень стоимости

высокий

средний

средний

низкий

средний

высокий

Никель-кадмиевые аккумуляторные батареи

Изобретателем является шведский ученый Вальдемар Юнгнер, который запатентовал технологию производства никель кадмиевого типа в 1899 году. D 1990 году возник патентный спор с Эдисоном, который Юнгнер проиграл в силу того, что не владел таким средствами, как его оппонент. Компания «Ackumulator Aktiebolaget Jungner», основанная Вальдемаром, оказалась на грани банкротства, однако, сменив название на «Svenska Ackumulator Aktiebolaget Jungner», предприятие все же продолжило свое развитие. В настоящее время предприятие, основанное разработчиком, носит название «SAFT AB» и производит одни из самых надежных никель-кадмиевых аккумуляторов в мире.

Никель-кадмиевые аккумуляторы относятся к очень долговечному и надежному типу. Существуют обслуживаемые и необслуживаемые модели с емкостью от 5 до 1500Ач. Обычно поставляются в виде сухо-заряженных банок без электролита с номинальным напряжением 1,2В. Несмотря на схожесть конструкции со свинцово-кислотными, никель- кадмиевые батареи имеют ряд существенных преимуществ в виде стабильной работы при температуре от –40°С, возможности выдерживать высокие пусковые токи, а также оптимизированы моделями для быстрого разряда. Ni-Cd батареи устойчивы к глубокому разряду, перезаряду и не требуют моментального заряда как свинцово-кислотный тип. Конструктивно производятся в ударопрочном пластике и хорошо переносят механические повреждения, не боятся вибрации и т.п.

Принцип действия никель-кадмиевых батарей

Щелочные аккумуляторы, электроды которых состоят из гидрата окиси никеля с добавлениями графита, окиси бария и порошкового кадмия. В качестве электролита, как правило, выступает раствор с 20%-ным содержанием калия и добавлением моногидрата лития. Пластины разделены изолирующими сепараторами во избежании замыкания, одна отрицательно заряженная пластина расположена между двумя положительно заряженными.

В процессе разряда никель-кадмиевой батареи происходит взаимодействие между анодом с гидратом окиси никеля и ионами электролита, образуя гидрат закиси никеля. В это же время катод из кадмия образует гидрат окиси кадмия, тем самым создавая разность потенциалов до 1,45В обеспечивая напряжение внутри аккумулятора и во внешней замкнутой цепи.

Процесс заряда никель-кадмиевых аккумуляторов сопровождается окислением активной массы анодов и переходом гидрата закиси никеля в гидрат окиси никеля. Одновременно катод восстанавливается с образованием кадмия.

Достоинством принципа действия никель-кадмиевой батареи является то, что все составляющие, которые образуются в процессе циклов разряда и заряда, почти не растворяются в электролите, а также не вступают в какие-либо побочные реакции.

Рисунок №16. Строение Ni-Cd аккумулятора.

Типы никель-кадмиевых аккумуляторов

В настоящее время батареи Ni-Cd используют чаще всего в промышленности, где требуется обеспечивать питанием разнообразные приложения. Некоторые производители предлагают несколько подвидов никель-кадмиевых аккумуляторов, которые обеспечивают наилучшую работу в определенных режимах:

  • время разряда 1,5 – 5 часов и более – обслуживаемые батареи;

  • время разряда 1,5 – 5 часов и более – необслуживаемые батареи;

  • время разряда 30 – 150 минут – обслуживаемые батареи;

  • время разряда 20 – 45 минут – обслуживаемые батареи;

  • время разряда 3 – 25 минут – обслуживаемые батареи.

Характеристики никель-кадмиевых аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

1 – 1500

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

60 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

2300

Оптимальная температура, °С;

0 … +20

Диапазон рабочих температур, °С;

-50 … +70

Срок службы, лет при +20°С;

25

Саморазряд в мес., %

4

Макс. ток разряда

10 C5

Макс. ток заряда

0.4 C5

Минимальное время заряда, ч

5

Требования к обслуживанию

Малообслуживаемые или необслуживанемые

Уровень стоимости

средняя (300 – 400$ 100Ач)

Высокие технические характеристики делают этот тип аккумуляторных батарей очень привлекательным для решения производственных задач, когда требуется высоконадежный источник резервного питания с длительным сроком службы.

Никелево-железные аккумуляторные батареи

Впервые были созданы Вальдемаром Юнгнером в 1899 году, когда он пытался найти более дешевый аналог кадмию в составе никель-кадмиевых батарей. После долгих испытаний Юнгнер отказался от применения железа, т. к. заряд осуществлялся слишком медленно. Несколькими годами позднее, Томас Эдисон создал никель-железный аккумулятор, который осуществлял питание электромобилей «Baker Electric» и «Detroit Electric».

Дешевизна производства позволили никель-железным аккумуляторам стать востребованными в электротранспорте в качестве тяговых батарей, также применяются для электрификации пассажирских вагонов, питания цепей управления. В последние годы о никель-железных аккумуляторах заговорили с новой силой, т. к. они не содержат токсичных элементов вроде свинца, кадмия, кобальта и т. д. В настоящее время некоторые производители продвигают их для систем возобновляемой энергетики.

Принцип действия никелево-железных батарей

Аккумуляция электроэнергии происходит при помощи никель оксида-гидроксида, применяемого в качестве положительных пластин, железа – в качестве отрицательных пластин и жидкого электролита в виде едкого калия. Никелевые стабильные трубки или «карманы» содержат активное вещество

Никелево-железный тип очень надежный, т.к. выдерживает глубокие разряды, частые перезаряды, а также может находится в недозаряженном состоянии, что очень пагубно для свинцово-кислотных батарей.

Характеристики никелево-железных аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

10 – 1000

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

50 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

1800 — 2300

Оптимальная температура, °С;

+15 … +25

Диапазон рабочих температур, °С;

-40 … +60

Срок службы, лет при +20°С;

20

Саморазряд в мес., %

15

Макс. ток разряда

0.25C 5

Макс. ток заряда

0.25C 5

Минимальное время заряда, ч

12 – 16

Требования к обслуживанию

Малообслуживаемые

Уровень стоимости

средняя, низкая

Использованные материалы

Исследования компании Boston Consulting Group

Техническая документация ТМ Bosch, Panasonic, EverExceed, Victron Energy, Varta, Leclanché, Envia, Kokam, Samsung, Valence и других.

Виды и типы аккумуляторных батарей — подробно!

Категория: Поддержка по аккумуляторным батареям
Опубликовано 25.06.2015 19:00
Автор: Abramova Olesya

Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.

Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.

Рисунок 1. Вольтов столб из шести элементов.

Рисунок 2. Алессандро Джузеппе Антонио Анастасио Вольта

Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.

Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.

Основные виды аккумуляторов приведены в таблице №1.

Тип

Применение

Обозначение

Рабочая температура, ºC

Напряжение элемента, В

Удельная энергия, Вт∙ч/кг

Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный)

Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д.

Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S)

-20 … +40

3,2-4,2

280

никель-солевой

Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии

Na/NiCl

-50 … +70

2,58

140

никель-кадмиевый

Электрокары, речные и морские суда, авиация

Ni-Cd

–50 … +40

1,2-1,35

40 – 80

железо-никелевый

Резервное электропитание, тяговые для электротранспорта, цепи управления

Ni-Fe

–40 … +46

1,2

100

никель-водородный

Космос

Ni-h3

 

1,5

75

никель-металл-гидридный

электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Ni-MH

–60 … +55

1,2-1,25

60 – 72

никель-цинковый

Фотоаппараты

Ni-Zn

–30 … +40

1,65

60

свинцово-кислотный

Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д.

Pb

–40 … +40

2, 11-2,17

30 – 60

серебряно-цинковый

Военная сфера

Ag-Zn

–40 … +50

1,85

<150

серебряно-кадмиевый

Космос, связь, военные технологии

Ag-Cd

–30 … +50

1,6

45 – 90

цинк-бромный

 

Zn-Br

 

1,82

70 – 145

цинк-хлорный

 

Zn-Cl

–20 … +30

1,98-2,2

160 – 250

Таблица №1. Классификация аккумуляторных батарей.

Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.

Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.

Свинцово-кислотные аккумуляторные батареи

Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.

Принцип действия свинцово-кислотных батарей

Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция. В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.

Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.

Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.

Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).

Типы свинцово-кислотных батарей

  • Lead–Acid, обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.

  • Valve Regulated Lead–Acid (VRLA), необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.

  • Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA), необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.

    Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.

    Рисунок №4. AGM VRLA аккумуляторы EverExceed.

  • GEL Valve Regulated Lead–Acid (GEL VRLA), необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.

    Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.

    Рисунок №5. GEL VRLA аккумулятор EverExceed.

     

     

     

  • OPzV, необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.

    Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.

    Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.


    Рисунок №6. Строение OPzV аккумулятора EverExceed.

  • OPzS, малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.

    Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.

    Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.

    Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.

    Рисунок №7. OPzS аккумулятор Victron Energy.

Характеристики свинцово-кислотных аккумуляторов

Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.

Тип

LA

VRLA

AGM VRLA

GEL VRLA

OPzV

OPzS

Емкость, Ампер/час

10 – 300

1 – 300

1 – 3000

1 – 3000

50 – 3500

50 – 3500

Напряжение, Вольт

6, 12

4, 6, 12

2, 4, 6, 12

2, 6, 12

2

2

Оптимальная глубина разряда, %

 

30

<40

<50

<60

<60

Допустимая глубина разряда, %

 

<75

<80

<90

<90

<100

Циклический ресурс, D.O.D.=50%

 

<250-300

<1000

<1400

<3200

<3300

Оптимальная температура, °С

0 … +45

+15 … +25

+10 … +25

+10 … +25

0 … +30

0 … +30

Диапазон рабочих температур, °С

–50 … +70

–35 … +60

–40 … +70

–40 … +70

–40 … +70

–40 … +70

Срок службы, лет при +20°С

<7

<7

5 – 15

8 – 15

15 – 20

17 – 25

Саморазряд, %

3 – 5

2 – 3

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток заряда, % от емкости

10 – 20

20 – 25

20 – 30

15 – 20

15 – 20

10 – 15

Минимальное время заряда, ч

8 – 12

6 – 10

6 – 10

8 – 12

10 – 14

10 – 15

Требования к обслуживанию

3 – 6 мес.

нет

нет

нет

нет

1 – 2 года

Средняя стоимость, $, 12В/100Ач.

70 – 150

200 – 250

250 – 380

350 – 500

1000 – 1400

1500 – 3500

Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.

Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).

Литий-ионные (литиевые) аккумуляторные батареи

История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.

Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.

Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.

Принцип действия литиевых (литий-ионных) батарей

Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.

Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.

Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.

Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.

Типы литий-ионных аккумуляторов

Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.

Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.

  • Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как анод – из графита. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются от анода к катоду. Недостатком этого типа является относительно короткий срок службы, невысокая термическая стабильность и лимитированная мощность элемента.

    Литий-кобальтовые батареи не могут разряжаться и заряжаться током, превосходящим номинальную емкость, поэтому аккумулятор с емкостью 2,4Ач может работать с током 2,4А. Если для заряда будет применяться большая сила тока, то это вызовет перегрев. Оптимальный зарядный ток составляет 0,8C, в данном случае 1,92А. Каждый литий-кобальтовый аккумулятор комплектуется схемой защиты, которая ограничивает заряд и скорость разряда и лимитирует ток на уровне 1C.

    На графике (Рис. 10) отражены основные свойства литий-кобальтовых аккумуляторов с точки зрения удельной энергии или мощности, удельная мощность или способность обеспечивать высокий ток, безопасности или шансы воспламенения при высокой нагрузке, рабочая температура окружающей среды, срок службы и циклический ресурс, стоимость.

    Рисунок №10. Диаграмма основных свойств LiCoO2 аккумуляторов.

     

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов. 

  • Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов.

    Гибкость конструкции позволяет инженерам оптимизировать свойства батареи и достичь длительного срока службы, высокой емкости (удельная энергия), возможности обеспечивать максимальный ток (удельная мощность). Например, с длительным сроком эксплуатации типоразмер элемента 18650 имеет емкость 1,1Ач, тогда как элементы, оптимизированные на повышенную емкость, – 1,5Ач, но при этом они имеют меньший срок службы.

    На графике (Рис. 12) отраженны не самые впечатляющие характеристики литий-марганцевых аккумуляторов, однако современные разработки позволили существенно повысить эксплуатационных характеристики и сделать этот тип конкурентным и широко применяемым.

    Рисунок №11. Диаграмма основных свойств LiMn2O4 аккумуляторов.

    Современные аккумуляторы литий-марганцевого типа могут производиться с добавлениями других элементов – литий-никель-марганец-кобальт оксид (NMC), подобная технология существенно продлевает срок службы и повышает показатели удельной энергии. Этот состав привносит лучшие свойства из каждой системы, так называемые LMO (NMC) применяются для большинства электромобилей, таких как Nissan, Chevrolet, BMW и т. д. 

  • Литий-Никель-Марганец-Кобальт оксид (LiNiMnCoO2 или NMC) – ведущие производители литий-ионных батарей сосредоточились на сочетании никеля-марганца-кобальта в качестве материалов катода (NMC). Похожий на литий-марганцевый тип, эти аккумуляторы могут быть адаптированы для достижения показателей высокой удельной энергии или высокой удельной мощности, однако, не одновременно. К примеру, элемент NMC типа 18650 в состоянии умеренной нагрузки имеет емкость 2,8Ач и может обеспечить максимальный ток 4-5А; NMC элемент, оптимизированный к параметрам повышенной мощности, имеет всего 2Втч, но может обеспечить непрерывный ток разряда до 20А. Особенность NMC заключается в сочетании никеля и марганца, в качестве примера можно привести поваренную соль, в которой основные ингредиенты натрий и хлорид, которые в отдельности являются токсичными веществами.

    Никель известен своей высокой удельной энергией, но низкой стабильностью. Марганец имеет преимущество формирования структуры шпинели и обеспечивает низкое внутреннее сопротивление, но при этом обладает низкой удельной энергией. Комбинируя эти два металла, можно получать оптимальные характеристика NMC аккумулятора для разных режимов эксплуатации.

    NMC аккумуляторы прекрасно подходят для электроинструмента, электровелосипедов и других силовых агрегатов. Сочетание материалов катода: треть никеля, марганца и кобальта обеспечивают уникальные свойства, а также снижают стоимость продукта в связи с уменьшением содержания кобальта. Другие подтипы, как NCM, CMN, CNM, MNC и MCN имеют отличное соотношение тройки металлов от 1/3-1/3-1/3. Обычно, точное соотношение держится производителем в секрете.

    Рисунок №12. Диаграмма основных свойств LiNiMnCoO2 аккумуляторов.

  • Литий-Железо-Фосфатные (LiFePO4) – в 1996 в университете штата Техас (и другими участниками) был применен фосфат в качестве катодного материала для литиевых аккумуляторов. Литий-фосфат предлагает хорошие электрохимические характеристики с низким сопротивлением. Это стало возможным с нано-фосфатом материала катода. Основными преимуществами являются высокий протекающий ток и длительный срок службы к тому же, хорошая термическая стабильность и повышенная безопасность.

    Литий-железо-фосфатные аккумуляторы терпимее к полному разряду и менее подвержены «старению», чем другие литий-ионные системы. Также LFP более устойчивы к перезаряду, но как и в других аккумуляторах литий-ионного типа, перезаряд может вызвать повреждение. LiFePO4 обеспечивает очень стабильное напряжение разряда – 3,2В, это же позволяет использовать всего 4 элемента для создания батареи стандарта 12В, что в свою очередь позволяет эффективно заменять свинцово-кислотные батареи. Литий-железо-фосфатные аккумуляторы не содержат кобальт, это существенно снижает стоимость продукта и делает его более экологически чистым. В процессе разряда обеспечивает высокий ток, а также может быть заряжен номинальным током всего за один час до полной емкости. Эксплуатация при низких температурах окружающей среды снижает производительность, а температура свыше 35ºС – несколько сокращается срок службы, но показатели намного лучше, чем у свинцово-кислотных, никель-кадмиевых или никель-металлогидридных аккумуляторов. Литий-фосфат имеет больший саморазряд, чем другие литий-ионные аккумуляторы, которые могут вызвать потребность балансировки батарейных кабинетов.

    Рисунок №13. Диаграмма основных свойств LiFePO4 аккумуляторов.

     

  • Литий-Никель-Кобальт-Оксид Алюминия (LiNiCoAlO2) – литий-никель-кобальто-оксид алюминиевые батареи (NCA) появились в 1999 году. Этот тип обеспечивает высокую удельную энергию и достаточную удельную мощность, а также длительный срок службы. Однако существуют риски воспламенения, в следствие чего был добавлен алюминий, который обеспечивает более высокую стабильность электрохимических процессов, протекающих в аккумуляторе при высоких токах разряда и заряда.

    Рисунок №14. Диаграмма основных свойств LiNiCoAlO2 аккумуляторов.

  • Литий-титанат (Li4Ti5O12) – аккумуляторы с анодами из литий-титаната были известны с 1980-х годов. Катод состоит из графита и имеет сходство с архитектурой типичной литий-металлической батареи. Литий-титанат имеет напряжение элемента 2,4В, может быть быстро заряжен и обеспечивает высокий разрядный ток 10C, который в 10 раз превышает номинальную емкость батареи.

    Литий-титанатные аккумуляторы отличаются повышенным циклическим ресурсом по сравнению с другими Li-ion видами батарей. Обладают высокой безопасностью, а также способны работать при низких температурах (до –30ºC) без ощутимого снижения рабочих характеристик.

    Недостаток заключается в достаточно высокой стоимости, а также в небольшом показателе удельной энергии, порядка 60-80Втч/кг, что вполне сопоставимо с никель-кадмиевыми аккумуляторами. Области применения: электрические силовые агрегаты и источники бесперебойного питания.

    Рисунок №15. Диаграмма основных свойств Li4Ti5O12 аккумуляторов.

  • Литий-полимерные аккумуляторы (Li-pol, Li-polymer, LiPo, LIP, Li-poly) – литий полимерные аккумуляторы отличаются от литий-ионных тем, что в них используется специальный полимерный электролит. Возникший ажиотаж к этому виду батарей с 2000-х годов длится до сегодняшнего времени. Основан он не безосновательно, т. к. при помощи специальных полимеров удалось создать батарею без жидкого или гелеобразного электролита, это дает возможность создавать батареи практически любой формы. Но основная проблема заключается в том, что твердый полимерный электролит обеспечивает плохую проводимость при комнатной температуре, а лучшие свойства демонтирует в разогретом состоянии до 60°С. Все попытки ученых обнаружить решение этой задачи оказали тщетны.

    В современных литий-полимерных батареях применяется небольшое количество гелевого электролита для лучшей проводимости при нормальной температуре. А принцип работы построен на одном из описанных выше типов. Самым распространенным является литий-кобальтовый тип с полимерным гелеобразным электролитом, который применяется в большинстве случаев.

    Основная разница между литий-ионными аккумуляторами и литий-полимерными заключается в том, что микропористый полимерный электролит заменяется традиционным разделительным сепаратором. Литий-полимер имеет немного больший показатель удельной энергии и дает возможность создавать тонкие элементы, но стоимость на 10-30% выше, чем литий-ионных. Существенная разница есть и в структуре корпуса. Если для литий-полимерных применяется тонкая фольга, которая дается возможность создавать настолько тонкие элементы питания, что они похожи на кредитные карты, то литий-ионные собираются в жестком металлическом корпусе для плотной фиксации электродов.

    Рисунок №17. Внешний вид Li-polymer аккумулятора для мобильного телефона.

Характеристики литий-ионных аккумуляторов

В таблице отсутствует максимальная емкость элементов, т. к. технология литий-ионных аккумуляторов не позволяет производить мощные отдельные элементы. Когда необходима высокая емкость или постоянный ток, батареи соединятся параллельно и последовательно при помощи перемычек. Состояние обязательно должна контролировать система батарейного мониторинга. Современные батарейные кабинеты для ИБП и солнечных электростанций на основе литиевых элементов могут достигать напряжения 500-700В постоянного тока с емкостью около 400А/ч, а также емкости 2000 – 3000Ач с напряжением 48 или 96В.

Параметр \ Тип

LiCoO2

LiMn2O4

LiNiMnCoO2

LiFePO4

LiNiCoAlO2

Li4Ti5O12

Напряжение элемента, Вольт;

3.6

3.7

3.6-3.7

3.2

3.6

2.4

Оптимальная глубина разряда, %;

85-90

85-90

85-90

85-90

85-90

85-90

Допустимая глубина разряда, %;

100

100

100

100

100

100

Циклический ресурс, D.O.D.=80%;

700 — 1000

1000 — 2000

1000 — 2000

1000 — 2000

1000 — 2000

5000 — 8000

Оптимальная температура, °С;

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

+20…+30

Диапазон рабочих температур, °С;

–10 …+60

–10 …+45

–10 …+55

–10 …+60

–10 …+55

–10 …+45

Срок службы, лет при +20°С;

5 – 7

10

10

20 — 25

20 — 25

18 — 25

Саморазряд в мес., %

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

1 – 2

Макс. ток разряда

1C

10C/30C 5с

2C

25 — 30C

1C

10C/30С 5с

Макс. ток заряда

0,7-1C

0,7-1C

0,7-1C

1C

0,7C

1C

Минимальное время заряда, ч

2 — 3

2 — 2.5

2 — 3

2 — 3

2 — 3

2 — 3

Требования к обслуживанию

нет

нет

нет

нет

нет

нет

Уровень стоимости

высокий

средний

средний

низкий

средний

высокий

Никель-кадмиевые аккумуляторные батареи

Изобретателем является шведский ученый Вальдемар Юнгнер, который запатентовал технологию производства никель кадмиевого типа в 1899 году. D 1990 году возник патентный спор с Эдисоном, который Юнгнер проиграл в силу того, что не владел таким средствами, как его оппонент. Компания «Ackumulator Aktiebolaget Jungner», основанная Вальдемаром, оказалась на грани банкротства, однако, сменив название на «Svenska Ackumulator Aktiebolaget Jungner», предприятие все же продолжило свое развитие. В настоящее время предприятие, основанное разработчиком, носит название «SAFT AB» и производит одни из самых надежных никель-кадмиевых аккумуляторов в мире.

Никель-кадмиевые аккумуляторы относятся к очень долговечному и надежному типу. Существуют обслуживаемые и необслуживаемые модели с емкостью от 5 до 1500Ач. Обычно поставляются в виде сухо-заряженных банок без электролита с номинальным напряжением 1,2В. Несмотря на схожесть конструкции со свинцово-кислотными, никель- кадмиевые батареи имеют ряд существенных преимуществ в виде стабильной работы при температуре от –40°С, возможности выдерживать высокие пусковые токи, а также оптимизированы моделями для быстрого разряда. Ni-Cd батареи устойчивы к глубокому разряду, перезаряду и не требуют моментального заряда как свинцово-кислотный тип. Конструктивно производятся в ударопрочном пластике и хорошо переносят механические повреждения, не боятся вибрации и т.п.

Принцип действия никель-кадмиевых батарей

Щелочные аккумуляторы, электроды которых состоят из гидрата окиси никеля с добавлениями графита, окиси бария и порошкового кадмия. В качестве электролита, как правило, выступает раствор с 20%-ным содержанием калия и добавлением моногидрата лития. Пластины разделены изолирующими сепараторами во избежании замыкания, одна отрицательно заряженная пластина расположена между двумя положительно заряженными.

В процессе разряда никель-кадмиевой батареи происходит взаимодействие между анодом с гидратом окиси никеля и ионами электролита, образуя гидрат закиси никеля. В это же время катод из кадмия образует гидрат окиси кадмия, тем самым создавая разность потенциалов до 1,45В обеспечивая напряжение внутри аккумулятора и во внешней замкнутой цепи.

Процесс заряда никель-кадмиевых аккумуляторов сопровождается окислением активной массы анодов и переходом гидрата закиси никеля в гидрат окиси никеля. Одновременно катод восстанавливается с образованием кадмия.

Достоинством принципа действия никель-кадмиевой батареи является то, что все составляющие, которые образуются в процессе циклов разряда и заряда, почти не растворяются в электролите, а также не вступают в какие-либо побочные реакции.

Рисунок №16. Строение Ni-Cd аккумулятора.

Типы никель-кадмиевых аккумуляторов

В настоящее время батареи Ni-Cd используют чаще всего в промышленности, где требуется обеспечивать питанием разнообразные приложения. Некоторые производители предлагают несколько подвидов никель-кадмиевых аккумуляторов, которые обеспечивают наилучшую работу в определенных режимах:

  • время разряда 1,5 – 5 часов и более – обслуживаемые батареи;

  • время разряда 1,5 – 5 часов и более – необслуживаемые батареи;

  • время разряда 30 – 150 минут – обслуживаемые батареи;

  • время разряда 20 – 45 минут – обслуживаемые батареи;

  • время разряда 3 – 25 минут – обслуживаемые батареи.

Характеристики никель-кадмиевых аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

1 – 1500

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

60 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

2300

Оптимальная температура, °С;

0 … +20

Диапазон рабочих температур, °С;

-50 … +70

Срок службы, лет при +20°С;

25

Саморазряд в мес., %

4

Макс. ток разряда

10 C5

Макс. ток заряда

0.4 C5

Минимальное время заряда, ч

5

Требования к обслуживанию

Малообслуживаемые или необслуживанемые

Уровень стоимости

средняя (300 – 400$ 100Ач)

Высокие технические характеристики делают этот тип аккумуляторных батарей очень привлекательным для решения производственных задач, когда требуется высоконадежный источник резервного питания с длительным сроком службы.

Никелево-железные аккумуляторные батареи

Впервые были созданы Вальдемаром Юнгнером в 1899 году, когда он пытался найти более дешевый аналог кадмию в составе никель-кадмиевых батарей. После долгих испытаний Юнгнер отказался от применения железа, т. к. заряд осуществлялся слишком медленно. Несколькими годами позднее, Томас Эдисон создал никель-железный аккумулятор, который осуществлял питание электромобилей «Baker Electric» и «Detroit Electric».

Дешевизна производства позволили никель-железным аккумуляторам стать востребованными в электротранспорте в качестве тяговых батарей, также применяются для электрификации пассажирских вагонов, питания цепей управления. В последние годы о никель-железных аккумуляторах заговорили с новой силой, т. к. они не содержат токсичных элементов вроде свинца, кадмия, кобальта и т. д. В настоящее время некоторые производители продвигают их для систем возобновляемой энергетики.

Принцип действия никелево-железных батарей

Аккумуляция электроэнергии происходит при помощи никель оксида-гидроксида, применяемого в качестве положительных пластин, железа – в качестве отрицательных пластин и жидкого электролита в виде едкого калия. Никелевые стабильные трубки или «карманы» содержат активное вещество

Никелево-железный тип очень надежный, т.к. выдерживает глубокие разряды, частые перезаряды, а также может находится в недозаряженном состоянии, что очень пагубно для свинцово-кислотных батарей.

Характеристики никелево-железных аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

10 – 1000

Напряжение элемента, Вольт;

1,2

Оптимальная глубина разряда, %;

50 — 80

Допустимая глубина разряда, %;

100

Циклический ресурс, D.O.D.=80%;

1800 — 2300

Оптимальная температура, °С;

+15 … +25

Диапазон рабочих температур, °С;

-40 … +60

Срок службы, лет при +20°С;

20

Саморазряд в мес., %

15

Макс. ток разряда

0.25C 5

Макс. ток заряда

0.25C 5

Минимальное время заряда, ч

12 – 16

Требования к обслуживанию

Малообслуживаемые

Уровень стоимости

средняя, низкая

Использованные материалы

Исследования компании Boston Consulting Group

Техническая документация ТМ Bosch, Panasonic, EverExceed, Victron Energy, Varta, Leclanché, Envia, Kokam, Samsung, Valence и других.

Основные типы аккумуляторов

Наиболее распространенные типы аккумуляторов – для бытовой техники, радиотелефонов, фотоаппаратов, фонариков, ИБП, их особенности и лучшие производители.

Электрический аккумулятор – специальное устройство, накапливающее электроэнергию и обеспечивающее автономное питание оборудования. При его эксплуатации происходит переход одного вида энергии в другой, а также обратимость описанного процесса.

В большинстве случаев используется электрохимический метод. Среди названий электрического аккумулятора – вторичный химический источник тока, так как перед эксплуатацией требуется его зарядка.

Типы аккумуляторов

По типу аккумуляторы разделяют в зависимости от их химсостава, который влияет на их эксплуатационные свойства.

  • никель-кадмиевые (Ni-Cd) – наиболее старый тип аккумуляторных батареек, отличается необходимостью соблюдения цикла «полный разряд» – «полный заряд» (имеют эффект памяти) и чувствительны к холоду (плохо отдают энергию на морозе), но могут хранится разраженными и отличаются низким саморазрядом, сейчас используются в основном в электроинструменте
  • никель-металл-гидридные (Ni-MH) – очень распространенный тип простых и дешевых компактных аккумуляторных батареек, эффект памяти и чувствительность к холоду несколько ниже, чем у никель-кадмиевых аккумуляторов, но их нужно хранить заряженными и у них выше саморазряд, сейчас они используются в основном в радиотелефонах
  • литий-ионные (Li-Ion) – более современный тип аккумуляторов, почти не подвержены эффекту памяти (снижению емкости), что позволяет заряжать их в любое время и необязательно разряжать до конца, чувствительность к холоду есть, но не критична, нужно поддерживать заряд при хранении, они часто используются в фотоаппаратах
  • литий-полимерные (Li-Pol) – облегченный вариант литий-ионных аккумуляторов, обладающий теми же свойствами, но со значительно меньшим весом, что нашло применение в компактных мобильных устройствах и дронах
  • свинцово-кислотные (SLA) – большие мощные аккумуляторы, способные быстро отдавать огромную энергию (силу тока), что используется в пусковых установках двигателей (стартерах) и источниках бесперебойного питания, требуют периодической подзарядки во время хранения

Также аккумуляторы отличаются напряжением в вольтах (В), емкостью в ампер-часах (Ач) или миллиампер-часах (мАч) и физическим размером (типоразмером).

Классификация аккумуляторов

Все аккумуляторы можно условно разделить по назначению на несколько основных групп:

  • бытовые (аккумуляторные батарейки)
  • для радиотелефонов
  • для фонариков
  • автомобильные
  • для ИБП
  • промышленные

Теперь рассмотрим их немного подробней, включая типоразмеры и лучших производителей.

Аккумуляторные батарейки

Для обеспечения нормального функционирования техники применяются аккумуляторы разных типоразмеров. Основная сфера их использования – питание мелких устройств бытового назначения.

Аккумуляторные батарейки используются для самых различных устройств – радио мышек, клавиатур, фотоаппаратов, простых фонариков, часов, другой мелкой электроники.

Они имеют различные типоразмеры:

  • AA (пальчик) – наиболее распространенный формат круглых батареек длиной 5 см, напряжением 1.2 В и емкостью 1000-3000 мАч
  • AAA (мини-пальчик) – также широко распространены, имеют длину 4.4 см, такое же напряжение 1.2 В, но меньшую емкость 500-1500 мАч
  • крона – более редкая прямоугольная батарейка с напряжением 9 В, используется в некоторых электроприборах (например, мультиметрах)

Существуют и другие, более редкие форматы аккумуляторных батареек:

  • CS (Sub C) – короткая круглая батарейка
  • C (R14) – средняя круглая батарейка
  • D (R20) – большая круглая батарейка

Они мало распространены и используются в некоторых специфических устройствах и старых фотоаппаратах.

К лучшим популярным производителям аккумуляторных батареек можно отнести Panasonic, Varta, Ansmann, Sanyo. Есть также много других именитых брендов, но их чаще подделывают.

Аккумуляторы для радиотелефонов

Это может быть монолитная аккумуляторная батарея либо отдельные элементы. Подобные устройства отличаются небольшим размером и незначительным весом. Аккумуляторы для радиотелефонов часто представляют собой удобные готовые сборки обычных Ni-MH аккумуляторных батареек.

Также в некоторых телефонах используются нестандартные фирменные аккумуляторы. Из производителей можно порекомендовать Panasonic и Robiton.

Аккумуляторы для фонариков

Аккумуляторы для фонарика представлены на рынке в широком ассортименте и выбор зависит от конкретной модели.

Наибольшей популярностью пользуются:

  • АА (14500) – аккумуляторы для больших фонариков (длина 5 см, диаметр 1.4 см)
  • ААА – обычные Ni-MH элементы с номинальным напряжением 1.2 В и емкостью 500-1100 мАч
  • CR123A 16340– созданы для компактных фонариков (длина 3.4 см)

Есть также специальные аккумуляторы для мощных фонариков и электрошокеров.

Они имеют свои уникальные типоразмеры, которые нужно подбирать в зависимости от модели фонарика:

Эти аккумуляторы отличаются физическими размерами и емкостью. В основном они являются литий-полимерными, что делает их очень легкими. Из производителей хорошо зарекомендовали себя Panasonic, Robiton, Fenix.

Автомобильные аккумуляторы

Об автомобильных аккумуляторах мы особо рассказывать не будем, коснемся только отличий от всех других, которые нужно знать.

Это большие обслуживаемые кислотно-свинцовые батареи с жидким электролитом. Они способны быстро отдавать огромный ток, но необходимо следить за их зарядом и уровнем электролита (доливать по необходимости). Хранить свинцовый аккумулятор разряженным нельзя, так как где-то через полгода он выйдет из строя.

Аккумуляторы для ИБП

Аккумуляторы для компьютерных ИБП призваны обеспечить недлительное питание техники в случае временного отключения электричества. Они также являются свинцово-кислотными, но в отличие от автомобильных необслуживаемыми, а электролит в них загущенный в виде геля, что предотвращает утечки.

В остальном эти аккумуляторы подобны автомобильным, они могут быстро отдать большой ток и требуют периодической подзарядки. В разных ИБП используются аккумуляторы с разным напряжением (12 или 24 В), разной емкости (7, 9, 12 Ач) и разного физического размера. Также есть модели, в которые устанавливается несколько соединенных вместе батарей.

Выбирайте аккумулятор такого же напряжения и размера как в вашем ИБП, емкость при желании можно чуть больше (например, 9 Ач вместо 7 Ач) – это продлит работу ПК от ИБП. Из производителей можно порекомендовать SCB, Yuasa и Delta.

Аккумуляторы в ИБП для газового котла и другой ответственной техники, отличаются большей емкостью по сравнению с моделями, применяемыми при работе компьютерного оборудования. Ведь они рассчитаны на поддержание функционирования отопительных приборов на протяжении суток и более.

Такие аккумуляторы часто являются внешними и подключаются к ИБП с помощью специальных клемм, а сами ИБП должны выдавать напряжение в форме чистой синусоиды, что важно для электронасосов, используемых в системах отопления и другой чувствительной к форме напряжения техники.

Промышленные аккумуляторы

Обычно огромные батареи большой емкости. Могут быть разного напряжения, в том числе высоковольтные. Больше мы о них ничего говорить не будем, так как это не тематика нашего сайта.

Заключение

Для того, чтобы аккумулятор хорошо держал заряд и прослужил достаточно долго, он должен быть от надежного проверенного производителя и само собой оригинальным, а не дешевой подделкой. Также важно в каких условиях и как долго хранятся аккумуляторы.

Поэтому лучше всего приобретать аккумуляторы в специализированных магазинах, которые уделяют особое внимание их качеству. Качественные аккумуляторы для самых различных целей от лучших производителей можно приобрести на сайте https://voltacom.ru/catalog/power/akkum.

Зарядное устройство Xiaomi Mi Power Bank 2C 20000mAh
Зарядное устройство Xiaomi Mi Power Bank 2 10000mAh
Зарядное устройство Xiaomi Mi Power Bank 5000mAh

Виды, классификация аккумуляторов, АКБ

Традиционные свинцовые аккумуляторные батареи

Электроды свинцовой аккумуляторной батареи выполнены из свинца с содержанием более 5% сурьмы. Корпус свинцовой аккумуляторной батареи — черный пластмассовый или эбонитовый, верхняя часть батареи залита смолой. Единственное преимущество таких батарей – высокая ремонтопригодность. В настоящее время для потребительских целей не выпускаются.

Малосурьмянистые аккумуляторные батареи

Положительные и отрицательные электроды малосурьмянистых аккумуляторных батарей выполнены из свинцовых сплавов с пониженным до 2,5-3,0% содержанием сурьмы. В некоторых публикациях малосурьмянистые аккумуляторные батареи иногда называют малообслуживаемыми; у них расход воды и саморазряд гораздо меньше, чем у традиционных батарей, но в 2-3 раза выше, чем у батарей с кальциевыми токоотводами. Недостатки малосурьмянистых аккумуляторных батарей — большой расход воды и саморазряд. Достоинства малосурьмянистых аккумуляторных батарей  относительная устойчивость к глубоким разрядам, низкая цена. Возможное дополнительное обозначение — отсутствует.

Гибридные аккумуляторные батареи

Гибридные аккумуляторные батареи системы «кальций плюс» (гибридные) с содержанием до 1,5-1,8% сурьмы и 1,4-1,6% кадмия в положительном токоотводе и свинцово-кальциевым отрицательным токоотводом. Характеристики гибридных аккумуляторных батарей по расходу воды и саморазряду вдвое лучше, чем у малосурьмянистых. Возможное дополнительное обозначение — Са+, и (или) Hybrid. 

Кальциевые аккумуляторные батареи

Первоначально кальциевые аккумуляторные батареи начали выпускать в США на базе свинцово-кальциевого сплава (0,07-0,1% Са) для токоотводов положительного и отрицательного электродов. Кальциевые аккумуляторные батареи значительно снизили газовыделение, что обеспечило эксплуатацию аккумуляторов без доливки воды в течение как минимум двух лет. Достоинства кальциевых аккумуляторных батарей – снижение саморазряда на 30% и расхода воды на 80% по сравнению с малосурьмянистыми. Недостатки кальциевых аккумуляторных батарей – неустойчивость к глубоким разрядам. Кальциевые и гибридные аккумуляторы в гораздо меньшей степени подвержены выкипаемости еще и потому, что состав их свинца обеспечивает свойства своеобразной «самовыключаемости» — они перестают принимать ток, когда заряжены на 95-97%. Возможное дополнительное обозначение — Са/Са. 

Серебряно-кальциевые аккумуляторные батареи (кальциевые с дополнительным легированием серебром)

В конце 90-х годов и в США, и в Западной Европе началось производство батарей с токоотводами из свинцово-кальциевого сплава с добавкой новых легирующих компонентов, в том числе серебра, которые не боятся глубоких разрядов. Добавление серебра также повышает коррозионную стойкость решеток. Достоинства – устойчивость к глубоким разрядам при сохранении параметров кальциевых батарей по саморазряду и расходу воды. Недостатки – высокая цена и, как правило, невозможность обслуживания (контроля и коррекции уровня электролита).

Расход воды у серебряно-кальциевых батарей в стандартных режимах так мал, что конструкторы убрали из крышек отверстия для доливки воды. Такие батареи в рекламных публикациях иногда называют абсолютно (полностью) необслуживаемыми. В этих батареях исключена возможность контроля плотности электролита и долива воды в процессе эксплуатации. Заявленные характеристики этих батарей гарантируются только при исправном состоянии электрооборудования автомобиля и соблюдении условий пользования, указанных производителем в инструкции по эксплуатации. Возможное дополнительное обозначение — Са/Аg, «серебряно-кальциевая технология». 


Как выбрать аккумуляторы АА и ААА

В данном обзоре рассмотрены критерии выбора аккумуляторов АА и ААА. Для того, чтобы понять, какие аккумуляторные батарейки АА и ААА лучше, применительно к различным условиям эксплуатации, в этой статье подробно разбираются технические характеристики и потребительские качества каждого вида аккумуляторов.

Размеры пальчиковых и мизинчиковых аккумуляторов АА и ААА

Аккумуляторы АА и ААА между собой очень похожи, как по назначению и химическому составу, так и по форме. Аккумуляторные батарейки ААА являются, как бы, уменьшенной копией аккумуляторов АА. Из-за формы и размеров аккумуляторные элементы AA получили название «пальчиковые», а AAA — «мизинчиковые».

Размеры пальчиковых и мизинчиковых аккумуляторов
Элемент Диаметр D, мм Длина L, мм
АА (пальчиковый) 14.5 50.5
ААА (мизинчиковый) 10.5 44.5

Виды аккумуляторов АА и ААА: Ni-Cd, Ni-MH, Li-Ion

По химическому составу аккумуляторы АА и ААА подразделяются на следующие виды:

  1. Никель-кадмиевые (Ni-Cd).
  2. Никель-металл-гидридные (Ni-MH).
  3. Литий-ионные (Li-Ion).
  • Никель-кадмиевые аккумуляторы AA/AAA характеризуются относительно небольшой ёмкостью. Они имеют «эффект памяти» — уменьшение реальной емкости из-за неполного разряда перед началом процесса зарядки. При нарушении герметичности корпуса Ni-Cd акб токсичны, поэтому они экологически не безопасны.
  • Ni-MH аккумуляторы АА и ААА отличаются от Ni-Cd повышенной ёмкостью, экологически безопасны, менее подвержены эффекту памяти. В настоящее время никель-металл-гидридные элементы заменили никель-кадмиевые практически везде.
  • Литий-ионные аккумуляторы АА Li-Ion 1.5v содержат в одном корпусе два устройства: литиевую аккумуляторную батарейку с напряжением 3.7v и преобразователь с 3.7 Вольт на 1.5 Вольта. Такие Li-Ion акб производятся специально для замены батарейкам AA и AAA 1.5v и характеризуются отсутствием эффекта памяти.

Li-Ion аккумулятор AA 1.5v Fenix с USB портом для зарядки.

Характеристики аккумуляторов АА и ААА

Основные характеристики аккумуляторов АА и ААА:

  1. емкость,
  2. напряжение,
  3. ток разряда,
  4. ток заряда,
  5. срок службы,
  6. число циклов заряд-разряд,
  7. величина саморазряда,
  8. эффект памяти,
  9. вес.
  • Для аккумуляторов АА и ААА емкость — это характеристика, показывающая длительность разряда при заданном токе. Емкость измеряется в миллиАмпер*часах (мАч) или, в английском обозначении, в milliAmper*hour (mAh).
  • Напряжение — это разность электрических потенциалов между плюсовым и минусовым электродами аккумулятора ААА или АА. Напряжение измеряется в Вольтах (Volt) и обозначается буквой «В» (V). Напряжение в процессе разряда уменьшается. После полного заряда напряжение составляет около 1.4 Вольта, а в конце разряда примерно 1.2 Вольта
  • Ток — это направленное движение заряженных частиц, который измеряется в миллиАмперах (мА) или, в зарубежном обозначении, milliAmper (mA). Максимальный ток разряда аккумулятора АА и ААА такой, который еще не приводит к повреждению или ухудшению характеристик элемента.
  • Ток заряда — максимальный допустимый при зарядке аккумуляторного элемента AA или AAA.
  • Срок службы аккумулятора АА или ААА показывает, сколько лет он может эксплуатироваться при условии не превышения допустимого числа циклов заряд-разряд.
  • Число допустимых циклов заряд-разряд аккумуляторных батареек AA и AAA определяется снижением их ёмкости не более, чем на 10 процентов.
  • Саморазряд — эффект снижения заряда с течением времени, даже если аккумуляторный элемент не использовался. Величина саморазряда показывает на сколько процентов за месяц разрядится аккумулятор. Серии с низким саморазрядом имеют обозначение LSD (Low Self-Discharge).
  • Эффект памяти — снижение максимальной емкости аккумулятора АА или ААА за счет неполного разряда перед началом зарядки. Величина эффекта памяти зависит от химического состава элемента.
  • Вес никель-металл-гидридного Ni-MH аккумулятора АА примерно 30 граммов, ААА — около 14 граммов.

Аккумулятор Ni MH 1.2v AAA Westinghouse 1000 mAh.

Сравнение аккумуляторов АА и ААА с батарейками: преимущества и недостатки

Аккумуляторы АА и ААА имеют следующие преимущества перед одноразовыми батарейками аналогичных размеров:

  1. Многократность использования.
  2. Лучшее соотношение стоимости к количеству часов работы.
  3. Работа в устройствах с подзарядкой.
  • Аккумуляторы могут многократно заряжаться и использоваться, что является их основным преимуществом перед одноразовыми батарейками АА и ААА.
  • При интенсивной работе, каждый час использования перезаряжаемых аккумуляторных батареек АА или ААА обходится пользователю значительно дешевле, чем при применении одноразовых.
  • Аккумуляторы АА и ААА, в отличие от одноразовых батареек, могут использоваться в устройствах с подзарядкой, например, в садовых светильниках с солнечной батареей. Другим примером таких устройств может быть фонарик с динамо-машиной.

Аккумулятор GP AAA 650 mAh для садового светильника на солнечных батареях.

Батарейки АА и ААА в сравнении с аккумуляторными элементами имеют следующие преимущества:

  1. Более низкая цена.
  2. Более высокое напряжение.
  3. Отсутствие необходимости заряжать.
  • Более низкая цена батареек АА и AAA весьма относительна. Одноразовые батарейки повторно использовать нельзя. Поэтому уже после трех — пяти раз использования перезаряжаемых батареек (аккумуляторов) их применение становится экономически выгодным.
  • Более высокое напряжение АА/ААА батареек 1.5 Вольта обычно не принципиально для большинства устройств, которые также хорошо работают и от заряженных до 1.4 Вольта аккумуляторов AA/AAA. Для гаджетов, которые критичны к напряжению питания, выпускаются 1.5 Вольтовые литиевые аккумуляторы AA.
  • Одноразовые АА и ААА батарейки имеют заряд электричества непосредственно с завода и не требуют зарядки перед использованием.

Алкалиновая батарейка GP LR03/AAA.

Что лучше, аккумуляторы AA/AAA или батарейки: рекомендации по использованию

В большинстве применений лучше использовать аккумуляторы AA и AAA , чем неперезаряжаемые батарейки аналогичных форматов. Однако, есть случаи, когда потребителю более выгодно применять одноразовые AAA/AA батарейки:

  1. Очень низкое энергопотребление устройством.
  2. Редкое кратковременное использование питаемого устройства.
  3. Критичность устройства к напряжению питания.
  4. Отсутствие возможности зарядить аккумуляторы.
  • Примером низкого энергопотребления могут служить настольные часы с жидко-кристаллическим экраном. В них отлично работают батарейки AA/AAA.
  • К кратковременно используемым можно отнести, например, пульты дистанционного управления устройствами, включаемые время от времени.
  • Некоторые приборы при замене батареек на аккумуляторы AA/AAA могут подавать сигнал или выдавать надпись о пониженном напряжении. В таком случае лучше использовать одноразовые батарейки или литиевые аккумуляторы AA/AAA 1.5v.
  • Отсутствие возможности зарядить аккумуляторы скорее относится к нештатной ситуации. Например, у вас во время экскурсии разрядились аккумуляторы, а зарядка находится в отеле. Чтобы решить проблему «здесь и сейчас», можно купить недорогие батарейки АА/ААА, а аккумуляторы зарядить уже при первой возможности.

Ведущие производители аккумуляторов AA и AAA

Наиболее популярны у пользователей аккумуляторы AA и AAA следующих производителей:

  1. Panasonic.
  2. Duracell.
  3. GP.
  4. Varta.
  5. Robiton.
  • Японская компания «Panasonic» хорошо известна пользователям, как производитель качественной электроники и мини-АТС. Лучшими аккумуляторами компании Панасоник является серия Panasonic Eneloop AA и AAA.
  • Торговая марка «Дюраселл» занимает почти четверть рынка портативных элементов питания. Срок службы аккумуляторов Duracell AA и AAA составляет до 5 лет.
  • Гонконгская фирма «GP Batteries International Limited» выпускает качественные и недорогие батарейки и аккумуляторы GP AA и AAA .
  • Бренд «Варта» более известен как производитель автомобильных аккумуляторных батарей. В настоящее время этот бренд поделен на три части. Производством аккумуляторов Varta AA и AAA занимается американская корпорация «Spectrum Brands».
  • Бренд «Робитон» — российская торговая марка. Аккумуляторные батарейки Robiton AA и AAA занимают своё достойное место среди элементов питания для электроники.

Какие аккумуляторы АА и ААА выбрать

Критерий выбора лучшей модели аккумулятора АА и ААА определяется тем, какие потребительские качества для вас наиболее важны:

  1. Наибольшая емкость.
  2. Наименьший саморазряд.
  3. Наибольшее число циклов заряд-разряд.
  4. Наилучшее соотношение цена/ёмкость.

Лучшие аккумуляторы АА и ААА по номинациям

  • Наибольшая емкость.

Лучшие аккумуляторы ААА по емкости — Robiton 1100 mAh R03/AAA-2BL, а в формате АА — Robiton 2850 mAh R6/AA-2BL. 

Мизинчиковые аккумуляторы для фонарика Robiton R03/AAA 1100 mAh.

Пальчиковые аккумуляторы для фотоаппарата Robiton R6/AA 2850 mAh.


  • Наименьший саморазряд.

Наименьшим саморазрядом при высокой ёмкости обладают аккумуляторы Panasonic 750 mAh R03/AAA Eneloop-2BL (зав. код BK-4MCCE/2BE) и Panasonic 1900mAh R6/AA Eneloop-4BL. Аккумуляторные батарейки этой серии относятся к категории с низким саморазрядом (LSD) и идут заряженными уже с завода, так как за 5 лет хранения они теряют всего 30% заряда и остаются заряженными на 70%.

ААА аккумуляторы для пульта телевизора Panasonic R03/AAA Eneloop 750 mAh.

Аккумуляторы с низким саморазрядом АА Eneloop Panasonic 1900mAh.

  • Наибольшее число циклов заряд-разряд.

До 3000 циклов заряда и разряда обеспечивают элементы модели Panasonic 550 mAh R03/AAA Eneloop Lite-2BL (зав. код BK-4LCCE/2BE). Среди аккумуляторов АА — Panasonic 1900 mAh R6/AA Eneloop-2BL, которые имеют 2100 циклов заряд/разряд. Эти модели также относятся к категории LSD и заряжены еще на заводе.

Мизинчиковые аккумуляторы для радиотелефонов Panasonic AAA Eneloop Lite.

Пальчиковые аккумуляторы для радиотелефонов Panasonic Eneloop AA 1900 mAh.

  • Наилучшее соотношение цена/ёмкость.

Самое лучшее соотношение цена/емкость получится при покупке ААА аккумуляторов Robiton 1050 mAh R03/AAA RTU-2BL, к тому же обладающих низким саморазрядом.

Аккумулятор для пульта радиоуправления Robiton R03 AAA 1050 mAh.

В номинации «лучшее соотношение цена/емкость»  среди аккумуляторов АА побеждает уже представленный выше — Panasonic 1900 mAh R6/AA Eneloop-4BL.

Таким образом, в рейтинге самым лучшим аккумулятором АА оказался Panasonic Eneloop R6/AA 1900 mAh, победивший сразу в трех номинациях.

Купить аккумуляторы ААА/АА и мизинчиковые/пальчиковые аккумуляторные батарейки с доставкой в ваш город Вы можете в нашем интернет-магазине «Вольта», который предлагает широкий ассортимент аккумуляторных батареек для электроники и бытовой техники. В интернет-магазине представлены лучшие модели ведущих производителей: GP, Robiton, Panasonic, Varta,LG, Duracell, Westinghouse, Fujitsu, ZMI. Выбрать и купить аккумулятор АА и ААА для радиотелефона, фонарика, пульта ДУ с необходимыми характеристиками очень легко, используя фотографии и точные описания для каждой модели.

Основные виды аккумуляторных батарей — Pulsar


Обзор технологий «консервированного электричества»

Аккумуляторные батареи (АКБ) активно потребляются большинством отраслей промышленности и просто человеческой деятельности. Без АКБ немыслимы сегодня энергетика, телекоммуникации и транспорт. Огромный пласт использования АКБ составляет работа вычислительной техники, систем передачи данных с участием источников бесперебойного питания (а это промышленные предприятия, офисы, банки, государственные и научные учреждения, ЦОД, и вообще практически любой производственный участок, где присутствует компьютер). Масштабно эксплуатируются сегодня АБ в частном жилом секторе. Мы уже не говорим о мини-аккумуляторах, питающих бесчисленное семейство всяческих мобильных устройств. Одним словом – без батарей никуда.

На базе устойчивого спроса и само производство аккумуляторных батарей давно уже стало самостоятельной отраслью. Тысячи предприятий в мире ежедневно выдают «на-гора» миллионы единиц «консервированного электричества». И среди этого разнообразия уже не так-то просто порой сделать правильный выбор. Конструкций АКБ сегодня множество, и в каждой имеются свои тонкости и премудрости.

Основные виды аккумуляторных батарей

Прежде чем говорить о видах аккумуляторных батарей, стоит договориться о понятиях. По сути, «аккумулятор» и «аккумуляторная батарея» – одно и то же. Если подходить строже, то аккумулятором называют единичный элемент того или иного напряжения (пара электродов с электролитом), а батареей – несколько таких элементов, соединенных между собой. На практике обычно мы имеем дело с батареями, хотя называем их аккумуляторами.

Как мы сказали ранее, мир аккумуляторов – это бескрайнее море, однако среди них различают три основных вида – свинцово-кислотные, никель-кадмиевые (вариант – никель-железные металл-гидридные) и литиевые. Названия отражают различия активных материалов в конструкции. Свинцово-кислотные – со свинцовыми пластинами и кислотным электролитом, у никель-кадмиевых – одна пластина содержит никель, а другая – кадмий (иногда железо), электролитом здесь выступает щелочь. В литиевых батареях применяется твердый электролит, а в виде электродов – литий (отрицательный потенциал) и другие материалы (нередко полимерного происхождения).

Электрохимические процессы, которые происходят в батарее, в зависимости от материалов обеспечивают характеристики АКБ и их свойства для электропитания. Важный электрический параметр – это напряжение элемента, которое может меняться в пределах от 1 до 3,6 В. Ещё один ключевой параметр – ёмкость (запас энергии, который может питать нагрузку с определенной силой тока в течение определенного времени, измеряется в ампер-часах – Ач). Ещё один важный параметр, который мы будем часто упоминать, – количество циклов заряда-разряда, что напрямую связано со сроком службы АКБ. Безусловно, имеют значения и другие параметры: диапазон рабочих температур, глубина разряда, значения токов заряда и разряда.

Самые распространенные аккумуляторы на сегодняшний день – это свинцово-кислотные (СК). Они характеризуются относительной простотой и доступностью. При изготовлении СК используются относительно недорогие материалы: свинец в качестве электродов и раствор серной кислоты. Стандартный элемент имеет напряжение 2 В, а диапазон емкостей АКБ варьируется в диапазоне от долей Ач до тысяч Ач. Такие АКБ широко применяются в качестве стартерных в автомобиле. Промышленные модели обычно отличаются по исполнению и характеристикам.

Никель-кадмиевые (НК) аккумуляторы относятся к группе щелочных. Здесь одна пластина содержит гидроокись кадмия, другая – гидроокись никеля. Активный материал в виде порошка запрессован в пластины, представляющие собой решетчатую или перфорированную структуру Перфорация обеспечивает обмен зарядами через электролит. Впрочем, бывают и другие варианты конструкции, например, с так называемыми «спеченными электродами».

Аккумуляторы НК отличаются высокой надежностью. Одно из главных их достоинств – низкая чувствительность к перепадам температур, в чем они превосходят свинцово-кислотные. Поэтому для работы в особых климатических условиях, низких и высоких температурах выбираются именно НК. Они неприхотливы, не боятся глубокого разряда, перезаряда, они не могут внезапно выйти из строя, что иногда случается с аккумуляторами СК. Как следствие, и срок службы хорошо сделанных НК заметно превосходит стандартный срок службы для СК в полтора-два раза – 15-25 лет против 5-10-ти. Соответственно НК и стоят подороже.

Непосредственно к группе НК примыкает и их подвид – никель-железные АКБ, но их роднит разве что слово «никель», сама технология и близкая устойчивость к температурам. А в остальном это совсем другой класс устройств, с более низкими характеристиками. И по надежности уступают НК, низкий КПД, большие потери, сложны в обслуживании. Еще недавно считалось, что это уже устаревшая конструкция и используется главным образом на постсоветском пространстве по причине относительной дешевизны и устоявшейся традиции. Однако, по последним сведениям, интерес к никель-железным АКБ возродился, и причем даже не в нашей стране, а как раз за рубежом. Причина – простота утилизации, экологичность. К слову, и сама технология модернизировалась.

Еще одна разновидность АКБ – это литиевые батареи, прежде известные всем главным образом по батарейкам в мобильных телефонах или в ноутбуках. Ранее в серьезных мощных системах литий-ионные аккумуляторы не применялись по причине дороговизны. Однако в последние несколько лет все решительно изменилось. Во-первых, литиевые батареи почти уровнялись по стоимости с традиционными АКБ (с НК практически сравнялись, и лишь вдвое дороже СК). А во-вторых, как выяснилось, литий-ионные (точнее, литий-железо-фосфатные) аккумуляторы превосходят все остальные по всем статьям. Какой параметр ни возьми, будь то температурный диапазон, ресурс службы, устойчивость к глубоким разрядам – везде они лучшие. Добавим сюда еще лучший показатель удельной запасаемой энергии, т.е. максимальный запас энергии в минимальном объеме – и станет ясно, что за этими АКБ будущее. Сегодня они в основном используются в электромобилях, но уже постепенно завоевывают место и в других сферах. Особенно интересно направление альтернативной энергетики.

О параметрах подробнее

Какого бы типа не были АКБ, их качество и возможности описываются одними и теми же параметрами. Главные из них – это напряжение и емкость. Суть емкости заключается в том, сколько тока в течение определенного времени (при заданном напряжении) способна отдать батарея до своего минимума разряда. Поэтому измеряется емкость в ампер-часах. Емкость АКБ обычно привязывают ко времени, поэтому на изделии можно встретить пометки: С5, С10 или С20. Наибольшую абсолютную емкость АКБ имеют при длительном разряде в стационарном режиме. Емкость при отдаче за короткое время меньше.

Значение емкости во многом зависит от температуры эксплуатации. Номинальная емкость нормируется для комнатной температуры, при повышении температуры емкость возрастает, при понижении – падает, причем очень быстро, экспоненциально (замедление химических процессов). Скажем, на нулевой температурной отметке в зависимости от тока емкость может упасть на 50-70% для разных типов АКБ. Самые чувствительные в этом плане свинцово-кислотные АКБ: рабочий температурный диапазон для них – от -30 до +40°С, а самые устойчивые никель-кадмиевые и литиевые – от -40-50 до + 50-60°С. Превышение этих норм, особенно в сторону тепла, приводит к резкому сокращению сроков службы.

Емкость зависит от продолжительности заряда, и у каждой АКБ такое время задано. Обычно они заряжаются несколько часов, например, свинцово-кислотные в зависимости способа заряда могут заряжаться от 8 до 48 часов. Никель-кадмиевые можно зарядить до 90% за несколько часов, а литиевым для полного заряда достаточно будет и часа (а для некоторых типов литиевых батарей – и 20 минут).

Еще один важный параметр – срок службы. Обычно за норму принимается расчетный срок службы в АКБ в режиме буферного подзаряда (когда аккумулятор постоянно подключен к источнику постоянного тока). Т.е. они периодически находятся в этом режиме и иногда, от случая к случаю разряжаются. У свинцово-кислотных, например, такой срок составляет 3-5 лет, но может быть и 10-15, у наиболее продвинутых – 8-20 лет, есть и другие, которые служат ещё больше. Все зависит от исполнения АКБ, от технологи и, от состава активных материалов, от качества материала, добавок. Чистота материала – это очень важный фактор, поскольку переработанный свинец рафинировать до бесконечности невозможно, меняется структура материала, и срок службы резко снижается. К сожалению, в Украине такая продукция может иногда встречаться.

Наиболее долговечные АКБ свинцово-кислотного типа – это АКБ из сплошного свинца. Так называемые элементы Планте, или как их сейчас называют GroE, могут служить и 20, и 30 лет.

Обслуживаемые и герметизированные

АКБ бывают обслуживаемые, малообслуживаемые и необслуживаемыe. Обслуживание – это постоянный контроль уровня электролита и время от времени долив в аккумулятор дистиллированной воды. Отметим, что при разряде АКБ вода не просто испаряется, а происходит диссоциация, ее разложение на водород и кислород. Улетучивание происходит обычно через специальный фильтр пробки, которая защищает от испарения аэрозолей, паров, и от проникновения искры внутрь.

Литиевые – по определению необслуживаемые. НК, как правило, обслуживаемые. СК тоже могут быть обслуживаемыми, и такие батареи называются обслуживаемыми АКБ вентилируемого типа. Вентилируемые батареи обычно устанавливаются в отдельных аккумуляторных помещениях с серьезной вентиляцией. Их нужно обслуживать, периодически доливать воду в электролит измерять плотность, испытывать. И такие батареи ещё в недавнее время составляли большинство.

Вместе с тем те же типы АКБ могут быть и необслуживаемыми. НК, например, обслуживаемые по определению, но имеются разновидности НК, которые в определенных режимах могут и не обслуживаться. То есть не требуют долива в течение длительного срока, порой десятилетий.

Как мы уже отметили раньше, в процессе разряда на разных пластинах выделяется водород и кислород, и если их превращать обратно в воду, не позволяя испариться, то АКБ в обслуживании не нуждается. Такой метод называется рекомбинацией, и чаше всего используется в СК аккумуляторах (т.н. батареи рекомбинационного типа).

Чтобы кислород и водород не улетучивались, а обязательно встречались и объединялись в молекулы воды, им создаются специальные условия. Для этого электролит делают затушенного типа, добавляя в раствор серной кислоты силиконовые добавки. Таким образом, электролит в виде хорошей сметаны или геля (желе) находится между пластинами, не заполняет другие объемы и представляет собой этакий бутерброд. При диффузии эти частички газов затрачивают больше время, чтобы вылететь наружу, увязают в геле, и вероятность встречи повышается и рождается молекула воды. Так происходит рекомбинация, а такие АКБ называются гелевыми. Отметим, что АКБ этого типа могут работать в любом положении: на боку, даже вверх ногами – из них ничего не вытекает.

Но самым удачным представителем в семействе герметичных батарей считаются так называемые AGM батареи. Здесь пространство между пластинами заполняется пористым губчатым веществом, обычно это стеклокапиллярный материал, салфетка из стекловолокна, которая напитывается электролитом (только электролит здесь более жидкий). За счет длинного пути, который кислороду и водороду нужно проделать по лабиринтам этой губки, рекомбинация получается ещё эффектней, чем в геле. Вот почему эти АКБ и называются AGM – Absorbent Glass Mat, или абсорбция в стекловолоконном материале.

Эти АКБ имеют высший коэффициент рекомбинации, потери воды очень незначительны, при нормальных условиях зарядки коэффициент рекомбинации превышает даже 99% при нормальных условиях заряда и разряда. Казалось бы, служить ему и служить, но на самом деле газы понемногу стравливаются. Для этого есть клапан, который представляет собой мембрану, рассчитанную на определенное избыточное давление, что-то типа ниппеля, только наоборот.

Собственно, постепенное очень медленное выбрасывание газов и ведет к конечной точке службы. Обслуживание невозможно, доливать воду некуда, так уж оно устроено.

Каждый из этих АКБ имеет свою сферу применения. АКБ с жидким электролитом обычной плотности в силу лучшей в этой среде подвижности носителя заряда имеют лучшие динамические характеристики, то есть скорость заряда-разряда.

Гелевые желательно применять в системах, которое имеют стационарный продолжительный разряд, и точно так же неспешно могут заряжаться, потому что заряд большим током ведет к их разрушению.

Гелевые АКБ имеют довольно сильный плюс – больший циклический ресурс. Если говорить о глубоком разряде, то гелевые глубокого заряда и разряда могут обеспечить вдвое, а то и втрое циклов больше. Гелевые могут иметь 500-600 циклов, a AGM – 250-300 (есть исключения), причем устройства примерно одного уровня по качеству. Из-за своего потенциала цикличности гелевые АКБ и стоят дороже.

Впрочем, на сегодня уже есть AGM аккумуляторы, способные обеспечить 600 и более циклов глубокого разряда (например, АКБ ТМ EverExceed). Обслуживаемые АКБ могут иметь ресурс ещё выше.

Скромная привлекательность литиевых батарей

Технология литиевых батарей получила такое развитие, что грозит оставить за спиной более традиционные АКБ, прежде всего свинцово-кислотные в связи с массой преимуществ и снизившейся ценой. Если пять лет назад литиевые батареи были раз в шесть дороже аналогичных свинцово-кислотных, то сейчас можно говорить только о двукратном превышении цены.

Литиевые батареи применяются уже не только в электромобилях, но и телекоммуникации, источниках бесперебойного питания, системах резервного питания и в альтернативной энергетике, где требуется большой циклический ресурс батарей.

Все больше поставщиков добавляют в свой ассортимент литиевые батареи. Когда только в два раза дороже и целый веер преимуществ, потребитель уже благосклонно смотрит на этот товар.

Чем же хороши литиевые батареи конкретно? Срок службы литиевых батарей на сегодня на отметке 15 лет. У свинцово-кислотных ожидаемый срок службы, у батарей средней емкости, 30-300 Ач, – 10-12 лет. Но в реальных условиях, с поправкой на условия эксплуатации, с учетом человеческого фактора, этот срок службы обычно 7-8 лет. У литий-ионных – 15.

Циклический ресурс у свинцово-кислотных, самых хороших, наиболее распространенных, обычно в пределах нескольких сотен циклов глубокого разряда, максимум 600-700. У литиевых батарей – 4000 циклов.

Конструкция литий-ионных батарей

Литиевые батареи абсолютно другого типа, нежели СК. Во-первых, они управляемы на программном уровне, они не могут работать без блока управления BMS. По сути, это компьютер, который отслеживает все параметры, следит за зарядкой, прекращает разряд, фиксирует параметры сопротивления – и все это транслирует на монитор. Обычные батареи – это вообще черный ящик, там трудно даже определить, по какой причине батарея вышла из строя, почему потеряла емкость. Здесь же мы все видим, можем посмотреть историю, сколько циклов разряда прошла батарея.

Форма литий-ионной аккумуляторной батареи на автомобиле KIA Motors

Литиевые батареи собираются из маленьких элементов, похожих на пальчиковые батарейки или патроны. Благодаря такому модульному исполнению батареи могут принимать самые необычные формы разных размеров, заполняя пустоты. А могут сохранять и традиционную форму, свойственную привычным АКБ. В электромобиле конструкция неправильной формы вдоль днища набита этими кассетами. Для телекоммуникаций – стоечное исполнение 19¨.

Литий-ионные аккумуляторы легче и компактней. Что еще? Быстрая зарядка, большие токи разряда, высокая плотность энергии (Втч/кг), работа в широком t-диапазоне… Для полного перечня достоинств нет места.

Литиевая батарея EverExceed в телекоммуникационной стойке

Назначение аккумуляторов

Будучи источником автономного и резервного питания аккумуляторные батареи широко используются в различным сферах жизни, и, конечно, в промышленности. В различных от­раслях АКБ призваны выполнять раз­ные задачи. И для каждой отрасли есть наиболее подходящий тип батарей.

В энергетике аккумуляторные ба­тареи применяются очень широко. В огромном хозяйстве электростан­ций, подстанций, систем различной автоматики, механики слежения обя­зательно присутствуют батареи. Во многих производственных процессах АКБ несут миссию безопасности и резервного питания. Подача мас­ла насосами на подшипники в генера­торе – беспрерывный процесс, кото­рый не должен прерываться. И здесь нужна АКБ для резервирования пита­ния. Причем подойдет батарея любо­го типа, потому что каких-то больших толчковых токов здесь не требуется.

А вот при аварийных включениях требуются большие пусковые, толчковые токи, кратковременные, которые длятся доли секунды, включение – и ток заканчивается. Здесь пригодят­ся свинцово-кислотные аккумуляторы типа GrоЕ.

Стоит добавить, что в наши дни в энергетике все чаше при­меняют стационарные необслу­живаемые аккумуляторы герме­тизированного типа АGМ, хоть дорогу эти современные реше­ния в консервативной энергетической среде пробивали с тру­дом. Приходилось слышать от поставщиков досаду на привер­женность к старым наливным системам именно в энергетике.

В телекоммуникациях (мо­бильные операторы, системы фиксированной связи) используются, как правило, стационарные СК акку­муляторы, потому что в телекоммуникациях используется продолжитель­ный стационарный разряд и не нужны динамические режимы. Важный пара­метр здесь – срок службы. На участ­ках, где возможен глубокий разряд, устанавливаются СК с трубчатыми пластинами типа OPzS или OPzV, об­ладающие, кстати, солидным ресурсом циклического разряда – 1500 циклов.

В системах, где нагрузка небольшая, где нужна емкость десятками или не­большими сотнями ампер-часов, используются герметизированные аккумуляторы типа АGМ, реже гелевые. В телекоммуникациях в шкафах с оборудованием редко кто применяет какие-то другие аккумуляторы, кроме герме­тизированных, критериями их подбора могут быть разве что емкость и напряжение. По габаритным размерам они унифицированы и удобно устраиваются в шкафах электропитания, в источ­никах бесперебойного питания, рядом с чувствительной электроникой.

На транспорте также роль АКБ труд­но переоценить. На железной дороге батареи служат для резервирования функций включения-отключения, в локомотивах, электропоездах и теплово­зах, а также для автономного питания в вагонах. На ходу вагон питается от генератора, и он же заряжает эти ак­кумуляторы, а на стоянке эти АКБ дают освещение, вентиляцию, кондиционирование в вагоны. На железной до­роге применяются как свинцово-кислотные, так и никель-кадмиевые, и никель-железные, причем последние, щелочные, чаше.

На городском электротранспорте обычно в работе никель-кадмиевые, там сильные вибрации, низкие-высо­кие сезонные температуры, там СК не выдержит. АКБ на электротранспорте могут выполнять несколько функций, например, в метро – резервирование открывания дверей и работы автома­тики, в трамвае – электромагнитный тормоз, такой башмак, который притя­гивается под напряжением к рельсам и тормозит.

Тормозной башмак трамвая АКБ

На промышленных предприятиях примеров применения АКБ не пере­честь. На каждом крупном заводе есть свои подстанции, ИБП, система ава­рийного питания. Поэтому примене­ние – смотри выше.

Близки к электротранспорту, напри­мер, шахты. Там редко бывает контакт­ная сеть (опасно по газу, по пыли), поэтому уголь вывозится электровозами с вагонетками, которые приводят в движение тяговые АКБ.

Традиционно в шахтах применяются никель-железные АКБ и никель-кадмиевые, но уже несколько лет в шахтах в подвижном электротранспорте рабо­тают и свинцово-кислотные. Тоже тяговые, которые имеют хорошие пока­затели и дешевле (никель-кадмиевые по надежности и безопасности выше, но они дороже вдвое-втрое).

То ли к промышленности, то ли к транспорту можно отнести погру­зочно-разгрузочный парк. Это тоже очень большая сфера: склады, мага­зины, логистические центры, заводы, здесь в основном используются кислотно-свинцовые тягового назначения с трубчатыми пластинами (а сегодня уже и литиевые). К тяговым аккумуля­торам повышенные требования по механической устойчивости. Также они должны быть устойчивы к циклическому режиму дня: день разряжаются, но­чью заряжаются; и если это хороший тяговый аккумулятор на 1500 циклов, и мы имеем в виду 250 рабочих дней, то хватит его на 6 лет.

АКБ для автопогрузчика

Частный сектор. Здесь системы безо­пасности, сигнализации, это любой киоск, магазинчик и частная сигнализация в домах. Здесь применяют АКБ АGМ-типа, небольшой емкости, 5-20 Ач.

Когда люди хотят за­резервировать себе какие-то системы, на­пример, газовые котлы с собственной систе­мой прокачки и элек­троприводом – здесь нужны АКБ АGМ типа большой емкости, можно гелевые, если денег больше.

Объекты малого бизнеса. Обычно это ИБП. Но те, что применяются в банках, офисах, обычно рассчитаны на непродолжительное время работы, на 5-10 мин, редко на час. Как прави­ло, такие ИБП могут работать только от батареи ограниченной емкости.

Для жилья такие источники беспе­ребойного питания неприемлемы, они зашивают самые важные функции на короткое время. Для жилья нужно ду­мать о большом времени резервиро­вания. Здесь требуется очень мощное зарядное устройство, способное под­держивать АКБ очень большой емкости, обеспечивая многочасовую авто­номность, может, суточную.

Завершая этот небольшой обзор, следует сказать, что мир аккумуля­торов безбрежен, и существует мно­жество вариаций, как внутри самих технологий, так и у отдельных произ­водителей. Знакомство с фирменны­ми тонкостями мы продолжим в следу­ющем материале.

Подготовил Евгений ПОЛИЩУК

Выражаем большую благодарность за проведённое интервью и предосатвленные материалы журналу «Украина-Электро» (http://ua-electro.com)


PNNL: Накопитель энергии: Типы батарей

Поток ванадия-окислительно-восстановительного потенциала: Эти батареи продемонстрировали способность решать задачу интеграции энергии из возобновляемых источников, таких как солнечные и ветряные электростанции. В течение многих лет чувствительность к высокой температуре, высокая стоимость и меньшая емкость хранилища ограничивали широкое использование этих батарей. Однако наши исследователи разработали первую коммерчески жизнеспособную проточную батарею окислительно-восстановительного потенциала, которую можно использовать в масштабе сети, и в 2012 году наша технология была лицензирована для UniEnergy Technologies LLC.

Цинк-полииодидный поток: Цинк-полийодидный проточный окислительно-восстановительный аккумулятор, разработанный в 2015 году, используется для хранения возобновляемой энергии. В нем используется электролит, плотность энергии или запасенная энергия которого более чем в два раза выше, чем у следующего лучшего проточного аккумулятора, что приближается к плотности энергии типа литий-ионного аккумулятора, используемого для питания портативных электронных устройств и некоторых небольших электромобилей.

Органический водный поток: Подобно ванадиевой батарее с окислительно-восстановительным потоком, а также используется для интеграции с возобновляемыми источниками энергии, эта батарея вырабатывает энергию, перекачивая жидкости из внешних резервуаров в центральную батарею.Ожидается, что новейшая версия будет стоить всего 180 долларов за киловатт-час после полной разработки, что на 60 процентов меньше, чем современные стандартные проточные батареи.

Натрий-ионные: Натрий-ионные аккумуляторы высокоэффективны и относительно дешевы, но разработка таких аккумуляторов с высокой плотностью энергии и длительным сроком службы была сложной задачей. Наши исследователи работают над тем, чтобы сделать натрий жизнеспособной заменой лития для хранения энергии в сети, разрабатывая защитный слой для снижения потребления ионов натрия в батарее.

Галогенид натрия и металла: Также известные как батареи ZEBRA, они обладают потенциалом в качестве стационарных батарей, используемых для хранения энергии для сети. В 2016 году наши исследователи обнаружили новую конструкцию, более стабильную и менее дорогую в производстве, с повышенной плотностью энергии.

Магниево-ионные: Магниевые аккумуляторы, обладающие большей емкостью и меньшими проблемами безопасности, чем их литиевые аналоги, представляют собой потенциально многообещающий вариант накопления энергии, но электроды трудны в производстве и быстро выходят из строя.Наши исследователи обнаружили, что олово и сурьма могут работать вместе, чтобы сделать магниевые батареи лучше.

Гибридный магний-литий: Магний и литий имеют свои преимущества, и наши исследователи стремились объединить их при разработке гибридной батареи, которую можно использовать во многих приложениях, особенно для хранения энергии в сети. Гибридная батарея соединяет магниевый металлический анод с положительным литиево-ионным катодом, обеспечивая как выдающуюся производительность, так и превосходную безопасность и стабильность.

Оксид цинка и марганца: Эти батареи привлекательны для хранения возобновляемой энергии и поддержки энергосистемы. Они используют обильные недорогие материалы, а их удельная энергия может превышать свинцово-кислотные батареи. Мы продолжаем совершенствовать нашу цинк-марганцевую батарею — в 2016 году ее емкость достигла 285 миллиампер-часов на грамм оксида марганца за 5000 циклов, сохранив при этом 92 процента своей первоначальной емкости.

19 различных типов батарей (подробная классификация батарей)

Типов батареек намного больше, чем AA, AAA и автомобильных.Фактически, аккумуляторные технологии стремительно развиваются. Узнайте о различных классификациях аккумуляторов и о том, что делает каждый тип (т. Е. Что они питают и как).

Батареи существуют уже очень давно и стали чрезвычайно важным и удобным устройством для подачи энергии. По сути, батареи хранят химическую энергию, которая преобразуется в электрическую и заставляет работать другие устройства. По сути, батареи — это крошечные химические реакторы, которые производят энергичные электроны в качестве конечной реакции и протекают через подключенное устройство.

Батареи сегодня настолько распространены, что без них трудно представить современную жизнь. Однако батареи не всегда были «вездесущими». Считается, что в 1938 году директор Багдадского музея обнаружил «Багдадскую батарею» в подвале своего музея. Батарея в форме кувшина имела длину 5 дюймов (12,7 см) и состояла из железного стержня, заключенного в медь; При исследовании выяснилось, что эта необычная батарея датируется примерно 200 г. до н. э. С момента открытия специалисты воспроизводили модель различными способами, чтобы произвести электрический заряд.Эти багдадские батареи в основном использовались для религиозных или медицинских целей или для гальваники.

В 1749 году один из отцов-основателей Соединенных Штатов Бенджамин Франклин использовал термин «батарея», когда проводил электрические эксперименты с параллельными конденсаторами. Но только в 1800 году была изобретена первая настоящая батарея. Алессандро Вольта — итальянский физик — создал первую батарею, составив чередующиеся диски из цинка, картона и серебра. Этот набор различных элементов был назван «гальванической связкой» и был первым устройством, выпускавшим непрерывный и продолжительный ток.К сожалению, первая батарея оказалась не самой лучшей, поскольку имела немало недостатков. В 1859 году появился самый прочный аккумулятор — свинцово-кислотный. Батареи этого типа все еще используются и могут считаться самой старой формой «аккумуляторных батарей».

Сегодня вы найдете батарейки самых разных размеров, форм, моделей и функций; каждая из которых различается в зависимости от типа батареи. В этом сообщении блога мы обсудим различные типы батарей, которые помогут вам понять, чем каждый тип отличается от другого.

Связанный: Обзор аккумуляторной газонокосилки Black + Decker | Интернет-магазины игрушек | Типы электроинструментов | Типы электроники

Общие типы батарей

Хотя батареи можно разделить в зависимости от их размера, состава, формы и функций, они, как правило, делятся на следующие категории:

  • Первичные батареи
  • Вторичные батареи

Первичные батареи

Самое простое значение для понимания первичных батарей состоит в том, что эти батареи предназначены только для одноразового использования и затем должны быть утилизированы.Эти батареи также известны как неперезаряжаемые батареи, поскольку их нельзя перезаряжать и использовать снова. Именно такую ​​батарею первым изобрел Алессандро Вольта в 1800 году.

Неперезаряжаемые батареи обладают рядом преимуществ, которые делают эти устройства выбором номер один для большинства пользователей. Во-первых, первичные батареи стоят очень дешево по сравнению с другими интеллектуальными батареями. Помимо доступности, эти батареи легки, просты и удобны до такой степени, что любой новичок может использовать их без каких-либо проблем.

Часто рентабельные товары имеют короткий срок службы. Однако это не относится к первичным батареям, поскольку эти устройства имеют срок службы 10 лет. Эта характеристика делает эти батареи сверхнадежными и долговечными. Лучше всего то, что вы можете найти их в широком диапазоне размеров и форм, которые могут идеально подходить для различных типов приложений.

Существует несколько основных типов первичных батарей, которые подробно рассматриваются ниже:

Щелочные батареи

Это один из основных типов первичных батарей, которые получают энергию в результате химической реакции между металлическим цинком и диоксидом марганца.По сравнению с другими батареями, такими как угольно-цинковые батареи из хлорида цинка, щелочные батареи обладают большей плотностью энергии и более длительным сроком службы.

Вместо кислого хлорида аммония или хлорида цинка батарея состоит из щелочного электролита гидроксида калия и из-за этого свойства называется «щелочные батареи».

Щелочные батареи состоят из постоянного напряжения, которое обеспечивает лучшую плотность энергии и сопротивление утечкам, в отличие от угольно-цинковых батарей.Эти батареи получают эту характеристику в основном из-за наличия анода из диоксида марганца, поскольку он лучше и плотнее, и поэтому другие компоненты не занимают много ненужного места.

Основные пользователи щелочных батарей находятся в регионах Северной Америки и Европы. Однако в Латинской Америке и Азиатско-Тихоокеанском регионе вероятность роста рынка щелочных батарей выше. Это потому, что в этих регионах переходят от угольно-цинковых батарей к щелочным.Что касается Ближнего Востока и Африки, в обоих этих регионах наблюдается растущая тенденция использования этих батарей.

Вы можете найти щелочные батареи различных размеров, например AAA, AA, C, D, 9 В и т. Д. C, D и 9 В идеально подходят для устройств с высоким энергопотреблением, а AA и AAA — для приложений с низким энергопотреблением.

Литиевые батареи

Эти первичные батареи, также известные как литиевые аккумуляторные батареи, состоят из металлического лития в качестве анода.Сегодня они широко популярны, так как вы можете использовать их для питания таких устройств, как MP3-плееры, автомобильные замки, термометры, лазерные указки и слуховые аппараты.

Что отличает их от других типов батарей, так это то, что они обеспечивают высокую плотность заряда и высокую стоимость за единицу. Литиевые элементы известны тем, что вырабатывают напряжение от 1,5 В до 3,7 В, в зависимости от их модели и используемых химических соединений.

Однако не следует путать литиевые батареи с литиево-ионными батареями , поскольку они являются перезаряжаемыми аккумуляторными батареями, используемыми в таких устройствах, как ноутбуки, сотовые телефоны, КПК и iPod.

Меркурий

Ртутная батарея, также известная как оксид ртути или ртутный элемент, представляет собой неперезаряжаемую электрохимическую батарею, которая может использоваться до 10 лет. В этой миниатюрной батарее используется химическая реакция между цинковыми электродами и оксидом ртути в щелочном электролите.

Благодаря длительному сроку службы и стабильному выходному напряжению, эти батареи являются наиболее распространенным типом аккумуляторов в -х годах века.Они широко используются в портативных электронных устройствах, таких как часы, калькуляторы, игрушки, фотоаппараты, цифровой термометр и т. Д.

В отличие от двух других батарей, которые обсуждались выше, ртутные элементы имеют форму и размер, напоминающие кнопку, что делает эти батареи очень удобными и удобными для переноски.

Цинково-воздушная батарея

Воздушно-цинковые батареи, также называемые воздушно-цинковыми топливными элементами, представляют собой воздушно-металлические устройства, функционирующие за счет комбинации кислорода и окисляющего цинка.Эти батареи обладают высокой плотностью энергии и не требуют больших затрат в производстве. Вы можете приобрести эти батареи различных размеров по вполне доступной цене.

Цинково-воздушные топливные элементы содержат анод, состоящий из гранулированного порошка и электролита. Электролит действует как гелеобразующий агент, который помогает поддерживать контакт между частицами цинка и электролитом. Во-вторых, эти батареи также содержат катод, который помогает кислороду вступать в контакт с другим химическим соединением, чтобы могла произойти реакция.

Обычно воздушно-цинковые топливные элементы применяются в часах, фонариках, пультах дистанционного управления, пленочных камерах, слуховых аппаратах , и т. Д. В зависимости от размера устройства вы можете выбрать воздушно-цинковую батарею соответственно.

Вторичные батареи

Также называемые аккумуляторными батареями , вторичные батареи поставляются с электрохимическими элементами, химические реакции которых можно легко обратить вспять, приложив некоторое количество напряжения в противоположном направлении.

В отличие от первичных батарей, вторичные элементы можно перезаряжать и использовать снова. Обычно эти элементы используются в устройствах с большим стоком или в ситуациях, которые могут быть слишком дорогими или непрактичными. Аккумуляторы можно использовать в мобильных телефонах, MP3-плеерах, компьютерах, телефонных станциях, наручных часах, слуховых аппаратах и ​​т. Д.

Ниже приведены типы аккумуляторных батарей, которые широко используются сегодня:

Свинцово-кислотный гель

Свинцово-кислотно-гелевый аккумулятор , также известный как «гелевый элемент», представляет собой аккумулятор VRLA (что означает свинцово-кислотный аккумулятор с регулируемым клапаном) с гелеобразным электролитом.Эта гелеобразная масса производится из смеси серной кислоты с коллоидальным кремнеземом. Гелевую ячейку часто путают с ячейками в стиле AGM, поскольку в них обоих находится взвесь электролита. Однако, в отличие от ячеек AGM, гелевый элемент имеет кремнезем, который делает электролит жестким. Преимущество гелевых аккумуляторов перед другими видами аккумуляторов в том, что они служат дольше, особенно в жаркую погоду.

Имейте в виду, что это наиболее чувствительные батареи, так как они могут вызвать нежелательную реакцию, если они будут чрезмерно заряжены.Кроме того, если для питания свинцово-кислотных элементов используется неправильное зарядное устройство, устройство может плохо работать или полностью выйти из строя. Диапазон напряжения поглощения от 14,0 до 14,2 вольт.

Гелевые элементы

не так распространены, как другие батареи, такие как AGM, но они широко используются в инвалидных колясках, троллинговых двигателях и велосипедах для дома на колесах.

Литий-ионный аккумулятор Литий-ионные аккумуляторы

чрезвычайно популярны в наши дни, поскольку они используются для зарядки или перезарядки популярных устройств, таких как КПК, сотовые телефоны, плееры iPod и ноутбуки.Помимо того, что они помогают заряжать устройства, без которых мы не можем жить, эти батареи считаются самыми легкими и энергоемкими из имеющихся на рынке.

Эти батареи состоят из сверхвоздушного лития и углерода, поэтому они легкие по своей природе. Литий также обладает высокой реактивной энергией, что означает, что литий-ионные батареи могут накапливать чрезмерное количество энергии в своих атомных связях.

Более того, у литий-ионных аккумуляторов отсутствует эффект памяти.Это означает, что вам не нужно сначала их разряжать, чтобы перезарядить, как это бывает с некоторыми другими батареями. Прежде всего, эти элементы способны накапливать 5% заряда каждый месяц по сравнению с 20% -ными потерями, наблюдаемыми в NiMH батареях.

Никель-кадмиевый (NiCd) аккумулятор

Это тип аккумуляторной батареи, в которой в качестве электродов используются металлический кадмий и гидроксид никеля. Чтобы эти клетки работали, их нужно поддерживать в пределах от +60 градусов по Цельсию до минус 20 градусов по Цельсию.

Выбор подходящего сепаратора, такого как полипропилен или нейлон, и электролита, такого как LiOH, NaOH и KOH, также имеет первостепенное значение для эффективной работы этих батарей. Эти составляющие сохраняют напряжение в никель-кадмиевых батареях, особенно в таких случаях, как сильноточная разрядка.

При неправильном использовании или неправильном обращении эти батареи могут вызвать опасно высокое давление, которое может полностью повредить устройство. Чтобы этого не произошло, в этих элементах есть обратимый предохранительный клапан.Лучшим преимуществом никель-кадмиевых элементов является то, что они очень долго остаются прочными.

Никель-металлогидридная батарея

Никель-металлогидридная батарея, обозначаемая аббревиатурой NiMH или Ni-MH, предлагает множество преимуществ по сравнению с другими аккумуляторными батареями. Прежде всего, никель-металлогидридные батареи — это быстродействующие батареи, которые могут работать очень долго, не подвергаясь стрессу.

Даже при неправильном использовании эти батареи могут обеспечить хорошую нагрузочную способность и довольно длительный срок хранения.Эти батареи не требуют особого обслуживания и могут храниться в разряженном состоянии. Несмотря на то, что они предлагают широкий спектр преимуществ, эти батареи экономичны, и их можно использовать в различных размерах, формах и характеристиках.

Однако аккумулятор имеет определенные ограничения. Например, по сравнению с более новыми системами батарей эти батареи излучают мало энергии. Эти батареи также требуют саморазряда даже после хранения. Хуже всего то, что кадмий — опасный металл, а это означает, что батарею нужно использовать осторожно, иначе она может вызвать серьезные разрушения.

Другие типы аккумуляторов

Промышленные аккумуляторы

Как следует из названия, эти батареи специально разработаны для промышленных целей. Они тяжелые, потребляют больше энергии и обеспечивают высокую прожорливость в промышленности.

Основное применение этих аккумуляторов — питание тяжелой техники, железных дорог и систем резервного питания для коммунальных служб и телекоммуникаций. Ниже приведены некоторые распространенные типы промышленных батарей , используемых сегодня:

Absolyte Battery

Это промышленный аккумулятор, который может похвастаться свинцово-кислотной конструкцией с регулируемым клапаном (VRLA).По сравнению с другими видами промышленных батарей, абсолитные батареи более безопасны, поскольку они препятствуют выделению вредного газообразного водорода и утечке кислоты. Этот аккумулятор имеет поразительно современный дизайн. Например, он состоит из сосуда, закрывающего термосварку, сепаратора с отличным сжатием, модульного стального поддона и т. Д.

Вы можете использовать эти батареи для телекоммуникаций, энергетических систем, аккумуляторов энергии, железнодорожной сигнализации и связи, распределительных устройств и фотоэлектрических устройств.

Никель-железный аккумулятор

Никель-железная батарея — это еще одна промышленная батарея, состоящая из никеля (III), оксидно-гидроксидных положительных пластин и железных отрицательных пластин.В дополнение к этому, высоковольтная батарея состоит из электролита гидроксида калия.

Эти батареи, как правило, обладают удивительным жизненным циклом и разнообразными областями применения. Первоначально он использовался в горных поездах и на железных дорогах. Однако сегодня у него есть совершенно новая область применения, так как он используется для перемещения и зарядки электромобилей.

Стальной корпус

Это надежные и чрезвычайно мощные промышленные аккумуляторы, которые используются в самых разных сферах — подъемники и вилочные погрузчики.

Чтобы идентифицировать эти батареи, вы должны знать, что они тяжелее, чем любой другой тип промышленных батарей, и весят от нескольких сотен килограммов до тысяч килограммов.

Батареи

в стальном корпусе также доступны в виде лома, что означает, что они могут быть переработаны и использованы снова. Большинство складов металлолома готовы принять их, но, скорее всего, они не примут другие типы батарей.

Свинцово-кислотная аккумуляторная батарея

Залитые свинцово-кислотные батареи известны тем, что используют солнечную энергию и используются во многих автономных энергетических системах.Они имеют относительно долгий срок службы и дешевизну на ампер-час; но для того, чтобы максимально использовать эти преимущества, эти батареи нуждаются в регулярном обслуживании , включая очистку и полив их внутренних компонентов .

Некоторыми распространенными примерами свинцово-кислотных аккумуляторов, используемых только в солнечных и ветровых электрических системах, являются 2-вольтовые промышленные элементы, 6-вольтовые L-16 и 6-вольтовые батареи для гольф-каров.

Автомобильные аккумуляторы

Судя по названию, автомобильные аккумуляторы используются в таких транспортных средствах, как легковые автомобили, грузовики, велосипеды и т. Д.Эти батареи подают электрический ток в двигатель автомобиля, чтобы запустить его.

Когда двигатель начинает работать, автомобиль приводится в действие генератором переменного тока — внутренней функцией автомобиля, которая помогает заряжать аккумулятор автомобиля. Ниже приведены некоторые популярные типы автомобильных аккумуляторов, о которых вы должны знать:

Гибридный автомобиль

Аккумулятор гибридного автомобиля похож на любой другой аккумулятор, только он является перезаряжаемым и имеет достаточно заряда, чтобы автомобиль мог работать на многие километры.

Гибридные батареи состоят из двух электродов, которые помогают принимать и излучать электрический заряд. Эти электроды находятся в растворе на основе ионов, известном как электролит. Электроды разделены разделителем, чтобы избежать короткого замыкания. Двухпозиционный переключатель, подключенный к вашему телефону или ноутбуку, помогает электродам ячейки вырабатывать энергию, что приводит к электрохимической реакции.

Свинцово-кислотный аккумулятор

Свинцово-кислотная батарея , изобретенная Гастоном Плантом (французским физиком) в 1859 году, является одной из старейших, но наиболее широко используемых батарей в мире.Это вид автомобильного транспортного средства, в котором используется губчатый свинец и перекись свинца для преобразования химической энергии в электрическую.

Хотя это обычный автомобильный аккумулятор, он также широко используется на различных электростанциях и подстанциях из-за его отличной емкости по напряжению и более низкой стоимости.

Сохранять химическую и электрическую энергию, хранящуюся в батарее, помогают две части батареи — контейнер и пластина. Контейнер свинцовой батареи изготовлен из стекла, свинца, эбонита или твердой резины, что помогает предотвратить разряд электролита.С другой стороны, пластина свинцово-кислотной батареи сконструирована из сетки, которая обеспечивает равномерное распределение тока. Без равномерного распределения электрический ток может просочиться наружу и повлиять на аккумулятор.

VRLA Аккумуляторы

VRLA — это необслуживаемые аккумуляторы среднего и большого размера, которые также иногда называют герметичными свинцово-кислотными аккумуляторами. Внутри этой батареи есть элементы VRLA, которые состоят из плоских пластин, таких как заливная свинцово-кислотная батарея или спиральный валик.

Батареи

VRLA поставляются с устройством сброса давления, которое активируется, когда давление газообразного водорода начинает расти. Эта активация клапана приводит к утечке некоторого количества газа и электролита. Это, в свою очередь, снижает общую емкость аккумулятора.

Один из распространенных методов зарядки аккумулятора VRLA — зарядка постоянным напряжением. Однако для быстрой зарядки методов VRLA используются и другие методы. Наличие VRLA в вашем автомобиле требует регулярного обслуживания.В противном случае могут возникнуть такие инциденты, как короткое замыкание и небольшие пожары.

Аккумуляторы, несомненно, являются наиболее надежным и компактным способом производства электроэнергии в различных устройствах, оборудовании, механизмах и транспортных средствах. Без разных типов батарей мир был бы тяжелым и тяжелым местом для жизни.

Home Stratosphere Giveaways …

Enter to Win Маленькая бытовая техника

Лучшие мелкие бытовые приборы включают блендер Vitamix, быстрорастворимый горшок, соковыжималку, кухонный комбайн, настольный миксер и кофеварку Keurig.

Бесплатные раскраски и книги для детей

Бесплатно скачать и распечатать.

Скачайте тысячи пользовательских раскраски и пазлов для своих детей.

Какие бывают типы батарей? Ответ и анализ рынка

Батареи — одна из тех вещей, которыми владеет и пользуется почти каждый, но никогда не осознает, насколько они важны. Без батареек современная жизнь была бы совсем другой. Батареи — одни из самых распространенных и широко используемых электронных компонентов во всей электронной промышленности, поскольку они обеспечивают надежную и стабильную энергию для подавляющего большинства электронных устройств.

В этом посте мы освещаем текущие рыночные идеи и раскрываем некоторые основы аккумуляторной продукции.

Анализ рынка:

Согласно недавнему аналитическому отчету рынка, рынок аккумуляторов, как ожидается, будет расти до 2025 года, при этом совокупный годовой темп роста (CAGR) прогнозируется на уровне 12,31% или более. Ожидалось, что снижение цен на литий-ионные батареи, рост сектора возобновляемых источников энергии, рост популярности электромобилей и значительный рост спроса на бытовую электронику вызовут этот рост.Однако нынешняя пандемия COVID-19 затронула всю электронную промышленность, включая сегмент аккумуляторов. Мировой рынок литий-ионных аккумуляторов особенно сильно пострадал.

В связи с недавними сбоями в работе глобальных рынков и цепочек поставок ключевые игроки на рынке аккумуляторов начали изучать варианты производства за пределами Китая. По словам Фрэнсиса Ванга, генерального директора компании по производству аккумуляторов NanoGraf, в последние пять лет Китай доминирует в цепочке поставок литий-ионных аккумуляторов.В результате последствий, вызванных COVID-19, Ван ожидает, что производители оригинального оборудования (OEM) вернут производство в Японию и Корею. При этом Ван также считает, что производство аккумуляторов для электромобилей по-прежнему будет сосредоточено в Китае. Это связано с тем, что Китай поддерживает более широкое использование и производство электромобилей за счет государственного финансирования, что делает их внутренний спрос очень высоким. В аккумуляторной отрасли в целом, вероятно, произойдет сдвиг в сторону более сбалансированной диверсификации цепочки поставок литий-ионных аккумуляторов, с упором на снижение рисков, а не на затраты.Положительным моментом для этого вируса с точки зрения батарей и электронной промышленности является то, что эти новые возможности роста могут стимулировать производственные мощности за пределами Азии.

О программе и аккумуляторах Категории:

Батареи — это автономные химические блоки питания, вырабатывающие определенное количество электроэнергии. В отличие от традиционного электричества, батареи предназначены для медленного и устойчивого преобразования химических веществ, содержащихся в них, в электрическую энергию. Батареи являются одним из самых популярных видов портативных источников питания, поскольку они обеспечивают почти мгновенное получение энергии.

Батареи

бывают самых разных размеров, форм и напряжений. При этом все батареи делятся на две основные категории: первичные и вторичные.

Первичные батареи одноразовые, неперезаряжаемые и обычно встречаются в большинстве домашних хозяйств. Хотя первичные батареи не являются экологически чистыми, у них есть некоторые важные преимущества. Обычно они служат дольше и хранят больше энергии, чем аккумуляторные батареи того же размера.

Три основных типа первичных батарей:

1.Углеродно-цинковые батареи

2. Щелочные батареи

3. Литиевые батареи

Эти три первичные батареи часто называют «сухими элементами», потому что внутри них нет жидкости.

Вторичные батареи обычно называют аккумуляторными. Аккумуляторы стали более популярными и распространенными после того, как портативные устройства, такие как мобильные телефоны, вышли на рынок и взяли его штурмом. В свое время наиболее распространенным типом аккумуляторных батарей были свинцово-кислотные «аккумуляторы», которые использовались в основном в автомобилях.Сегодня наиболее распространенными типами аккумуляторных батарей являются никель-металлогидридные (NiMH), никель-кадмиевые и литий-ионные.

Различные типы батарей:

Ниже приведен список основных типов батарей:

    • Цинк-карбон — Это повседневные батарейки для предметов домашнего обихода, например, фонариков. Они одноразовые, экономичные, но служат недолго. В угольно-цинковых батареях положительный электрод сделан из углеродного стержня, а отрицательный электрод — из сплава цинка, отсюда и название.

  • Щелочные — Эти первичные батареи выглядят как угольно-цинковые, но накапливают больше энергии, служат дольше и стоят дороже. Они могут оставаться заряженными в течение нескольких лет, что делает их очень надежным источником энергии.
  • Свинцово-кислотные — Свинцово-кислотные батареи являются вторичными и используются с 19 века. Свинцово-кислотные аккумуляторы используются в автомобильной промышленности, и обычно их никогда не нужно перезаряжать, потому что автомобиль заряжает их автоматически.Эти батареи большие и могут быть очень дорогими.
  • Никель-кадмиевые (NiCd) — Никель-кадмиевые батареи часто используются в качестве замены одноразовых 1,5-вольтовых батарей, используемых в таких предметах, как игрушки и фонарики. Эти аккумуляторные батареи доступны по цене и могут использоваться в течение очень долгого времени.
  • Никель-металлогидридные (NiMH) — Эти батареи появились в 1990-х годах и были представлены на рынке как более экологичная альтернатива никель-кадмиевым батареям.NiMH аккумуляторы обычно используются в личных устройствах, например в мобильных телефонах.

Использование и применение:

Батареи используются практически во всех сегментах электронной промышленности. В таблице ниже указаны области, в которых активно используются батареи, и несколько примеров применения для каждой из них:

Бытовая электроника

Спортивные товары

Электроинструменты

Беспроводной пылесос

Носимые устройства

Игрушки

Планшеты / электронные книги

Устройства Bluetooth

Смартфоны

Освещение

Солнечный светофор

Освещение для кино и видео

Прогулочные фонари на солнечных батареях

Знаки аварийного выхода

Безопасность на шоссе

Подводное освещение

Безопасность и мониторинг
Системы

Погодные приборы

Охранная и пожарная сигнализация

Блоки захвата радиочастотных данных

Металлоискатели

Электрические заборы и ворота

Счетчики трафика

Оборудование для ядерного зондирования

Передатчики

Медицинское оборудование и системы визуализации

Инвалидные коляски

Устройства для наблюдения за пациентом

Медицинское оборудование для поддержки пациентов

Портативные ультразвуковые аппараты

Переносные рентгеновские аппараты

Инфракрасные мониторы

Коммунальные услуги и резервное питание

Счетчики воды и газа

Термостаты

Счетчики электрические

Поставщики источников бесперебойного питания (ИБП)

Системы на солнечных батареях

Коммуникационные и вычислительные системы

Радиосигнал

Беспроводные и сотовые телефоны

Телефонные системы и телекоммуникации

Оборудование для спутникового и глобального позиционирования

Системы резервного копирования серверов

Встраиваемые вычислительные устройства

Автомобилестроение и транспорт

Электромобили

Беспилотные летательные аппараты

Тормозные системы и системы прицепа

Беспилотные подводные аппараты

Аккумуляторы ZEUS. Продукция и источники питания:

.

Sensible Micro гордится тем, что является авторизованным оптовым дистрибьютором ZEUS Battery Products, ведущего производителя безопасных и надежных аккумуляторных блоков.Продукция ZEUS отличается высочайшим качеством и конкурентоспособной ценой. Они поддерживают как аккумуляторные, так и неперезаряжаемые химические вещества, например:

  • литий-ионный
  • литий-полимерный
  • лития фосфат железа
  • Металлогидрид никеля
  • никель кадмий
  • герметичный свинцово-кислотный
  • литий первичный и щелочной.

Как авторизованный дистрибьютор, Sensible Micro может также предложить индивидуальные решения по аккумуляторным батареям через команду дизайнеров ZEUS.Команда ZEUS внимательно рассматривает и оценивает требования каждого клиента и выбирает подходящую схему электронной безопасности, мониторинга и управления зарядом, чтобы оптимизировать ваше индивидуальное решение для аккумуляторов. Запланируйте звонок с одним из наших экспертов по закупкам сегодня, чтобы обсудить ваши потребности в батареях!

Будьте в курсе последних событий в отрасли и в нашем сообществе, подписавшись на блог Sensible Micro.

Типы аккумуляторов — Любопытные

Наши старые друзья

Свинцово-кислотный

Когда в последний раз вам приходилось вытаскивать кривошипную рукоятку, вставлять ее в коленчатый вал вашего автомобиля и провернуть, чтобы двигатель заработал? Никогда? Это потому, что у нас есть свинцово-кислотные аккумуляторы, подключенные к двигателям наших автомобилей, которые обеспечивают ту мощность, которая необходима двигателю для запуска.Их изобрел Гастон Планте в 1859 году.

Свинцово-кислотные аккумуляторы обычно используются для запуска автомобильных двигателей. Источник изображения: Стив Рейнуотер / Flickr.

Как следует из названия, в этих батареях содержится немного свинца. Фактически, оба электрода (проводники, через которые электричество входит или выходит из батареи) содержат некоторое количество свинца — анод (положительно измененный электрод) сделан из металлического свинца (Pb), а катод (отрицательно заряженный электрод) — из диоксида свинца (PbO 2 ). Электроды помещают в раствор серной кислоты (H 2 SO 4 ), который состоит из ионов водорода (H + ) и бисульфат-ионов (HSO 4 ).

Свинец на аноде реагирует с бисульфатом электролита, высвобождая некоторые электроны и образуя сульфат свинца, который образует кристаллы на аноде, и ионы водорода, которые переходят в электролит. Электроны перемещаются к катоду через внешнюю цепь, где они вместе с бисульфатом и ионами водорода из электролита вступают в реакцию с катодом из диоксида свинца. При этом также образуется сульфат свинца, который снова образует кристаллы, на этот раз на катоде.

Свинцово-кислотные батареи можно перезаряжать — те, что в наших автомобилях, заряжаются с помощью небольшого генератора, подключенного к двигателю, который называется генератором переменного тока.Вот почему, когда вы оставили включенными фары в машине, а аккумулятор разряжен, рекомендуется некоторое время покататься по городу после запуска, чтобы дать аккумулятору время для повторной зарядки.

По мере зарядки аккумулятора описанные выше химические реакции, производящие электричество, возвращаются в обратном направлении. Покрытия из сульфата свинца растворяются и возвращаются в электролит в виде ионов Pb2 + и SO 4 2-. Затем ионы Pb 2+ захватывают два электрона и повторно наносятся на анод как нейтральный свинец.

На катоде ионы Pb 2+ отдают два электрона, чтобы сформировать молекулы воды (H 2 O) и вступить в реакцию с ними с образованием нейтрального диоксида свинца на катоде и некоторых ионов бисульфата, которые возвращаются в раствор электролита.

Однако, если свинцово-кислотный аккумулятор слишком сильно разряжен или оставлен слишком долго перед подзарядкой, покрытия из сульфата свинца образуют твердые кристаллы, которые невозможно удалить в процессе зарядки.

  • Смотрите реакцию: свинцово-кислотные аккумуляторы

    Во время разряда реакция на аноде представляет собой образование сульфата свинца, а также некоторого количества водорода и электронов, поскольку свинец вступает в реакцию с сульфатом из раствора электролита:

    $$ \ text {Pb} + \ text {HSO} {_ 4} {^ -} \ to \ text {PbSO} _4 \ text {(s)} + \ text {H} ^ + + \ text {2e} ^ — $

    На катоде оксид свинца также реагирует с сульфатом электролита, образуя сульфат свинца вместе с небольшим количеством воды:

    $$ \ text {PbO} _2 + \ text {HSO} {_ 4} {^ -} + \ text {3H} ^ + + \ text {2e} ^ — \ to \ text {PbSO} _4 + \ text { 2H} _2 \ text {O} $$

    Суммарная реакция:

    $$ \ text {Pb} + \ text {PbO} _2 + \ text {2H} _2 \ text {SO} _4 \ to \ text {2PbSO} _4 + \ text {2H} _2 \ text {O} $$

Ультра аккумулятор

Ultrabattery, разработанная в CSIRO, представляет собой усовершенствованную версию традиционной свинцово-кислотной батареи.Он сочетает в себе стандартную свинцово-кислотную аккумуляторную батарею с суперконденсатором. Когда нормальная свинцово-кислотная батарея разряжается, реакция, которая запускает ее, приводит к образованию кристаллов сульфата свинца как на аноде, так и на катоде. В процессе зарядки эти покрытия удаляются, но электроды (и, следовательно, аккумулятор) со временем изнашиваются. Кроме того, аккумулятор не любит работать в частичном состоянии заряда — состоянии, когда аккумулятор подвергается повторяющимся коротким циклам разрядки и перезарядки без полного разряда или полной зарядки аккумулятора.Это частичное состояние заряда особенно важно для транспортных средств.

В батарее UltraBattery суперконденсатор используется для компенсации проблемных реакций свинцовых электродов свинцово-кислотной батареи, что увеличивает срок ее службы. Поскольку суперконденсатор может очень быстро принимать и накапливать заряд, он может поглощать доступную мощность, а затем подавать ее в батарею с нужной скоростью. Ему удается уменьшить накопление сульфатов в результате процесса разрядки-перезарядки в стандартной свинцово-кислотной батарее.

UltraBattery также сравнительно дешев в производстве, примерно на 70 процентов дешевле, чем литий-ионные батареи, которые в настоящее время используются в гибридных электромобилях. Еще одно возможное применение UltraBattery — на электростанциях для хранения и «сглаживания» энергии, вырабатываемой возобновляемыми источниками, такими как солнце и ветер. В крупномасштабных испытаниях ветряных электростанций в Австралии UltraBattery превзошел обычные свинцово-кислотные батареи.

  • Что такое суперконденсатор?

    Конденсатор похож на батарею… но не совсем.Энергия батареи возникает в результате химической реакции между ее компонентами. Электричество генерируется потоком электронов в окислительно-восстановительной реакции между анодом и катодом.

    Конденсатор также дает энергию, но не в результате химической реакции. Конденсаторы состоят из двух проводящих пластин, между которыми находится диэлектрик или изолятор (вещество, не проводящее электричество). Когда эти пластины подключены к электрическому току, ток течет в них; одна пластина хранит отрицательный заряд на своих поверхностных атомах, а другая — положительный заряд, опять же на поверхностных атомах.Поскольку эти по-разному заряженные пластины разделены непроводящим диэлектриком, создается электрическое поле, в котором накапливается электрическая энергия. Когда конденсатор подключен к другой цепи, он высвобождает (разряжает) электрическую энергию.

    Конденсаторы обычно очень быстро высвобождают свою энергию — они обеспечивают быстрые выбросы энергии. Это делает их полезными для довольно специфических задач, таких как включение вспышки на камере. Вспышка быстро расходует много энергии для создания яркого света, а затем конденсатор перезаряжается от аккумулятора камеры, чтобы его можно было снова использовать для следующей фотографии.

    Облако — это конденсатор: когда маленькие частицы льда в облаке сталкиваются друг с другом и с другими частицами влаги, электроны могут отлетать. Эти электроны имеют тенденцию накапливаться в нижних частях облака. Маленькие, а теперь и положительно заряженные частицы поднимаются к вершине облака. Это означает, что в облаке происходит разделение зарядов и электрическое поле. По мере того, как отрицательный заряд в нижней части облака увеличивается в силе, он отталкивает от него другие отрицательные заряды — он толкает электроны на поверхности Земли глубже в землю, а это означает, что на поверхности накапливается положительный заряд.В итоге мы получаем отрицательно заряженную область (нижнюю часть облака), отделенную от положительно заряженной области (земли) плохим проводником электричества (воздухом). Когда электрическое поле в облаке становится достаточно сильным, оно может «разбивать» окружающий воздух на ионизированные (заряженные) частицы, превращая его из непроводящего изолятора в проводник. Электрическая энергия, хранящаяся в облаке, мгновенно высвобождается во вспышке молнии.

    Суперконденсаторы

    — это просто сверхмощные конденсаторы с большей емкостью.Это означает, что они способны хранить гораздо больше электроэнергии, чем обычные конденсаторы.

Никель-кадмиевый

Никель-кадмиевые (никель-кадмиевые) батареи стали первыми перезаряжаемыми батареями, которые использовались в электроинструментах, фонариках и других портативных устройствах. Эти люди работали в наших мобильных телефонах до того, как их вытеснили литий-ионные аккумуляторы. Иногда их все еще находят в виде старых перезаряжаемых батареек АА для фонарей и игрушек. Подобно свинцово-кислотной батарее, эта химия элементов существует уже давно — первые никель-кадмиевые батареи поступили в продажу в 1910 году!

Никель-кадмиевые батареи были первыми перезаряжаемыми батареями, которые использовались в электроинструментах, фонариках и других портативных устройствах.Источник изображения: цифровой интернет / Flickr.

Анод изготовлен из кадмия (Cd), а их катоды — из гидроксида оксида никеля (NiO (OH) 2 ), обычно с электролитом из гидроксида калия (КОН).

Гидроксид никеля является очень хорошим электродом, так как он может иметь большую площадь поверхности, и это увеличивает активную площадь, доступную для реакции. Кроме того, он не реагирует с электролитом во время реакции, что сохраняет раствор электролита красивым и чистым и помогает элементу прослужить (относительно) долгое время, прежде чем надоедливые побочные реакции приведут к его разложению.-

долл. США

Полная реакция при разряде аккумулятора:

$$ \ text {2NiO (OH)} + \ text {Cd} + \ text {2H} _2 \ text {O} \ to \ text {2Ni (OH)} _ 2 + \ text {Cd (OH)} _ 2

$

Никель-кадмиевые батареи имели несколько недостатков. Во-первых, они были склонны к так называемому «эффекту памяти», когда батареи «запоминали» предыдущие уровни разряда и не заряжались должным образом. Это было вызвано образованием крупных, а не мелких кристаллов кадмия в процессе перезарядки.Проверка правильной разрядки аккумулятора перед подзарядкой в ​​некоторой степени способствовала предотвращению этой проблемы. Но нужно было быть осторожным — полная разрядка никель-кадмиевой батареи также повредила ее.

Во-вторых, скорость саморазряда никель-кадмиевых батарей составляет около 15–20 процентов в месяц. Это означает, что если они просидели на полке несколько месяцев, они потеряли большую часть своего заряда.

В-третьих, кадмий — дорогой и токсичный тяжелый металл, а это означает, что утилизация батарей вредна для окружающей среды.

Никель-металлогидрид (NiMH)

Эти проблемы с никель-кадмиевыми батареями привели к замене кадмиевого анода на интерметаллический сплав, поглощающий водород (комбинация металлов с определенной кристаллической структурой), который может поглощать до 7 процентов водорода по весу. По сути, анод — это водород; металлический сплав просто служит для него резервуаром для хранения.

Наиболее распространенная комбинация металлов для этого сплава — это те, которые обладают сильной гидридообразующей способностью наряду со слабым гидридообразующим металлом.

Еще одно соображение при сборке металлического сплава заключается в том, что когда некоторые металлы поглощают водород, в результате реакции выделяется тепло — это экзотермический эффект. Другие поглощают тепло в результате эндотермической реакции. Нам действительно не нужна батарея, которая либо выделяет, либо поглощает тепло при разряде, поэтому, наряду с сочетанием сильного и слабого гидридообразующего сплава, из которого также сделан сплав, нам нужна комбинация экзотермических и эндотермических металлов.

Чаще всего электрод представляет собой комбинацию редкоземельного элемента, такого как лантан (La), церий (Ce), неодим (Nd) или празеодим (Pr), смешанный с никелем (Ni), кобальтом (Co), марганцем ( Mn) или алюминия (Al).

Электроны, производящие электрический ток батареи, возникают в результате окисления атомов водорода, которые превращаются в протоны. Эти протоны реагируют с гидроксид-ионами (OH ) из электролита с образованием воды. Металлический сплав, образующий анод вместе с водородом, не участвует в химической реакции, приводящей в движение элемент; По сути, это просто сторонний наблюдатель, который служит пристанищем для важнейших ионов гидрида. —

$

Полная реакция при разряде аккумулятора:

$$ \ text {NiO (OH)} + \ text {MH} \ to \ text {M} + \ text {Ni (OH)} _ 2 + \ text {H} _2 \ text {O} $$

Никель-металлогидридные батареи очень похожи на никель-кадмиевые батареи с точки зрения напряжения, емкости и применения.Эффект памяти — меньшая проблема, чем у никель-кадмиевых аккумуляторов, и они имеют более высокую плотность энергии. Они по-прежнему используются в качестве стандарта для аккумуляторных батарей AA.

Щелочной

Щелочные батарейки используются в игрушках, электронике, портативных проигрывателях компакт-дисков, которые мы использовали в девяностых годах, и в Walkmans, которые были популярны в восьмидесятых. На их долю приходится большая часть аккумуляторов, которые производятся сегодня, хотя их место на вершине, вероятно, скоро будет оспорено литий-ионными аккумуляторами в наших телефонах, ноутбуках и все большем количестве других гаджетов.

Щелочные батареи бывают разных форм и размеров, и на их долю приходится большая часть батарей, производимых сегодня. Источник изображения: Pulpolux / Flickr.

Они популярны, потому что имеют низкую скорость саморазряда, что обеспечивает длительный срок хранения и не содержат токсичных тяжелых металлов, таких как свинец или кадмий. Хотя перезаряжаемые щелочные батареи были разработаны, эти ребята, как правило, предназначены только для одноразового использования. Когда они выходят из строя, они отправляются на склад для вторичной переработки (или, что чаще, на свалку, поскольку их не так много мест, где их перерабатывают).

Эти батареи имеют цинк в качестве анода и диоксид марганца (MnO 2 ) в качестве катода. Однако их название происходит от щелочного раствора, используемого в качестве электролита. Обычно это гидроксид калия (КОН), который может содержать большое количество растворенных ионов. Чем больше ионов может поглотить раствор электролита, тем дольше может продолжаться окислительно-восстановительная реакция, приводящая в движение аккумулятор.

Цинковый анод обычно бывает порошкообразным. Это дает ему большую площадь поверхности для реакции, а это означает, что клетка может довольно быстро высвобождать свою энергию.-

долл. США

Mn начинается с +4 и становится +3, когда получает один электрон.

Полная окислительно-восстановительная реакция составляет:

$$ \ text {Zn (s)} + \ text {2MnO} _2 \ text {(s)} \ longleftrightarrow \ text {Mn} _2 \ text {O} _3 \ text {(s)} + \ text { ZnO (s)} $$

И это подводит нас к батареям, которыми сегодня питается большинство наших смартфонов и ноутбуков: литий-ионным батареям. Эти парни настолько важны, что мы хотели относиться к ним с уважением (и вниманием к деталям), которого они заслуживают, поэтому вы можете прочитать о них в их собственной статье о Nova.

Новички

Редокс-поток

В проточной окислительно-восстановительной батарее нет реактивных электродов, а раствор электролита используется для передачи электронов, создающих ток. Проточная батарея по-прежнему имеет анодную и катодную стороны, но вместо металлических электродов, которые отдают и принимают электроны, у нее есть две «емкости», заполненные растворами электролита, в которых растворяются активные химические вещества.Есть два типа растворов: анолит, который заменяет анод типичного элемента, и католит, который действует как катод. Эти растворы накачиваются вокруг батареи и встречаются в реакционной ячейке или «стопке». Здесь они разделены мембраной, поэтому они не смешиваются, хотя ионы и электроны могут обмениваться через барьер. Они также встречаются с электродами.

Ученые-исследователи IBM с батареей с окислительно-восстановительным потоком. Источник изображения: IBM Research / Flickr.

Поскольку раствор анолита содержит химические вещества с более высоким химическим потенциалом, чем те, которые содержатся в растворе католита, когда два раствора встречаются в реакционной ячейке, электроны из анолита направляются через ионопроницаемую мембрану в католит.Эти электроны перехватываются и отправляются делать свою полезную работу.

Опять же, это окислительно-восстановительная реакция, которая управляет генерацией электрического тока в батареях этого типа. Анолит окисляется, когда теряет электроны, а католит восстанавливается, когда он принимает электроны. Когда весь анолит был окислен, то есть потерял все электроны, которые он должен был отдать, его емкость исчерпана, и его необходимо перезарядить.

В проточных батареях с окислительно-восстановительным потенциалом хорошо то, что их емкость зависит от размера резервуаров с раствором электролита — если вам нужна батарея, которая может работать дольше, вам просто нужно приобрести резервуары большего размера с большим количеством раствора в них.Однако это также означает, что они довольно громоздкие. В основном они используются в промышленных масштабах, например, для хранения энергии, производимой на ветряных или солнечных фермах. В вашем ноутбуке никогда не будет проточной батареи.

Еще одна интересная особенность проточных батарей заключается в том, что, поскольку у них нет твердых электродов, они не страдают от большинства способов, которыми аккумуляторные батареи со временем разлагаются. В принципе, это дает им очень долгий срок службы — идеально подходит для использования в солнечных или ветровых электростанциях, когда батареи заряжаются и разряжаются, по крайней мере, каждый день.

В батареях

Flow чаще всего используется ванадий (V). Поскольку этот элемент может успешно существовать в нескольких различных степенях окисления — состояниях с разными химическими / окислительно-восстановительными потенциалами — и анолит, и католит могут быть изготовлены из различных форм ванадия. Это решает любые проблемы перекрестного загрязнения растворов электролитов, состоящих из разных элементов.

Для подзарядки проточной батареи система работает в обратном порядке. Применяется внешнее напряжение, и электроны, которые оказались в католите при использовании батареи, выталкиваются обратно в анолит, а положительные ионы возвращаются в католит.

Новое исследование привело к созданию проточной батареи, в которой используются ионы лития, и в основном она работает на тех же химических принципах, что и литий-ионные батареи в наших телефонах и ноутбуках. Аккумулятор содержит анолит диоксида титана (TiO 2 ) и католит фосфата лития-железа (LiFePO 4 ). Раньше проблемы с мембраной, разделяющей два раствора электролита, не позволяли успешно применять литий-ионную технологию в проточной батарее — они либо были слишком хрупкими, либо не позволяли эффективно течь литий-ионам.

Эта батарея имеет потенциальную плотность энергии в 10 раз большую, чем другие проточные батареи. Однако скорость, с которой он в настоящее время поставляет энергию, слишком мала для практического использования, поэтому исследователи ищут способы улучшить это.

Главный недостаток проточных батарей состоит в том, что их работа зависит от насосной системы для циркуляции растворов анолита и католита через реакционную ячейку. Это приводит к появлению ряда движущихся частей, которые необходимо регулярно обслуживать и обслуживать.

Литий-сера
Литий-серные батареи

обещают стать дешевой альтернативой дорогостоящим литий-ионным аккумуляторам. Сера дешевая, и ее много.

Анод литий-серной батареи представляет собой чрезвычайно тонкую (и легкую) полоску металлического лития. Катодом будет… как вы уже догадались… сера (ну, смесь серы и углерода). Эта комбинация имеет очень хорошее потенциальное напряжение, и оба электрода будут легче, чем в обычных литий-ионных батареях, в результате чего удельная энергия батареи до пяти раз выше.

Литий-серная батарея (слева) по сравнению с размером монеты. Литий-серные батареи перспективны, но пока не используются в промышленных масштабах. Источник изображения: Национальная лаборатория Ок-Ридж / Flickr.

Реакция, происходящая во время разряда, включает окисление лития на аноде и образование сульфида лития. В то же время высвобождаются электроны, обеспечивая электрический ток. На катоде сера восстанавливается, а также вступает в реакцию с литием, образуя последовательный ряд соединений с различным содержанием серы в них (полисульфиды).

$$ \ text {S} _8 \ to \ text {Li} _2 \ text {S} _8 \ to \ text {Li} _2 \ text {S} _6 \ to \ text {Li} _2 \ text {S} _4 \ to \ text {Li} _2 \ text {S} _2 $$

Проблема в том, что эта батарея не очень долго работает, так как серный катод не очень долговечен. Многие из полисульфидов легко растворяются в растворе электролита, а это означает, что во время каждого цикла разряда часть серы с катода безвозвратно теряется в растворе.

Другая проблема заключается в том, что, когда литий вступает в реакцию с серой катода, объем образовавшегося соединения серы лития примерно на 80 процентов больше, чем объем серного катода до реакции.Это расширение вызывает износ катода.

Независимо от их состава, батареи незаменимы в нашей повседневной жизни и останутся таковыми в будущем. Они будут иметь решающее значение для обеспечения непрерывных достижений в области портативных технологий, обеспечения усовершенствования и повышения практичности электромобилей и обеспечения того, что часто называют «недостающим звеном» возобновляемой энергии, — способности хранить избыточную электроэнергию, генерируемую ветром, солнечной и другой энергией. источники для дальнейшего использования.

Эта тема является частью нашей серии из четырех статей об аккумуляторах. Для дальнейшего чтения посмотрите, как работает аккумулятор, литий-ионные аккумуляторы и аккумуляторы будущего. Типы аккумуляторов

12 В: какой из них подойдет вам?

Клинт Демеритт 5 апреля 2021 г.

Когда дело доходит до 12-вольтовых батарей, выбор может показаться немного сложным для тех, кто не знаком с аккумуляторными технологиями. Все типы 12-вольтовых батарей похожи в том, что они обеспечивают питание вашей 12-вольтовой электрической системы.Однако есть существенные различия в том, как они спроектированы, их мощность, объем необходимого обслуживания и стоимость покупки и установки.

Присоединяйтесь к нам, мы внимательно рассмотрим и подберем для вас подходящий тип батареи!

Что такое аккумулятор 12 В?

Двенадцатавольтные батареи обычно используются в жилых домах, лодках и других автомобильных системах. С технической точки зрения, в батарее используется одна или несколько ячеек, чтобы обеспечить химическую реакцию, создающую поток электронов в цепи.Батареи не создают энергию или мощность сами по себе. Батареи просто накапливают энергию, которую вы можете использовать, когда она вам понадобится.

Электропитание, которое вы получаете от аккумулятора, является постоянным (DC) и отличается от переменного тока (AC), которое вы получаете от настенных розеток в вашем доме. При необходимости мощность постоянного тока можно преобразовать в мощность переменного тока с помощью инвертора.

Вы можете подключить несколько 12-вольтных батарей последовательно или параллельно, чтобы получить более высокое напряжение или большую емкость.Например, если вы подключите две батареи на 12 В последовательно, у вас будет 24-вольтовая система. Если вы подключите эти же 12-вольтовые батареи параллельно, у вас все равно будет 12-вольтовая система, но она сможет питать одно и то же устройство вдвое дольше, чем одна 12-вольтовая батарея.

Эти батареи устанавливаются на лодке последовательно, чтобы обеспечить 36 вольт для троллингового мотора.

Аккумуляторная система на 12 В будет обеспечивать питание большинства ваших основных систем, таких как фонари и некоторые приборы в вашем доме на колесах.Вы будете заряжать эту аккумуляторную систему, когда она подключена к береговому источнику питания, и получать от нее энергию во время путешествия или стыковки.

Типы батарей 12 В

Что касается аккумуляторных батарей на 12 В, то в настоящее время используются два основных типа: свинцово-кислотные и литий-ионные.

Свинцово-кислотные батареи существуют уже давно, а литий-ионные — более новая технология. Есть много типов свинцово-кислотных аккумуляторов, поэтому давайте сначала рассмотрим их.

Свинцово-кислотные аккумуляторы с заливкой

Свинцово-кислотные батареи — это самый основной тип батарей на 12 В.Они сделаны из свинцовых пластин, взвешенных в растворе серной кислоты. Это создает химическую реакцию, которая позволяет накапливать энергию.

Свинцово-кислотные аккумуляторы с заливной жидкостью — наиболее распространенная разновидность свинцово-кислотных аккумуляторов. Для правильной работы этих батарей вам потребуется достаточное количество воды. Это означает, что для контроля этой батареи требуется периодическое обслуживание. Залитые свинцово-кислотные батареи обычно служат от 2 до 5 лет, в зависимости от использования и обслуживания. Стоимость может сильно варьироваться, начиная от 100 долларов.

Плюсы

Так как это наиболее распространенные типы батарей, они также являются наиболее доступными и дешевыми, которые можно заранее заменить, когда придет время. Аккумулятор этого типа также не имеет никакой электроники и может вырабатывать большой ток в течение короткого периода времени. Это делает их идеальными для запуска аккумуляторных батарей в автомобильных двигателях.

Минусы

Поскольку эти батареи нуждаются в определенном количестве жидкости для правильной работы, вам нужно будет комфортно обслуживать свою систему батарей каждые 3-6 месяцев.Это может быть сложно, в зависимости от того, где находятся ваши батареи в вашем доме на колесах.

Залитые свинцово-кислотные батареи также имеют самый короткий общий срок службы среди основных типов батарей, и на них могут негативно повлиять экстремально высокие или низкие температуры. Вы также должны установить их в вертикальном положении, иначе они выйдут из строя.

Залитые батареи имеют порты, которые можно снять сверху, чтобы добавить дистиллированную воду, когда она станет низкой.

Свинцово-кислотные батареи с герметичным клапаном (VRLA)

Герметичные свинцово-кислотные батареи с клапанной регулировкой (VRLA) устраняют большую часть потребностей в техническом обслуживании своих залитых аналогов.Как следует из их названия, они запечатаны необходимыми ингредиентами для правильной работы в течение всего срока службы вашей батареи.

Так как они герметичны, при разряде химическая реакция начинает повышать давление газообразного водорода. Большая часть этого газа рекомбинируется обратно в воду в батарее, но во время быстрой зарядки или разрядки давление газа может превышать требования безопасности батареи. Регулирующий клапан используется для сброса этого избыточного давления, но, к сожалению, в то же время медленно снижает емкость аккумулятора.

Их также довольно легко найти во время замены. Срок службы герметичных свинцово-кислотных аккумуляторов примерно такой же, как и у залитых (2-8 лет), и, как правило, они стоят несколько сотен долларов.

Аккумулятор этого типа VRLA не подлежит ремонту

Плюсы

Отсутствие технического обслуживания означает более беспроблемную жизнь для вас. Хотя они дороже, чем залитые батареи, они по-прежнему остаются одними из самых экономичных вариантов батарей. Однако в расчете на поставленную энергию эти батареи будут стоить больше, чем залитые батареи.

Минусы

Как уже упоминалось, повышение цен может быть важным для покупателей, заботящихся о затратах. Невозможность обслуживать аккумулятор также может привести к неоптимальным характеристикам в течение срока их службы, так как некоторое количество газа будет потеряно. Правильно обслуживаемый залитый свинцово-кислотный аккумулятор прослужит дольше герметичного аккумулятора, но плохо обслуживаемый залитый аккумулятор будет иметь более короткий срок службы, чем герметичный аккумулятор.

Гелевые аккумуляторы 12 В

Следующим шагом вперед в производстве свинцово-кислотных аккумуляторов 12 В является гелевый аккумулятор.Гелевые батареи подвешивают свои свинцовые пластины внутри более толстого геля вместо жидкости и считаются типом батарей VRLA. Гелевые аккумуляторы на 12 В обычно служат от 2 до 5 лет и стоят от 100 до 800-900 долларов. Стоимость обычно растет с увеличением емкости аккумулятора.

Плюсы Гелевые батареи

не требуют регулярного обслуживания, и вам не нужно беспокоиться о вытекании жидкости, как в случае залитых батарей. Благодаря этому их не нужно устанавливать вертикально.Они также хорошо работают при высоких температурах, в отличие от других типов свинцово-кислотных аккумуляторов. Это делает их широко используемыми в особых случаях или в качестве высокотемпературных пусковых батарей для двигателей.

Минусы Гелевые аккумуляторы

требуют большей осторожности при зарядке, чтобы убедиться, что они не повреждены. Для них требуется конкретный тип контроллера заряда и более медленные циклы зарядки при более низком напряжении. Все это означает увеличение стоимости всей системы, помимо стоимости ваших батарей.Как и для других свинцово-кислотных аккумуляторов, для этих аккумуляторов не подходят глубокий разряд и быстрая перезарядка.

AGM 12 В аккумуляторы

Что такое аккумулятор AGM? Это технология абсорбирующего стеклянного мата (AGM), которая представляет собой герметичные свинцово-кислотные батареи.

В аккумуляторах AGM 12 В свинцовые пластины находятся между матами из стекловолокна, насыщенного электролитом. Это позволяет повысить эффективность разрядки и перезарядки. Аккумуляторы AGM обычно служат 4-7 лет и стоят от 200 долларов.

Плюсы Аккумуляторы

AGM не требуют регулярного обслуживания, герметичны и хорошо работают при большинстве температур. Они также не требуют специального зарядного оборудования и ухода, необходимого для гелевых аккумуляторов, и, как правило, имеют более длительный срок службы.

Минусы

За эти дополнительные преимущества приходится платить. Аккумуляторы AGM могут быть значительно дороже свинцово-кислотных или гелевых аккумуляторов аналогичной емкости.

Задачи для всех типов свинцово-кислотных аккумуляторов

Все батареи, которые мы обсуждали до сих пор, представляют собой разновидности технологии свинцово-кислотных аккумуляторов и используют одну и ту же внутреннюю химическую реакцию.Из-за этого все они страдают схожими недостатками в эксплуатационных характеристиках.

Все типы свинцово-кислотных аккумуляторов требуют строгих требований к использованию и зарядке для обеспечения полного срока службы. Чтобы получить полный срок службы этих батарей, необходим мониторинг уровней разряда и заряда, поскольку глубокая разрядка и частичная зарядка могут повредить батарею. Эти батареи также имеют длительное время перезарядки и требуют особого цикла абсорбционной зарядки для полной зарядки. Это делает свинцово-кислотные батареи плохим выбором для приложений, требующих большого количества циклов зарядки и разрядки, например, для возобновляемых источников энергии.

Типы литий-ионных батарей 12 В

Литий-ионные батареи

относительно новые и в настоящее время являются самыми дорогими из батарей 12В. Однако они предлагают множество преимуществ для тех, кто желает обновиться. В отличие от своих свинцово-кислотных аналогов, литий-ионные батареи работают с использованием соли лития для создания более эффективного накопления электроэнергии. Литий-ионные батареи RV стоят около 900 долларов каждая.

Плюсы Литий-ионные аккумуляторы

обладают самой высокой емкостью среди всех типов аккумуляторов RV 12 В и имеют самую быструю и эффективную зарядку.Кроме того, они служат дольше всего, прежде чем потребуется их замена, иногда в 3-5 раз дольше, чем у традиционных батарей. Литий-ионные батареи легче и не требуют регулярного обслуживания, как батареи других типов.

Наконец, в отличие от свинцово-кислотных аккумуляторов, литий-ионные аккумуляторы могут разряжать больше накопленной энергии, не повреждая аккумулятор и не снижая мощность. Благодаря всем этим преимуществам зарядки этот тип батареи очень хорошо справляется с повторяющимися и частичными задачами зарядки, такими как солнечные энергосистемы.

Литий-ионные батареи можно устанавливать где угодно, и они не должны соответствовать существующим формам и размерам. Аккумулятор Battle Born GC3 имеет другой форм-фактор, который обладает большой мощностью и уникальной формой, предназначенной для установки в любом месте.

Минусы Литий-ионные батареи

— безусловно, самые дорогие из всех имеющихся типов 12-вольтных батарей. Кроме того, поскольку литий-ионная технология является более новой, вам нужно будет обновить не только ваши батареи, если вы хотите перейти на систему литий-ионных аккумуляторов.

Однако литий-ионные батареи служат намного дольше, и в них также используется электроника, которая защищает батарею и вас. В целом это делает аккумулятор намного безопаснее, чем свинцово-кислотная альтернатива.

Наконец, они ограничивают ток до значения, указанного на паспортной табличке. Это означает, что большинство литий-ионных аккумуляторов на 12 В не будут работать в качестве аккумулятора для запуска двигателя.

Литий-ионные аккумуляторы на 12 В лучше всего подходят для аккумуляторов.

Как выбрать лучший тип батареи на 12 В для вас

Выбор наиболее подходящего для вас типа 12-вольтовой батареи — это поиск компромиссов.У каждого типа батареи есть свои преимущества и недостатки, и они могут различаться в зависимости от вашего стиля поездки на автофургоне или путешествия.

RVer с ограниченным бюджетом может пойти на более дешевые залитые свинцово-кислотные батареи, даже если долгосрочная стоимость будет выше. Те, кто часто работает при очень высоких или низких температурах, могут захотеть отказаться от свинцово-кислотных аккумуляторов, однако в пользу литий-ионных аккумуляторов, которые будут защищать себя и работать лучше.

Гелевые аккумуляторы

устраняют некоторые из этих проблем, но владельцу должно быть комфортно с дополнительными требованиями к зарядке.

R Тем, кто ищет батареи с низким уровнем обслуживания, следует сосредоточиться на герметичных свинцово-кислотных, гелевых, AGM или литиевых батареях и вообще игнорировать залитые свинцово-кислотные батареи.

Литий-ионные батареи

— очевидный лучший выбор, так как они сочетают в себе оптимальное сочетание безопасности, низких эксплуатационных расходов, эффективности, длительного срока службы и мощности.

Для чего вам нужна энергия? Наши литий-ионные аккумуляторы Battle Born позволяют тысячам людей хранить энергию, чтобы воплощать свои мечты в жизнь, где бы они ни находились!

Выберите лучший тип аккумулятора 12 В для своего приключения

Все типы 12-вольтовых батарей могут показаться сложными, но в конечном итоге результаты будут одинаковыми.Как только вы поймете свои потребности и бюджет, вы сможете использовать все плюсы и минусы, которые мы обсудили, чтобы сделать лучший выбор для вас и вашего дома на колесах, чтобы оставаться в пути на долгие годы.

Мы рекомендуем вам проверить нашу линейку литий-ионных аккумуляторов, собранных прямо здесь, в США, для вашего следующего жилого дома, морского или автономного питания!

Хотите узнать больше об электрических системах и литиевых батареях?

Мы знаем, что строительство или модернизация электрической системы может быть сложной задачей, поэтому мы здесь, чтобы помочь.Наши специалисты по продажам и обслуживанию клиентов из Рино, штат Невада, готовы ответить на ваши вопросы по телефону (855) 292-2831!

Также присоединяйтесь к нам в Facebook, Instagram и YouTube, чтобы узнать больше о том, как системы с литиевыми батареями могут способствовать вашему образу жизни, узнать, как другие построили свои системы, и обрести уверенность, чтобы выйти и остаться в стороне.

Присоединяйтесь к нашему списку контактов

Подпишитесь сейчас на новости и обновления в свой почтовый ящик.

Различные типы батарей ИБП

В источниках бесперебойного питания используются три основных типа батарей: никель-кадмиевые , свинцово-кислотные и литий-ионные . Не существует единственной «лучшей» аккумуляторной технологии ИБП — выбор следует делать в каждом конкретном случае.

Свинцово-кислотные батареи ИБП

Свинцово-кислотные батареи

зарекомендовали себя как надежные при использовании в системах бесперебойного питания.В приложениях с большой мощностью, где вес не является решающим фактором, они представляют собой наиболее экономичный выбор.

Эта экономическая эффективность сочетается с другими характеристиками, такими как низкий внутренний импеданс и высокая устойчивость.

Свинцово-кислотные батареи

бывают двух типов:

Также известный как герметичный свинцово-кислотный (SLA), это наиболее распространенный тип, встречающийся в современных системах ИБП. Обычно они имеют расчетный срок службы 5 или 10 лет и лучше всего хранить в сухом помещении с контролируемым климатом при температуре 20-25 ° C.

Батареи

VRLA запечатаны внутри корпуса, в котором есть клапан, который выпускает газ, если внутреннее давление становится слишком большим, отсюда и термин «регулируемый клапаном».

Поскольку они герметичны, их можно устанавливать как вертикально, так и горизонтально, поэтому они подходят для использования в аккумуляторных отсеках, лотках для монтажа в стойку или внешних шкафах. Кроме того, они не нуждаются в каком-либо прямом обслуживании, например, в регулярном доливе воды.

В батарее ИБП VRLA используется два основных типа состава электролита: абсорбированный стеклянный мат (AGM), где электролит удерживается в сепараторе из пористого микроволоконного стекла; и гель, который сделан из смеси серной кислоты и кремнезема.

Технология

AGM является нормой для батарей ИБП из-за ее более низкой стоимости, более низкого внутреннего сопротивления и более высокой скорости заряда / разряда.

Для сравнения: VRLA с гелевым наполнением имеет более высокое внутреннее сопротивление, что делает его менее подходящим для высокоскоростной разрядки, характерной для ИБП. Он предлагает преимущества с точки зрения более широкого диапазона рабочих температур (от -40 ° C до + 55 ° C) и увеличенного срока службы.

Эти батареи, также известные как «затопленные», имеют пластины, залитые электролитной кислотой.Они имеют длительный расчетный срок службы (до 20 лет) и обычно используются в крупных установках, требующих высокого номинала в ампер-часах (Ач).

Поскольку они не герметичны, любой образующийся водород улетучивается прямо в окружающую среду. Это означает, что установки, использующие батареи VLA, требуют более мощных систем вентиляции и могут представлять большую угрозу безопасности.

Чтобы избежать этих рисков, батареи VLA должны быть размещены в специальном помещении с оборудованием для смыва на случай утечки кислоты.Поскольку они вентилируются сверху, их также необходимо держать в вертикальном положении, при этом уровень воды доливается вручную.

Их нельзя использовать в шкафах или стойках, а это значит, что они не подходят для офисных помещений или центров обработки данных. Батареи VLA также дороже, чем альтернатива VRLA.

Никель-кадмиевые батареи ИБП

Никель-кадмиевые (NiCd) батареи

раньше были популярным вариантом для телекоммуникационных установок, но до сих пор используются для ИБП в местах с очень высокими температурами окружающей среды, особенно на Ближнем Востоке.

Электроды батареи состоят из гидроксида никеля на положительной пластине и гидроксида кадмия на отрицательной пластине.

NiCds обладают такими преимуществами, как 20-летний расчетный срок службы, способность работать в широком диапазоне температур окружающей среды (от -20 ° C до + 40 ° C), длительный срок службы и устойчивость к глубоким разрядам.

С другой стороны, никель-кадмиевые ИБП намного дороже, чем более традиционные VRLA. А поскольку никель и кадмий являются токсичными материалами, это делает процессы утилизации и переработки в конце срока службы непомерно дорогими.

Это особенно актуально в странах со строгой экологической политикой и правилами, например в Великобритании.

Литий-ионные батареи ИБП

Литий-ионные (Li-Ion) батареи

уже давно используются в электронных устройствах, таких как ноутбуки и смартфоны, а сейчас они являются ключевыми элементами в развитии электромобилей. Но в последнее время они становятся все более жизнеспособным вариантом для источников бесперебойного питания и других систем хранения энергии, таких как использование энергии от технологий возобновляемых источников энергии, таких как ветер или солнце.

Преимущества Li-Ion включают более высокую надежность, чем традиционные батареи VRLA / SLA, благодаря встроенным системам мониторинга и управления батареями, которые проверяют каждую отдельную ячейку на предмет любых изменений в производительности.

Еще одним преимуществом литий-ионных батарей для ИБП является то, что они значительно меньше и легче из-за более высокой удельной мощности. У них также более быстрое время зарядки, более длительные циклы и как минимум вдвое больший срок службы по сравнению с VRLA / SLA.

Несмотря на то, что стоимость литий-ионных аккумуляторов ИБП за последние годы снизилась, они по-прежнему являются гораздо более дорогим начальным выбором, чем другие варианты.

Однако более длительный срок службы компенсирует более высокие первоначальные капитальные затраты. Литий-ионные аккумуляторы выделяют меньше тепла и могут работать при более высоких температурах, а это означает, что им не требуется столько кондиционирования воздуха, что может снизить затраты на охлаждение.

Некоторые ИБП Riello поддерживают совместимость с литий-ионными аккумуляторами, включая Multi Power и NextEnergy.

Дополнительная литература:

Состав первичных и аккумуляторных батарей с плотностью энергии

NiCd 1,2 > 0,14 Недорого.
Высокий / низкий сток, умеренная плотность энергии.
Может выдерживать очень высокие скорости разряда практически без потери емкости.
Умеренная скорость саморазряда.
Считается, что страдает эффектом памяти (который, как утверждается, вызывает ранний отказ).
Опасность для окружающей среды из-за кадмия — использование в Европе практически запрещено.
Свинцово-кислотный 2,2 > 0,14 Умеренно дорого.
Умеренная плотность энергии.
Умеренная скорость саморазряда.
Более высокая скорость разряда приводит к значительной потере емкости.
Не страдает эффектом памяти.
Опасность для окружающей среды из-за свинца.
Общее применение — Автомобильные аккумуляторы
NiMH 1,2 > 0,36 Дешево.
Не используется в устройствах с более высоким стоком.
Традиционная химия имеет высокую плотность энергии, но также и высокую скорость саморазряда.
Более новая химия имеет низкую скорость саморазряда, но также на ~ 25% более низкую плотность энергии.
Очень тяжелый. Используется в некоторых автомобилях.
Литий-ионный 3,6 > 0,46 Очень дорого.
Очень высокая плотность энергии.
Обычно не поставляется с батареями «обычных» размеров (но см. Контрпример в RCR-V3).
Очень часто встречается в портативных компьютерах, цифровых фотоаппаратах и ​​видеокамерах среднего и высокого класса, а также в мобильных телефонах.
Очень низкая скорость саморазряда.
Неустойчивый: вероятность взрыва при коротком замыкании, перегреве или производстве без соблюдения строгих стандартов качества.
Оксид лития-кобальта (LiCoO2) 3,6 > 0,72 Высокая удельная энергия.
Относительно короткий срок службы, Низкая термическая стабильность и ограниченные нагрузочные возможности (удельная мощность).
Не следует заряжать и разряжать при токе выше, чем его C-рейтинг
Литий-фосфат железа (LiFePO4) 3,3 > 0,32 Хорошие электрохимические характеристики при низком сопротивлении.
Большой ток разряда.
Низкая температура снижает производительность, а повышенная температура хранения сокращает срок службы.
Ограниченная «C-rate» около 1С, что означает, что они долго заряжаются.
Превосходная безопасность и долгий срок службы.
Умеренная удельная энергия и повышенный саморазряд.
Оксид лития, никеля, марганца, кобальта (LiNiMnCoO2) 3,7 > 0,54 C-rate »этого химического вещества может находиться в диапазоне от 1 до 5 ° C.
Более высокая плотность энергии при более низкой стоимости, длительный срок службы.
Могут иметь либо высокую удельную энергию, либо высокую удельную мощность, однако они не могут обладать обоими свойствами.
Очень низкая скорость самонагрева.
Литий оксид марганца (LiMn2O4) 3,8 > 0,36 Высокая термостойкость и повышенная безопасность, но цикл и календарный срок службы ограничены.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *