Устройство форсунки бензинового двигателя: Топливные форсунки: устройство и принцип действия

Устройство, принцип работы форсунки высокого давления

Непосредственный впрыск топлива.
Форсунка непосредственного впрыска топлива. 
Принцип работы форсунки высокого давления — 
форсунки непосредственного впрыска топлива.. 
Управление форсункой  системы GDI.

Форсунка высокого давления представляет собой прецензионное устройство высокой точности, конструктивно расположенное между топливной рейкой и камерой сгорания.
Форсунка  предназначена для высокоточного дозирования топлива (и точность дозирования должна быть постоянной и определенной при различных режимах работы двигателя).
Особая конструкция форсунки позволяет создать в зоне образования факела (1-2 мм от сопла форсунки) пленочную структуру топлива, позволяющую улучшить гомогенность факела за счет уменьшения размеров капель (чем меньше размер капель топлива, тем больше поверхность контакта между топливом и воздухом, лучше испарение и охлаждение).


  Принцип работы
Во время прохождения электрического тока через обмотку соленоида, создается магнитное поле.
Игла форсунки, преодолевая противодействие нажимной пружины и силу давления топлива, приподнимается над седлом и открывает сопло форсунки. За счет разницы давлений между топливной рейкой и камерой сгорания, топливо впрыскивается в камеру сгорания.  
После окончания импульса для открытия форсунки, игла форсунки (игла распылителя форсунки или игла клапана вместе с якорем магнита,- в зависимости от конструкции), под воздействием нажимной пружины «садится» на седло клапана, тем самым прерывая поступление топлива. Форсунки высокого давления похожи на «обычные» форсунки (см. Примечание), так как  имеют одинаковые основные элементы:
— корпус форсунки
— электрический разъем
— соленоид
— нажимная пружина
— игла клапана
— седло клапана Но на этом «одинаковость» заканчивается, потому что существует основное отличие форсунок высокого давления от «обычных» :
1. Большое давление (около 100 кг\см2 — «плюс-минус» против 2 кг\см2)
2. Маленькое время впрыска (0.5 ms — «плюс-минус»  против 2-3 ms) Именно эти и некоторые другие отличия положены в основу построения конструкции форсунок высокого давления различных производителей, которые мы постараемся рассмотреть ниже.

Форсунка высокого давления (система FSI) Состоит из: — корпус форсунки
— электрический разъем
— соленоид
— нажимная пружина
— игла клапана
— седло клапана


фото 1 — форсунка высокого давления двигателя системы FSI Некоторая необычность данной форсунки в том, что сопло форсунки расположено под определенным углом.

В зоне образования факела (1…2мм от сопла форсунки), факел имеет пленочную структуру, а действие центробежных сил на молекулы приводит к более быстрому разрушению пленки. 
Особенность этих форсунок — 

1. Измененный «угол струи»
2. Измененный » угол раскрытия факела»


фото 2

На выходе из сопла происходит формирование факела с углом раскрытия около 70 градусов.
Так как струя топлива «вылетает» из сопла форсунки под большим давлением и под определенным углом, то эти факторы улучшают гомогенизацию факела топлива, и топливо попадает в уже закрученную струю воздуха, где интенсивно испаряется в узко ограниченной пространственной зоне и подносится потоком воздуха непосредственно к свече зажигания в строго требуемый момент:

фото 3
1 — впускные клапана
2 — струя воздуха (на фото — момент начала закручивания воздушной струи)
3 — впрыскиваемое топливо (зеленым цветом)
(На фото 3 показан один из вариантов работы двигателя, более подробнее о видах впрыска топлива, можно прочитать в предыдущих статьях в этом разделе и в разделе GDI).

Форсунка высокого давления (система GDI)

Состоит из: — корпус форсунки
 — электрический разъем
 — соленоид
 — нажимная пружина
 — игла клапана
 — седло клапана Главное отличие форсунки этой системы — так называемая «вихревая сборка», расположенная перед соплом форсунки и показанная на рисунке слева — внизу (см. Примечание 3):
— форсунка высокого давления системы GDI «Вихревая сборка» состоит из:
— иглы клапана ( Valve needle)

— Guide plate
— Swirl plate
— Seat plate ( по версии BOSCH-GDI) Московская мастерская по системам GDI («The Moscow center of diagnostics and repair of systems GDI» —  Kublitsky Dmitry Jurjevich), ранее всех, наверное, познакомилась с устройством форсунки высокого давления системы GDI.
Согласитесь, что «просто ремонтник» не стал бы вникать в устройство форсунки, оно ему… «нафик надо».
А когда вся команда нацелена на достижение результата — как тут быть у кого-то позади?
Вот они и постарались разобрать форсунку.
Распилили, «разлохматив» пять ножовочных полотен ( очень прочным оказался корпус), и вот что увидели:

фото 5

Возможно, что конструкция данной форсунки не предусматривает «вихревой сборки», но так называемый «завихритель» обнаружен был.
Для чего он предназначен?
Ответим словами из начала статьи: Особая конструкция форсунки позволяет создать в зоне образования факела (1-2 мм от сопла форсунки) пленочную структуру топлива, позволяющую улучшить гомогенность факела за счет уменьшения размеров капель (чем меньше размер капель топлива, тем больше поверхность контакта между топливом и воздухом, лучше испарение и охлаждение).

Форсунки на двигателях GDI взаимозаменяемы, можно брать форсунку от двигателя выпуска (например) 1997 года и ставить ее на двигатель выпуска 2000 года.Только надо учитывать модельный ряд.

Чем выше год выпуска – тем форсунки стали «слабее» (см. Примечание 2).   Форсунка высокого давления (система NeoDi, Nissan)

Расположенные внизу фото присланы Хабаровским Диагностом Владимиром ( Bladimir 1 на нашем Форуме). Разобрать форсунки была причина (далее слова Автора): «…вот несколько фотографий распиленной форсунки с Nissan Primera, двигатель QG18DD.
Форсунка имеет две обмотки. 
Запорная игла на торце имеет форму шара. 

Ход иглы очень мал — меньше миллиметра. Эта форсунка (на фото)  «лила» топливо больше соседних. 
На фото видны следы износа на шаре и грязь (фото 5). Свеча «чернилась» практически сразу. Кислородник показывал богатую смесь. Расход топлива был увеличен . Двигатель работал неровно. После «приговора» по инжектору, клиент заказал новый комплект. После замены инжекторов (форсунок) все параметры пришли в норму».

Фото 6 Фото 7 Фото 8 Фото 9

Форсунка  высокого давления (система D-4, Toyota)

Форсунка имеет щелевое сопло (см. фото внизу) в виде прорези шириной 160 микрон.

Фото 10 Фото 11

Именно такая форма сопла позволяет получить так называемый «веерный распыл топлива». Веерный распыл применяется для того, чтобы обеспечить стабильное послойное сгорание в различных условиях работы двигателя.

Особенности веерного распыла
Мощный факел позволяет создавать топливовоздушную смесь только за счет энергии впрыска, независимо от воздушных потоков.
Широкий факел улучшает атомизацию топлива и увеличивает зону перемешивания, что обеспечивает однородность смеси.
Тонкое и плоское сопло создает широкий и плоский факел топлива (фото внизу):

Фото 12 Фото 13

Диагностика

Какого-либо конкретного «рецепта» определения неисправности форсунок на двигателе непосредственного впрыска топлива — не существует.
Неисправности столь многообразны, что описать каждый случай не представляется возможным.
Поэтому расскажем только о нескольких вариантах диагностики неисправности форсунок (не приводим варианты определения неисправности форсунок в том случае, когда есть коды неисправностей — 
тут все ясно).

Диагностика по симптомам:

При условии, что проверено:
— система зажигания
— компрессия
— отсутствие кодов неисправностей и другие основные параметры двигателя,- и при наличии таких симптомов, как:

 «Автомобиль плохо или вообще не заводится» «Во время прогрева нельзя тронуться с места»
,- можно предположить одним из вариантов неисправности — неисправность форсунки.


Если есть такой вариант, как: «Пропуски воспламенения при работе в режиме Compression on Lean или STICH»,-
 
То можно предположить неисправность форсунки и определить неисправную по цвету свечи зажигания (на неработающем цилиндре свеча будет светлее).
   Если: «Форсунка не держит 100 вольт»  Сделать «мощностной» тест: — нажать на тормоз — включить АКПП на «D» — повысить обороты двигателя (около 2000 RPM)    Если появились перебои в работе двигателя, то при помощи сканера определить неработающую форсунку.
Напомним, что перед этим надо обязательно убедиться в том, что система зажигания, компрессия и остальные технические  характеристики двигателя  в полном порядке.
Диагностика при помощи газоанализатора:

Измеряемый параметр Сверх-бедная смесь Гомогенная смесь
«Лямбда» Правильно Неправильно Правильно Неправильно

1. 18 – 1.21 2.3 – 2.5 0.998 1.1 – 1.2

Эти варианты определения неисправности форсунок были озвучены в Московской мастерской  по диагностике и ремонту систем GDI Дмитрием Юрьевичем 
(mek на нашем Форуме).
Диагност из Хабаровска Владимир Бекренев ( Bladimir1 на нашем Форуме)написал свои наблюдения по вопросу диагностики форсунок:

«…Теперь немного о возможности контроля работоспособности инжекторов.
Из того же Рольфа (информационное письмо) можно узнать о степени забитости инжекторов по параметру LEARN A\F -для определенных двигателей полная замена от 4 до 12 процентов. Эта строчка прописана не во всех сканерах. При забитых или грязных форсунках наблюдаются толчки при резком разгоне (на свечах более чистый, чем обычно, нагар, менее «засаженный»)…». Чуть ниже приведено это Информационное письмо, по данным из которого можно определять работоспособность форсунок:

Примечание 1:  Выражения: «Форсунки высокого давления» и «Обычные форсунки», следует понимать таким образом (здесь, ранее и далее) — 
— «форсунки высокого давления» — форсунки, которые используются в системах непосредственного впрыска топлива бензиновых двигателей систем GDI, D-4, FSI, NeoDi, PSA — Франция, где давление топлива составляет 50. ..100 кг\см2.
— «Обычные форсунки» — форсунки, которые используются в системах распределенного впрыска топлива (например), где давление топлива «перед» форсунками составляет не более 3-6 кг\см2.

Примечание 2: «Форсунки стали «слабее» — эту фразу можно расшифровать таким образом: » Чем выше год выпуска автомобиля, тем более изощреннее становятся производители автомобилей, рассчитывая очень точно срок «ходимости» той или иной детали или какого-то узла автомобиля». Кроме того, то ли по причине изменения технологии производства, то ли еще по какой-то  причине, но те же самые форсунки имеют «ходимость» меньшую, чем форсунки выпущенные несколько лет назад.
Можно сказать словами Практика по системам GDI Дмитрия Юрьевича: » В новых форсунках меньше стабильности. Доля замененных форсунок «свежего» года выпуска (2000 год и выше) значительно больше, чем «старых». Однако такой неисправности, как «обрыв обмотки» — не попадалось.»

Примечание 3: «Вихревой распылитель» и «Вихревая сборка». Первое выражение присутствует в справочнике «РОЛЬФ», второе подсказал специалист фирмы BOSCH по системам непосредственного впрыска топлива. За такое несоответствие выражений можно было бы и «зацепиться»…
«Не суть важно, как это назвать»,- сказал немец,- важно, что оно есть, мы знаем об этом и, исходя их этого, можем придумывать свои варианты очистки форсунок» (более подробнее об этом в следующей статье).

Владимир Петрович Кучер
© Легион-Автодата

Форсунка, инжектор – назначение, виды, устройство, принцип работы

Форсунка (другое название — инжектор), являясь конструктивным элементом системы впрыска, предназначена для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

Форсунка используется в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

В зависимости от способа осуществления впрыска различают следующие виды форсунок: электромагнитная, электрогидравлическая и пьезоэлектрическая.

Электромагнитная форсунка

Электромагнитная форсунка устанавливается, как правило, на бензиновых двигателях, в т.ч. оборудованных системой непосредственного впрыска. Форсунка имеет достаточно простое устройство, включающее электромагнитный клапан с иглой и сопло.

Работа электромагнитной форсунки осуществляется следующим образом. В соответствии с заложенным алгоритмом электронный блок управления обеспечивает в нужный момент подачу напряжения на обмотку возбуждения клапана. При этом создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло. Производится впрыск топлива. С исчезновением напряжения, пружина возвращает иглу форсунки на седло.

Электрогидравлическая форсунка

Электрогидравлическая форсунка используется на дизельных двигателях, в т.ч. оборудованных системой впрыска Common Rail. Конструкция электрогидравлической форсунки объединяет электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Принцип работы электрогидравлической форсунки основан на использовании давления топлива, как при впрыске, так и при его прекращении. В исходном положении электромагнитный клапан обесточен и закрыт, игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Впрыск топлива не происходит. При этом давление топлива на иглу ввиду разности площадей контакта меньше давления на поршень.

По команде электронного блока управления срабатывает электромагнитный клапан, открывая сливной дроссель. Топливо из камеры управления вытекает через дроссель в сливную магистраль. При этом впускной дроссель препятствует быстрому выравниванию давлений в камере управления и впускной магистрали. Давление на поршень снижается, а давление топлива на иглу не изменяется, под действием которого игла поднимается и происходит впрыск топлива.

Пьезоэлектрическая форсунка

Самым совершенным устройством, обеспечивающим впрыск топлива, является пьезоэлектрическая форсунка (пьезофорсунка). Форсунка устанавливается на дизельных двигателях, оборудованных системой впрыска Common Rail.

Преимуществами пьезофорсунки являются быстрота срабатывания (в 4 раза быстрее электромагнитного клапана), и как следствие возможность многократного впрыска топлива в течение одного цикла, а также точная дозировка впрыскиваемого топлива.

Это стало возможным благодаря использованию пьезоэффекта в управлении форсункой, основанного на изменении длины пьезокристалла под действием напряжения. Конструкция пьезоэлектрической форсунки включает пьезоэлемент, толкатель, переключающий клапан и иглу, помещенные в корпусе.

В работе пьезофорсунки, также как и электрогидравлической форсунки, используется гидравлический принцип. В исходном положении игла посажена на седло за счет высокого давления топлива. При подаче электрического сигнала на пьезоэлемент, увеличивается его длина, которая передает усилие на поршень толкателя. Открывается переключающий клапан, топливо поступает в сливную магистраль. Давление выше иглы падает. Игла за счет давления в нижней части поднимается и производится впрыск топлива.

Количество впрыскиваемого топлива определяется:

  • длительностью воздействия на пьезоэлемент;
  • давлением топлива в топливной рампе.

 

 

Бензин с непосредственным впрыском

От подачи топлива до обработки выхлопных газов

Подача топлива
Изделия подачи топлива (модуль подачи топлива со встроенным электротопливным насосом, датчиком уровня в баке и топливным фильтром) обеспечивают подачу в насос высокого давления необходимого количества топлива из бака в конкретную давление до 6 бар.

Впрыск топлива
Двигатели с непосредственным впрыском бензина производят топливно-воздушную смесь непосредственно в камере сгорания. Только свежий воздух поступает во впускное отверстие через открытый впускной клапан. Топливо впрыскивается непосредственно в камеру сгорания форсунками высокого давления. Охлаждение камеры сгорания улучшается за счет непосредственного распыления топлива в случае прямого впрыска бензина. Это обеспечивает более высокую степень сжатия двигателя и, в свою очередь, повышение эффективности, что способствует снижению расхода топлива и увеличению крутящего момента. В случае непосредственного впрыска бензина контур высокого давления питается от насоса высокого давления, который поддерживает давление топлива в топливной рампе на требуемом высоком уровне до 350 бар. Форсунки высокого давления установлены на топливной рампе, дозируют и распыляют топливо под высоким давлением очень быстро, чтобы обеспечить оптимальную подготовку смеси непосредственно в камере сгорания.

Управление подачей воздуха
Управление подачей воздуха обеспечивает подачу правильной воздушной массы к двигателю в каждой рабочей точке.

Зажигание
Бензиновым двигателям требуется искра зажигания для воспламенения воздушно-топливной смеси в цилиндре двигателя. Свеча зажигания генерирует искру. Требуемое высокое напряжение вырабатывается катушкой зажигания. Для этого он преобразует электрическую энергию аккумулятора в напряжение зажигания и подает это напряжение на свечу зажигания в точке зажигания.

Электронный блок управления
Электронный блок управления централизованно определяет приоритеты и управляет различными функциями, которые должна выполнять современная система управления двигателем. Используя крутящий момент в качестве ключевой контрольной переменной, электронный блок управления эффективно регулирует необходимую топливно-воздушную смесь, угол опережения зажигания и обработку выхлопных газов.

Очистка отработавших газов
Очистка отработавших газов помогает производителям соблюдать международные стандарты по выбросам, напр. с помощью каталитической обработки выхлопных газов. Использование лямбда-зондов обеспечивает еще более эффективный контроль выбросов. Целью этого механизма является всегда достижение стехиометрического соотношения воздух-топливо (λ=1). При гомогенных процессах сгорания (λ=1) оптимальную обработку выхлопных газов можно обеспечить за счет регулирования стехиометрического соотношения воздух-топливо и использования трехкомпонентного каталитического нейтрализатора. В случае послойного сгорания (обедненной смеси), λ>1, избыток воздуха в камере сгорания приводит к образованию нежелательных оксидов азота в выхлопных газах в процессе сгорания. Оксиды азота направляются на дополнительный каталитический нейтрализатор аккумуляторного типа для удаления.

Сокращение

Уменьшение размеров влечет за собой уменьшение рабочего объема двигателя, что, в свою очередь, снижает расход топлива и связанные с ним выбросы CO 2 . Экономия топлива является результатом того, что двигатель чаще работает в верхних областях карты с более высокой эффективностью. Комбинация турбонагнетателей, работающих на отработавших газах, и прямого впрыска бензина облегчает использование концепций уменьшения габаритов.

Эти концепции используют более высокий удельный крутящий момент, возникающий в результате турбонаддува, для уменьшения рабочего объема двигателя при сохранении выходной мощности. Это решение снижает расход топлива и, в свою очередь, CO 2 выбросов без ущерба для выходной мощности. При постоянном объеме цилиндра топливовоздушная смесь обладает большей энергией. Относительно меньшего объема двигателя достаточно для высвобождения того же количества энергии, что и у более крупного сопоставимого двигателя, без уменьшения размеров.

Работа управляемого клапана (CVO)

Будущее законодательство, направленное на снижение содержания твердых частиц в выхлопных газах, ставит новые задачи перед двигателями внутреннего сгорания. В своей уникальной инновационной системе CVO (управление работой клапана) для бензиновых двигателей с непосредственным впрыском компания Bosch применила мехатронный подход, который может внести ценный вклад в юридические ограничения выбросов, такие как EU6d.

Блок управления двигателем Bosch и форсунки высокого давления Bosch являются основными компонентами CVO. В отличие от обычного управляемого впрыска с разомкнутым контуром, в этой установке блок управления и форсунки высокого давления образуют замкнутый контур. Блок управления улавливает сигнал срабатывания форсунок высокого давления на протяжении всего процесса впрыска и определяет момент открытия и закрытия игл клапанов.

Таким образом, блок управления может рассчитать фактическое количество впрыска каждой форсунки и при необходимости внести коррективы. CVO также позволяет впрыскивать небольшое количество топлива с минимальными допусками. Точность непосредственного впрыска бензина в этой области значительно улучшилась и сохраняется на протяжении всего срока службы клапана, гарантируя стабильный процесс сгорания. CVO оказывает особенно положительное влияние на выбросы твердых частиц на холодном двигателе во время фазы прогрева каталитического нейтрализатора, а затем по мере прогрева двигателя. Следовательно, CVO предлагает инновационный и экономичный подход к оптимизации двигателя.

Две системы впрыска топлива в одной: порт и непосредственный впрыск бензина

С системой прямого впрыска бензина Bosch сочетает прямой впрыск бензина с системой впрыска бензина через порт. Причина этого необычного партнерства заключается в следующем: объединение двух обычно отдельных подходов к впрыску топлива создает одну инновационную систему, в которой сильные стороны отдельных систем идеально дополняют друг друга. В данном конкретном случае это приводит к преимуществам с точки зрения расхода топлива и выбросов – как при частичной, так и при полной нагрузке. Каждый из двух партнеров позволяет другому взять на себя инициативу, когда приходит время показать свои сильные стороны. Каждая система впрыска обеспечивает свои преимущества с точки зрения эффективности использования топлива и количества выбрасываемых частиц (PN) в различных условиях эксплуатации.

Бензиновый впрыск топлива во впускной коллектор отличается меньшими потерями на трение при частичной нагрузке, в то время как прямой впрыск превосходит работу при полной нагрузке благодаря повышенному пределу детонации. В сочетании эти системы обеспечивают дополнительное сокращение выбросов твердых частиц — лучшее разделение труда.

Но бензиновый впрыск топлива через порт добавляет еще больше преимуществ выгодному партнерству. Благодаря хорошей гомогенизации смеси система производит меньше частиц, имеет более низкий уровень шума и потребляет меньше топлива в ситуациях с низкой нагрузкой двигателя благодаря более низким потерям на трение по сравнению с непосредственным впрыском.

Другие преимущества распределенного и прямого впрыска бензина:

  • При распределенном впрыске очищающий эффект отверстий и клапанов впускного коллектора способствует более высокой степени рециркуляции отработавших газов
  • Улучшенные шумовые характеристики на низких скоростях возможность дома

Кроме того, порт и непосредственный впрыск бензина ориентированы на будущее: объединение обеих систем и оптимизация стратегии работы двигателя могут внести ценный вклад в дополнительную экономию с точки зрения расхода топлива и новых законодательных ограничений на выбросы, таких как EU6d.

Компания Bosch имеет многолетний опыт работы с крупномасштабными производственными проектами, включающими порт и непосредственный впрыск бензина, и предлагает широкий ассортимент компонентов, разработок и системного моделирования.

Что такое топливная форсунка?

Компания Bosch создала форсунку для дизельного топлива в 1920 году в ответ на рост спроса и цен на топливо. С момента введения впрыска топлива в транспортных средствах скорость и ускорение многих преувеличены, в результате чего усовершенствования в технологии сделали двигатели более экономичными, эффективными и создали более высокую мощность. Эта технология, хотя и обновленная, сегодня используется как в дизельных, так и в бензиновых двигателях.

Что такое топливная форсунка?

Топливная форсунка — это устройство для распыления и впрыска топлива в двигатель внутреннего сгорания. Форсунка распыляет топливо и нагнетает его непосредственно в камеру сгорания в определенный момент цикла сгорания. Более новые форсунки также могут измерять количество топлива в соответствии с указаниями и контролем электронного модуля управления (ECM). Бензиновые топливные форсунки теперь выступают в качестве альтернативы карбюратору, в котором воздушно-топливная смесь всасывается за счет разрежения, создаваемого ходом поршня вниз.

Как правило, форсунки для дизельного топлива устанавливаются в головке двигателя с наконечником внутри камеры сгорания, размер отверстий, количество отверстий и углы распыления могут варьироваться от двигателя к двигателю.

Бензиновые форсунки могут быть установлены во впускном коллекторе (многоточечный впрыск, корпус дроссельной заслонки или, в последнее время, непосредственно в камеру сгорания (GDI).

Зачем нам нужны топливные форсунки?

Топливные форсунки являются необходимыми компонентами двигателя, потому что :

· Принцип работы двигателей внутреннего сгорания гласит, что чем лучше качество топливно-воздушной смеси, тем лучше сгорание, что обеспечивает более высокий КПД двигателя и более низкий уровень выбросов.0008

· Неэффективное смешивание топлива и воздуха, обеспечиваемое карбюраторами, оставляет различные несгоревшие частицы внутри камеры сгорания двигателя внутреннего сгорания. Это приводит к неправильному распространению пламени сгорания из-за неисправности, известной как «детонация», а также к более высоким выбросам.

· Несгоревшее топливо в виде углерода или несгоревших газов и частиц внутри камеры сгорания отрицательно влияет на эффективность (пробег) и выбросы автомобиля. Чтобы избежать этого, модернизированная технология впрыска топлива стала необходимой.

Типы топливных форсунок

Развитие технологий впрыска топлива привело к появлению различных механизмов впрыска топлива, таких как впрыск топлива через дроссельную заслонку, многоточечный впрыск топлива, последовательный впрыск топлива и непосредственный впрыск, которые варьируются в зависимости от применения.

Основы впрыска топлива

Существует 2 типа топливных форсунок:

1. Форсунки для дизельного топлива

Современные форсунки для дизельного топлива используются для непосредственного распыления и впрыскивания или распыления дизельного топлива (более тяжелого топлива, чем бензин). в камеру сгорания дизельного двигателя для воспламенения от сжатия (без свечей зажигания).

Для дизельных топливных форсунок требуется гораздо более высокое давление впрыска (до 30 000 фунтов на кв. дюйм), чем для бензиновых форсунок, поскольку дизельное топливо тяжелее бензина, и для распыления топлива требуется гораздо более высокое давление.

2. Бензиновые топливные форсунки

Бензиновые топливные форсунки используются для впрыска или распыления бензина непосредственно (GDI) или через впускной коллектор (многоточечный) или корпус дроссельной заслонки в камеру сгорания для воспламенения от искры.

Конструкция бензиновых форсунок различается в зависимости от типа… в более новых форсунках GDI используется сопло с несколькими отверстиями, в многоканальном корпусе дроссельной заслонки используется сопло с бессмысленным стилем. Давление впрыска бензина намного ниже, чем у дизеля… 3000 фунтов на квадратный дюйм для GDI и 35 фунтов на квадратный дюйм для типа Pinter.

Основы дозирования топлива — форсунки

Существует 2 типа дозирования топлива (контроль продолжительности впрыска, давления и времени подачи топлива) топливных форсунок. Современные двигатели имеют до 5 впрысков в каждом цикле сгорания… чтобы извлечь выгоду из эффективности и сокращения выбросов.

1. Топливные форсунки с механическим управлением

Механические топливные форсунки, в которых управление скоростью, количеством, синхронизацией и давлением топлива осуществляется механически с использованием пружин и плунжеров. Эти детали получают сигнал от кулачка или топливного насоса высокого давления.

2. Топливные форсунки с электронным управлением

Эти топливные форсунки имеют электронное управление, когда речь идет о количестве топлива, давлении и времени. Электронный соленоид получает данные от электронного модуля управления (ECM) автомобиля.

Конструкция топливных форсунок

Упрощенная конструкция топливной форсунки напоминает насадку садового шланга, которая используется для распыления воды на траву. Ту же задачу выполняет топливная форсунка, но разница в том, что вместо воды топливо распыляется и «распыляется» внутри двигателя, попадая в камеру сгорания.

Давайте разберемся в конструкции и работе топливной форсунки, рассмотрев топливные форсунки как с механическим, так и с электронным управлением.

Топливная форсунка с механическим управлением

Топливная форсунка с механическим управлением состоит из следующих частей:

· Корпус форсунки — внешний корпус или «оболочка», внутри которой расположены все остальные части форсунки. Внутренняя часть корпуса форсунки должна содержать точно спроектированный капилляр или канал, через который топливо под высоким давлением из топливного насоса может течь для распыления и впрыска.

· Плунжер. В топливной форсунке может использоваться поршень, который используется для открытия или закрытия форсунки под действием давления топлива. Он управляется комбинацией пружин и прокладок.

· Пружины. Внутри топливных форсунок с механическим управлением используются одна или две пружины. К ним относятся:

1. Пружина плунжера. Возвратно-поступательное движение плунжера контролируется пружиной плунжера, которая сжимается из-за повышенного давления топлива. Когда давление топлива внутри топливной форсунки увеличивается до уровня, превышающего заданную комбинацию пружины и регулировочной шайбы, игла в форсунке поднимается, топливо распыляется и впрыскивается, а по мере снижения давления форсунка закрывается.

2. Основная пружина. Основная пружина используется для управления давлением открытия впрыска. Основная пружина действует против действия давления топлива, создаваемого топливным насосом.

Топливная форсунка с электронным управлением

Это «интеллектуальный» тип топливной форсунки, которая управляется электронным блоком управления (ECM) двигателя, который также известен как мозг современных двигателей.

Топливные форсунки с электронным управлением состоят из следующих частей:

· Корпус форсунки. Как и у механически управляемой топливной форсунки, корпус форсунки этого типа представляет собой точно спроектированную полую оболочку, внутри которой расположены все остальные компоненты.

· Плунжер. Как и в топливных форсунках с механическим управлением, плунжер может использоваться для открытия и закрытия форсунки, но в топливных форсунках с электронным управлением открытие форсунки управляется электронным способом с помощью электромагнитов или соленоидов.

· Пружина. Так же, как и в топливной форсунке с механическим управлением, пружина плунжера используется для удержания плунжера в его положении до тех пор, пока не будет достигнуто давление впрыска, а затем, при необходимости, для закрытия сопла топливной форсунки.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *