Типы впрыска топлива: какие они бывают и чем отличаются

Содержание

Системы впрыска топлива — моно, распределенный, непосредственный

Системы впрыска топлива с внешним смесеобразованием

В системах впрыска топлива с внешним смесеобразованием приготовление топливовоздушной смеси происходит вне камеры сгорания двигателя (во впускном тракте).

Одноточечный (центральный, моно) впрыск топлива (SPI)

Одноточечный впрыск – это электронно-управляемая система впрыска топлива, в которой электромагнитная форсунка периодически впрыскивает топливо во впускной трубопровод перед дроссельной заслонкой (подробнее об этой системе смотрите в статье Моновпрыск)

Многоточечный (распределенный) впрыск топлива (MPI)

Многоточечный впрыск создает условия для более оптимальной, по сравнению с одноточечным впрыском, работы системы смесеобразования.

Для каждого цилиндра предусмотрена топливная форсунка, через которую топливо впрыскивается непосредственно перед впускным клапаном. В качестве примера такого использования многоточечного впрыска можно назвать системы KE- и L-Jetronic.

Механическая система впрыска топлива

В механической системе впрыска топлива масса впрыскиваемого топлива определяется топливо-распределительным устройством (дозатором), от которого топливо направляется к форсунке, автоматически открывающейся при определенном давлении. Примером использования механического впрыска является система K-Jetronic с непрерывным впрыскиванием топлива.

Комбинированная электронно-механическая система впрыска топлива

Комбинированная система впрыска базируется на механической, которая для более точного управления впрыскиванием снабжена электронным блоком, управляющим режимом работы насоса и форсунок с топливо распределительным устройством. Примером комбинированного впрыска служит система KE-Jetronic.

Электронные системы впрыска топлива

Электронно управляемые системы впрыска обеспечивают прерывистый впрыск топлива форсунками с электромагнитным управлением.

Масса впрыскиваемого топлива определяется временем открытия форсунки.

Примеры таких систем: L-Jetronic, LH-Jetronic и подсистема впрыска топлива системы управления двигателем Motronic.

Необходимость соблюдения жестких норм содержания вредных веществ в отработавших газах диктует высокие требования к регулированию состава топливовоздушной смеси и конструкции системы впрыска. При этом важно обеспечить как точность момента впрыска, так и точность дозировки массы впрыскиваемого топлива в зависимости от количества подаваемого воздуха.

Для выполнения этих требований в современных системах многоточечного (распределенного) впрыска топлива на каждый цилиндр двигателя приходится по электромагнитной форсунке, причем управление каждой форсункой осуществляется индивидуально. Количество впрыскиваемого топлива и корректировка момента впрыска рассчитываются для каждой форсунки в электронном блоке управления (

ECU). Процесс смесеобразования улучшается за счет впрыскивания точно отмеренного количества топлива непосредственно перед впускным клапаном (или клапанами) в точно установленный момент времени. Это, в свою очередь, в значительной степени предотвращает попадание топлива на стенки впускного трубопровода, что может привести к временным отклонениям коэффициента избытка воздуха от среднего значения в неустановившемся режиме работы двигателя. Так как в многоточечной системе впрыска через впускной трубопровод проходит только воздух, трубопровод может быть выполнен таким образом, чтобы в оптимальной степени соответствовать газодинамическим характеристикам наполнения цилиндров двигателя.

Непосредственный впрыск — системы с внутренним смесеобразованием

В таких системах, называемых

системами с непосредственным впрыском (DI), топливные форсунки с электромагнитным приводом, размещенные в каждом цилиндре, впрыскивают топливо непосредственно в камеру сгорания. Смесеобразование происходит внутри цилиндра. Для обеспечения эффективного сгорания смеси существенную роль играет процесс распыления выходящего из форсунки топлива.

Во впускной трубопровод двигателя с непосредственным впрыском топлива, в отличие от двигателя с внешним смесеобразованием, подается исключительно воздух. Таким образом, исключается попадание топлива на стенки впускного трубопровода.

Если при внешнем смесеобразовании в процессе сгорания обычно присутствует однородная топливовоздушная смесь, то при внутреннем смесеобразовании двигатель может работать как с однородной, так и с неоднородной смесью.

Работа двигателя при послойном распределении смеси

Смесь при послойном распределении заряда воспламеняется только в зоне вокруг свечи зажигания. В остальных частях камеры сгорания содержатся свежая смесь и остаточные отработавшие газы двигателя без следов несгоревшего топлива. На режимах холостого хода и при малой нагрузке таким образом обеспечивается работа на обедненной смеси, что приводит к снижению расхода топлива.

Работа двигателя при наличии однородной смеси

Однородная смеси занимает полностью объем камеры сгорания (как и при внешнем смесеобразовании), и весь заряд свежего воздуха, поступившего в камеру, участвует в процессе сгорания. Поэтому этот способ образования смеси применяется в условиях работы двигателя при полной и средней нагрузках.

Другие статьи по системам впрыска топлива

Типы систем питания инжекторных двигателей.


Классификация инжекторных двигателей




Типы систем питания с впрыском бензина

По конструктивным и функциональным признакам системы питания, использующие впрыск бензина вместо карбюрации могут существенно отличаться. Творчество конструкторов и инженеров в этом направлении привело к созданию широкого спектра систем впрыска, из которых можно выделить наиболее широко применяемые и используемые, объединяя их по основным признакам.

Впрыскивающие бензиновые системы, в первую очередь, подразделяют по месту подвода топлива – центральный одноточечный впрыск, распределенный впрыск и непосредственный впрыск в цилиндры двигателя.

При центральном впрыске (Рис. 1, а) используется одна форсунка, которая устанавливается на месте карбюратора и осуществляет впрыск во впускной трубопровод, обслуживая все цилиндры двигателя.
Такие конструкции являются «пионерами» в системах, использующих впрыск бензина, поэтому в свое время получило довольно широкое распространение. Принципиально система центрального впрыска простая: в ней используется одна форсунка, которая постоянно распыляет бензин в один на все цилиндры впускной коллектор. В коллектор из воздушного фильтра подается и воздух, здесь образуется горючая смесь, которая через впускные клапаны поступает в цилиндры и воспламеняется.

Преимущества центрального впрыска (моновпрыска) очевидны: эта система очень проста, для изменения режима работы двигателя нужно управлять только одной форсункой, да и сам двигатель претерпевает незначительные изменения, ведь форсунка ставится на место карбюратора.

Однако центральный впрыск имеет и недостатки, в частности, эта система не позволяет обеспечить выполнение все возрастающих требований экологической безопасности. Кроме того, отказ единственной форсунки фактически выводит двигатель из строя. Поэтому в настоящее время двигатели с центральным впрыском практически не выпускаются.

При распределенном впрыске (Рис. 1, б) отдельные форсунки устанавливаются в зоне впускных клапанов каждого цилиндра. Существует несколько разновидностей систем с распределенным впрыском, которые отличаются режимом работы форсунок:

  • Одновременный впрыск;
  • Попарно-параллельный впрыск;
  • Фазированный спрыск.

Одновременный впрыск.
В этом случае форсунки, хоть и расположены во впускном коллекторе каждая у «своего» цилиндра, но открываются в одно время. Можно сказать, что это усовершенствованный вариант моновпрыска, так как здесь работает несколько форсунок, но электронный блок управляет ими, как одной. Однако одновременный впрыск дает возможность индивидуальной регулировки впрыска топлива для каждого цилиндра. В целом, системы с одновременным впрыском просты и надежны в работе, но по характеристикам уступают более современным системам.

Попарно-параллельный впрыск.
Это усовершенствованный вариант одновременного впрыска, он отличается тем, что форсунки открываются по очереди парами. Обычно работа форсунок настроена таким образом, чтобы одна из них открывалась перед тактом впуска своего цилиндра, а вторая — перед тактом выпуска.
На сегодняшний день этот тип системы впрыска практически не используется, однако на современных двигателях предусмотрена аварийная работа двигателя именно в этом режиме. Обычно такое решение используется при выходе из строя датчиков фаз (датчиков положения распределительного вала), при котором невозможен фазированный впрыск.

Фазированный впрыск.
Это наиболее современный и обеспечивающий наилучшие характеристики тип системы впрыска. При фазированном впрыске число форсунок равно числу цилиндров, и все они открываются и закрываются в зависимости от такта, т. е. подача бензина в цилиндры осуществляется только на впуске каждой форсункой в строго определенный момент времени. При нефазированном впрыске подача осуществляется на каждом обороте коленчатого вала всеми форсунками синхронно.

Также к распределенному впрыску можно отнести системы с непосредственным впрыском, однако последние имеют кардинальные конструктивные отличия, поэтому непосредственный впрыск выделяют в отдельный тип.



При непосредственном впрыске (Рис. 1, в) форсунки устанавливают в головку блока цилиндров и осуществляют впрыск непосредственно в камеру сгорания.
Системы с непосредственным впрыском наиболее сложные и дорогие, однако, их применение позволяет обеспечить наилучшие показатели мощности и экономичности бензиновых двигателей. Непосредственный впрыск позволяет быстро изменять режим работы двигателя, максимально точно регулировать подачу топлива в каждый цилиндр и т.

д.
В системах с непосредственным впрыском топлива форсунки установлены непосредственно в головке, распыляя топливо сразу в цилиндр, избегая «посредников» в виде впускного коллектора и впускного клапана (или клапанов).
Такое решение довольно сложно в техническом плане, так как в головке цилиндра, где и так уже расположены клапаны и свеча, необходимо разместить еще и форсунку. Поэтому непосредственный впрыск можно использовать только в достаточно мощных, а поэтому больших по габаритам двигателях. Кроме того, определенные сложности возникают из-за тяжелых условий, в которых приходится работать форсунке, сообщающейся с камерой сгорания. Решение всех этих вопросов связано с повышением стоимости используемых в системах с непосредственным впрыском элементов конструкции. Поэтому непосредственный впрыск в настоящее время используется только на легковых автомобилях высокого класса.

Системы с непосредственным впрыском требовательны к качеству топлива и нуждаются в более частом техническом обслуживании, однако они дают ощутимую экономию топлива и обеспечивают более надежную и качественную работу двигателя. Поэтому в ближайшем будущем они могут потеснить автомобили с инжекторными двигателями, использующими одноточечный и распределенный впрыск.

Кроме перечисленных выше разновидностей систем впрыска по месту подвода топлива их классифицируют, также по следующим признакам:

  • по способу подачи топлива – непрерывный или прерывистый впрыск;
  • по типу узлов, дозирующих топливо – плунжерные насосы, распределители, форсунки, регуляторы давления;
  • по способу регулирования количества горючей смеси – пневматическое, механическое, электронное. Электронный способ регулирования количества подаваемого топлива является наиболее прогрессивным и в настоящее время вытесняет механический и пневматический способы.
  • по основным параметрам регулирования состава горючей смеси – разрежению во впускном трубопроводе, углу поворота дроссельной заслонки, расходу воздуха и др.

Таким образом, смесеобразование в инжекторных двигателях в зависимости от применяемого способа подачи топлива происходит или в определенных зонах впускного трубопровода, или непосредственно в цилиндры двигателя, при этом могут использоваться различные устройства для впрыска и управления впрыском.

***

Системы с центральным впрыском топлива


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Системы впрыска. Описание. Характеристики

В наше время на автомобили устанавливают современные системы впрыска топлива. Система впрыска исходя из своего названия предназначена для впрыска топлива. Ее устанавливают на дизельные и бензиновые двигатели.

Система впрыска бензиновых двигателей. Работа бензинового двигателя начинается с вырабатывания искры которая воспламеняет однообразную топливо-воздушную смесь образующуюся в двигателе.  Как и в бензиновых двигателях в дизельных топливо впрыскивается под давлением, это способствует воспламенению смеси. Все это дает возможность определить величину топлива которое впрыскивается увеличивая мощность двигателя. Данная система имеет систему подачи топлива, которая является основой для движения автомобиля. Система работает с помощью инжектора форсунка.

Разновидности систем впрыска бензиновых двигателей

Топливно-воздушная система объединяя в себя такие впрыски:
•    Центральный впрыск;
•    Распределенный впрыск;
•    Непосредственный впрыск.

Центральный и распределенный способ впрыска является предварительным потому, что впрыск происходит непосредственно во впускном коллекторе не доходя до камеры.

Монопрыск это известный центральный впрыск, работающий на основе одной форсунки, которая находится в коллекторе. Эту систему можно назвать карбюратором с форсункой. Такая система уже давно не производится, но все еще встречается на легковых автомобилях. Моновпрыск знаменит преимуществами такими как простота и надежность, а также недостатками – повышенным расходом топлива и высоким загрязнением воздуха.

Многоточечная распределенная система впрыска подает топливо на каждый цилиндр отдельной форсункой. Смесь топлива и воздуха образуется во впускном коллекторе. Она часто используется в бензиновых двигателях. Главное отличие — это экономия топлива, умеренный выброс вредных веществ в воздух и невысокие требования к качеству топлива.

Непосредственный впрыск очень перспективный среди автомобильной промышленности. В отличие от предыдущей версии топливо подается непосредственно в камеру сгорания каждого цилиндра. Теперь двигатель работает оптимально на топливно-воздушной смеси у всех режимах, повышая степень сжатия. Такой способ позволяет сэкономить топливо и увеличить мощность двигателя и снизить вредные выбросы. Но всегда есть минусы такие как сложная конструкция и высокая потребность высокого качества топлива.

На сегодняшний день впрыск в бензиновые двигатели осуществляется под механическим или электронным управлением. Электронное управление отличается сокращенным выбросом вредных веществ в окружающую среду и тем самим является совершенным для двигателя.

Как и ток, впрыск топлива осуществляется постоянно или импульсно. Для экономии топлива лучшим будет импульсный впрыск, его используют во всех системах.

Система впрыска и система зажигания объединяясь образуют согласованную роботу тем самим обеспечивая качественное управление двигателем.

Системы впрыска дизельных двигателей

Двигатели на дизельном топливе работают с впрыском как в предварительной камере так и напрямую в камере сгорания.

Предварительный впрыск отличается низким уровнем шума и плавностью роботы. Но в наше время в основном используют непосредственный впрыск потому, что он экономить топливо.
ТНВД (топливный насос с высоким давлением) является основным конструктивным элементом системы подачи топлива для дизельного двигателя.

Автопроизводители устанавливают на дизельные двигатели различные системы впрыска:
•    ТНВД с рядным впрыском;
•    ТНВД с распределителем;
•    Впрыск с насос-форсункой;
•    Впрыск Common Rail.

Новая система впрыска Common Rail

Система впрыска с насос-форсунками включает высокое давление и топливо объединяя в одно устройство – насос-форсунок. Впрыск работает постоянно и качественно, но это оказывается на жизни привода. Он интенсивно изнашивается. Система с насос-форсункой привлекает автопроизводителей устанавливать Common Rail.

Система работает на основе подачи топлива от аккумулятора (общей рампы) к форсункам. По-другому систему можно назвать аккумуляторной системой впрыска. Производители позаботились о том чтобы снизить шум и улучшить работу системы за счет снижение загрязнения воздуха. Для этого был создан многократный предварительный, основной и дополнительный впрыск топлива.

Существует два способа управления подачи топлива – электронное и механическое управление. Как и в других системах контроль давления, объема и момента подачи достигается с помощью механического управления. Электронное управление лучше подходит для дизельных двигателей.

 

Изучая техническую информацию об автомобилях Хонда, не забудьте зайти на сайт autosteam.ru

  • < Назад
  • Вперёд >

Все обо всем.

Каким бывает впрыск топлива?

Все современные двигатели полностью переведены со старой и изжившей себя карбюраторной системы питания на впрыск топлива в двигатель за счет инжектора. Сразу же после такой перемены в автожизни возникли противоречия применения различных инжекторных систем впрыска. Так, до сих пор между автопроизводителями ведутся споры, какая из них лучше, потому как каждая имеет свои как достоинства, так и недостатки.

Рассмотрим самые известные и повсеместно используемые системы впрыска топлива

Центральный впрыск топлива

Являясь альтернативой карбюраторной системе, впервые центральный впрыск стал применяться в 80 года XX века. Правда особой разницы между ней и карбюратором не отмечено. Здесь также имеется смешивание воздуха с топливом внутри впускного коллектора. Разница лишь в том, что на смену чувствительному и довольно сложному карбюратору пришла форсунка. Электроники здесь, конечно же, нет — все осуществляется посредством механики.

Но все же одноточечный впрыск позволял работать двигателю более мощно и, что более важно, менее затратно финансово.

Происходило это, потому что форсунка обеспечивала более точную и экономичную дозировку объема топлива. После чего возникала однородная смесь, которая могла менять свой состав мгновенно при различных условиях движения и режимах работы мотора.

Недостатки центрального впрыска

Однако, у этой системы были и свои весомые минусы. Так, например, отмечалось высокое сопротивление воздуха, который поступал в цилиндры. Потому как форсунку очень часто монтировали в корпус карбюратора, да и датчики тех времен были довольно громоздки, что затрудняло «дыхание» двигателя. В теории, такой «минус» можно было бы легко исправить — это да, но в реальной жизни тех лет устранение неравномерного поступления топливной смеси в цилиндры — было весьма проблематичной задачей. Смеси нужно было преодолеть длинный путь по трубопроводам, которые конструировались самой разнообразной длины и с разным сопротивлением. Все это привело к тому, что на данный момент центральный впрыск практически не используется. Слишком уж сложно было доработать центральную систему, легче начать заново и придумать что-нибудь новенькое.

Многоточечный или распределительный впрыск

Его основным отличием от предыдущей системы является наличие индивидуальной форсунки для каждого цилиндра во впускном патрубке. Смесь получается однородной по составу для всех цилиндров. Вначале она была исключительно механической, но эту систем постоянно совершенствовали.

Итак, в 90 годах XX века стали широко внедрять электронику. Это позволило усовершенствовать и систему питания двигателя, кроме того возникал возможность координации ее действий с остальными частями двигателя.

Потому-то современный автомобиль способен не просто сигнализировать водителю, что имеются неисправности, но и включить при необходимости аварийный режим.

В систему многоточечного впрыска были внедрены и дополнительные датчики, которые позволили переводить впрыск с параллельной на последовательную подачу топлива в двигатель. Такая схема позволила обеспечить индивидуальный расчет времени для каждого цилиндра, для того, чтобы топливо подавалось исключительно в нормированный промежуток перед тем, как откроется клапан. Несомненно, что плюсов такой схемы намного больше, она эффективнее и точнее, но и стоит намного дороже.

Прямой впрыск

При такой системе бензин попадает через форсунки непосредственно в цилиндры мотора. Историей отмечено, что сначала такая система применялась только в авиационных моторах еще во времена Второй мировой войны. Первым автомобилем с прямым впрыском был Goliath GP700. Но в послевоенный период такой вид системы впрыска топлива не был популярен в силу дороговизны топливных насосов и уникальной для данной системы головки блока цилиндров. Тогда инженерам не удалось найти оптимального баланса, точной работы и приемлемой надежности такой схемы.

Непосредственный впрыск

Рост экологических мировых проблем привел к тому, что в 90-е года прошлого столетия о прямом впрыске топлива вспомнили вновь. Первым применил эту схему концерн Mitsubishi, выпустив в 96 году серию моторов GDI, после них и другими автопроизводителями был перенят успешный опыт японцев — Mercedes-Benz, Volkswagen, BMW, FIAT, Peugeot-Citroen и прочие.

Объясняется это тем, что такая схема подачи топлива позволяет двигателю функционировать и на смесях с высоким содержанием воздуха, такие смеси называются обедненными, и не случайно, ведь чем меньше нужно топлива, тем выше экономичность.

Также бензин, подаваясь в цилиндры, обеспечивает повышение степени сжатия двигателя, что в свою очередь увеличивает его мощность и эффективность.

В заключении

Непосредственный впрыск, пожалуй, оптимальное решение в питании автомобиля топливом, если бы не некоторые «НО». Моторы с такой схемой довольно капризны к качеству октановой смеси, работа их отличается повышенной жесткостью и шумностью, что приводит к усилению шумоизоляции салона авто. Кроме того, работая на обедненные смеси, выделяется высокое количество оксидов азота, а борьба с ними ведется посредством усложнения конструкции мотора. Но как ни крути инжектор гораздо лучше карбюратора — и это только говоря простым языком.

Удачи и будьте аккуратны!

В статье использовано изображение с сайта www.motorpage.ru
    

Инжекторная система подачи топлива — это… Что такое Инжекторная система подачи топлива?

Двигатель АШ-82 в музее в Праге

Система впрыска топлива (англ. Fuel Injection System) — система подачи топлива, устанавливаемая на современных бензиновых двигателях. Основное отличие от карбюраторной системы — подача топлива осуществляется путем непосредственного впрыска топлива с помощью форсунок во впускной коллектор или в цилиндр. Автомобили с данной системой питания часто называют инжекторными.

Устройство

В инжекторной системе подачи впрыск топлива в воздушный поток осуществляется специальными форсунками — инжекторами (англ. Injector).

Классификация

По точке установки и количеству форсунок:

  • Моновпрыск или центральный впрыск (нем. Ein Spritz) — одна форсунка на все цилиндры, расположенная, как правило, на месте карбюратора (на впускном коллекторе). В настоящее время непопулярна.
  • Распределённый впрыск — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. В то же время различают несколько типов распределённого впрыска:
    • Одновременный — все форсунки открываются одновременно.
    • Попарно-параллельный — форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска. В связи с тем, что за попадание топливо-воздушной смеси в цилиндры отвечают клапаны, это не оказывает сильного влияния. В современных моторах используется фазированный впрыск, попарно-параллельный используется только в момент запуска двигателя и в аварийном режиме при поломке Датчика Положения Распределительного Вала ДПРВ (так называемой Фазы).
    • Фазированный впрыск — каждая форсунка управляется отдельно, и открывается непосредственно перед тактом впуска.
    • Прямой впрыск — форсунки расположены непосредственно возле цилиндров и впрыск топлива происходит прямо в камеру сгорания.

Управление системой подачи топлива

В настоящее время системами подачи топлива управляют специальные микроконтроллеры, этот вид управления называется электронным. Принцип работы такой системы основан на том, что решение о моменте и длительности открытия форсунок принимает микроконтроллер, основываясь на данных, поступающих от датчиков.

В прошлом, на ранних моделях системы подачи топлива, в роли контроллера выступали специальные механические устройства.

Принцип работы

В контроллер, при работе системы, поступает, со специальных датчиков, следующая информация:

  • о положении и частоте вращения коленчатого вала,
  • о массовом расходе воздуха двигателем,
  • о температуре охлаждающей жидкости,
  • о положении дроссельной заслонки,
  • о содержании кислорода в отработавших газах (в системе с обратной связью),
  • о наличии детонации в двигателе,
  • о напряжении в бортовой сети автомобиля,
  • о скорости автомобиля,
  • о положении распределительного вала (в системе с последовательным распределенным впрыском топлива),
  • о запросе на включение кондиционера (если он установлен на автомобиле),
  • о неровной дороге (датчик неровной дороги),
  • о температуре входящего воздуха.

На основе полученной информации контроллер управляет следующими системами и приборами:

  • топливоподачей (форсунками и электробензонасосом),
  • системой зажигания,
  • регулятором холостого хода,
  • адсорбером системы улавливания паров бензина (если эта система есть на автомобиле),
  • вентилятором системы охлаждения двигателя,
  • муфтой компрессора кондиционера (если он есть на автомобиле),
  • системой диагностики.

Изменение параметров электронного впрыска может происходить буквально «на лету», так как управление осуществляется программно, и может учитывать большое число программных функций и данных с датчиков. Также, современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения и многие другие характеристики и спецификации.

Ранее использовалась механическая система управления впрыском.

Достоинства двигателей, оборудованных системой впрыска с микропроцессорным управлением

Преимущества, по сравнению с двигателями, оборудованными карбюраторной системой подачи топлива:

  • Уменьшение расхода топлива.
  • Упрощается запуск двигателя.
  • Приближенная к линейной характеристика крутящего момента (улучшаются динамические и мощностные характеристики двигателя).
  • Не требует ручной регулировки системы впрыска, т.к. выполняет самостоятельную настройку на основе данных, передаваемых датчиками кислорода.
  • Поддерживает примерно стехиометрический состав рабочей смеси, что несколько уменьшает выброс несгоревших углеводородов и повышает экологичность (альфа ~ 0.98-1.2).

Недостатки

Основные недостатки двигателей с блоком управления по сравнению с карбюраторными:

  • Высокая стоимость узлов,
  • Низкая ремонтопригодность элементов,
  • Высокие требования к фракционному составу топлива,
  • Необходимость в специализированном персонале и оборудовании для диагностики, обслуживания и ремонта, высокая стоимость ремонта.
  • Зависимость от электропитания и критически важное требование к постоянному наличию напряжения питания
  • Уязвимость электронной системы от атомного излучения

История

Появление и применение систем впрыска в авиации

Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств, либо применять специально спроектированные карбюраторы. Система непосредственного впрыска авиационных двигателей — удобная альтернатива карбюраторной, так как инжекционной системе впрыска в силу конструкции безразлично рабочее положение (подача топлива осуществляется независимо от положения двигателя относительно земной поверхности).

Первый мотор с системой впрыска был изготовлен в России в 1916 году Микулиным и Стечкиным. Он же стал первым авиационным двигателем, перешагнувшим 300-сильный рубеж мощности.

К 1936 году на фирме Robert Bosch были готовы первые комплекты топливной аппаратуры для непосредственного впрыска бензина в цилиндры, которую через год стали серийно ставить на V-образный 12-цилиндровый двигатель Daimler-Benz DB 601. Именно этими моторами объёмом 33,9 л оснащались, в частности, основные истребители Люфтваффе Messerschmitt Bf 109. И если карбюраторный двигатель DB 600 развивал на взлетном режиме 900 л.с., то «шестьсот первый», с впрыском, позволял поднять мощность до 1100 л.c. и более. Чуть позже, в серию пошла девятицилиндровая «звезда» BMW 132 с подобной системой питания — тот самый лицензионный авиадвигатель Pratt & Whitney Hornet, который на BMW производили с 1928 года, он же устанавливался, к примеру, на транспортные самолеты Junkers Ju-52. Авиационные двигатели в Англии, США и СССР в те времена были исключительно карбюраторными. Японская же система впрыска на истребителях «Зеро» требовала промывки после каждого полета и поэтому не пользовалась популярностью в войсках.

Лишь к 1940 году, когда Советскому Союзу удалось закупить образцы новейших германских авиационных двигателей с впрыском, работы по созданию отечественных систем непосредственного впрыска получили новый импульс. Однако серийное производство советских насосов высокого давления и форсунок, созданных на основе немецких, началось лишь к середине 1942 года — первенцем стал звездообразный мотор АШ-82ФН, который ставили на истребители Ла-5, Ла-7 и бомбардировщики Ту-2. Мотор со впрыском — АШ-82ФН оказался настолько удачным, что выпускался ещё долгие десятилетия, использовался на вертолете Ми-4 и до сих пор используется на самолетах Ил-14.

К концу войны довели до серии свой вариант впрыска и американцы. Например, двигатели «летающей крепости» Boeing B-29 тоже питались бензином через форсунки.

Применение систем впрыска в автомобилестроении

Системы управления двигателем в автомобилестроении начали применяться с 1951 года, когда механической системой непосредственного впрыска бензина производства западногерманской фирмы Bosch был оснащён двухтактный двигатель микролитражного купе 700 Sport, выпущенного небольшой фирмой Goliath из Бремена. В 1954 году появилось легендарное купе Mercedes-Benz 300 SL («Крыло чайки»), двигатель которого оснащался аналогичной механической системой впрыска Bosch.[1] Тем не менее, до эпохи появления дешёвых микропроцессоров и введения в странах Запада жёстких требований к экологической безопасности автомобилей идея непосредственного впрыска популярностью не пользовалась и только с конца 1970-х их массовым внедрением занялись все ведущие мировые автопроизводители.

Первой серийной моделью с электронным управлением системы впрыска бензина стал седан Rambler Rebel («Бунтарь») 1957 модельного года, который выпускала фирма Nash, входившая в качестве отделения в состав концерна AMC. Нижневальная V-образная «восьмерка» Rebel объёмом 5,4 л в карбюраторном варианте развивала 255 л.с., а в заказной версии Electrojector уже 290 л.с. Разгон до 100 км/ч у такого седана занимал менее 8 с.

К концу первого десятилетия 21 века системы распределённого и прямого электронного впрыска практически вытеснили карбюраторы на легковых и легких коммерческих автомобилях.

См. также

Примечания

  1. Electrojector и его потомки

Ссылки

Принцип работы дизельной системы — Denso

Система впрыска топлива находится в самом сердце дизельного двигателя. Система нагнетает и впрыскивает топливо в  камеру сгорания с воздухом под большим давлением.

Система впрыска дизельного топлива включает в себя:

  • ТНВД — нагнетает давление топлива
  • Топливопровод высокого давления — подает топливо в топливную форсунку
  • Топливная форсунка — впрыскивает топливо в цилиндр
  • Топливоподкачивающий насос — подает топливо из бака
  • Топливный фильтр — фильтрует топливо

В некоторых баках на дне фильтра находится седиметр, отделяющий воду от топлива.

Функции системы

Четыре основные функции системы впрыска дизельного топлива:

Подача топлива

Такие элементы насоса, как цилиндр и плунжер, встроены в корпус впрыскивающего насоса. Когда плунжер под воздействием кулачка поднимается, топливо под высоким давлением подается в инжектор.

Регулировка количества топлива

В дизельных двигателях забор воздуха происходит практически постоянно, вне зависимости от скорости вращения или нагрузки. Если количество впрыска меняется вместе со скоростью двигателя, а регулировка впрыска остается неизменной, то мощность и расход топлива изменятся. Эффективная мощность двигателя почти пропорциональна количеству впрыска, и это регулируется при помощи педали газа.

Установка момента впрыска

Задержка впрыска — это время между моментом впрыска топлива, зажигания и сгорания и моментом достижения максимального давления сгорания. Вне зависимости от скорости двигателя этот период времени остается постоянной величиной. Для изменения момента впрыска используется таймер, что помогает достичь оптимального сгорания.

Распыление топлива

Когда впрыскивающий насос нагнетает давление топлива, которое потом распыляется через распылитель форсунки, то топливо полностью смешивается с воздухом, что улучшает зажигание. Результат — полное сгорание.  

Многоточечный впрыск топлива что это


BMW 5 series 530D › Бортжурнал › Системы питания топливом дизельных двигателей. Различные виды.

Сегодня вот решил по больше узнать о видах питания дизельных двигателей. Вот информация которую удалось нарыть.

Различают следующие системы питания топливом: –

Одноточечный (центральный, моно) впрыск топлива (SPI)

Одноточечный впрыск – это электронно-управляемая система впрыска топлива, в которой электромагнитная форсунка периодически впрыскивает топливо во впускной трубопровод перед дроссельной заслонкой.

Многоточечный (распределенный) впрыск топлива (MPI)

Многоточечный впрыск создает условия для более оптимальной, по сравнению с одноточечным впрыском, работы системы смесеобразования.Для каждого цилиндра предусмотрена топливная форсунка, через которую топливо впрыскивается непосредственно перед впускным клапаном.

Механическая система впрыска топлива

В механической системе впрыска топлива масса впрыскиваемого топлива определяется топливо-распределительным устройством (дозатором), от которого топливо направляется к форсунке, автоматически открывающейся при определенном давлении.

Комбинированная электронно-механическая система впрыска топлива

Комбинированная система впрыска базируется на механической, которая для более точного управления впрыскиванием снабжена электронным блоком, управляющим режимом работы насоса и форсунок с топливо распределительным устройством.

Электронные системы впрыска топлива

Электронно управляемые системы впрыска обеспечивают прерывистый впрыск топлива форсунками с электромагнитным управлением. Масса впрыскиваемого топлива определяется временем открытия форсунки.Необходимость соблюдения жестких норм содержания вредных веществ в отработавших газах диктует высокие требования к регулированию состава топливовоздушной смеси и конструкции системы впрыска. При этом важно обеспечить как точность момента впрыска, так и точность дозировки массы впрыскиваемого топлива в зависимости от количества подаваемого воздуха.

Для выполнения этих требований в современных системах многоточечного (распределенного) впрыска топлива на каждый цилиндр двигателя приходится по электромагнитной форсунке, причем управление каждой форсунки осуществляется индивидуально. Количество впрыскиваемого топлива и корректировка момента впрыска рассчитываются для каждой форсунки в электронном блоке управления (ECU). Процесс смесеобразования улучшается за счет впрыскивания точно отмеренного количества топлива непосредственно перед впускным клапаном (или клапанами) в точно установленный момент времени. Это, в свою очередь, в значительной степени предотвращает попадание топлива на стенки впускного трубопровода, что может привести к временным отклонениям коэффициента избытка воздуха от среднего значения в неустановившемся режиме работы двигателя. Так как в многоточечной системе впрыска через впускной трубопровод проходит только воздух, трубопровод может быть выполнен таким образом, чтобы в оптимальной степени соответствовать газодинамическим характеристикам наполнения цилиндров двигателя.

Непосредственный впрыск — системы с внутренним смесеобразованием

В таких системах, называемых >системами с непосредственным впрыском (DI) , топливные форсунки с электромагнитным приводом, размещенные в каждом цилиндре, впрыскивают топливо непосредственно в камеру сгорания. Смесеобразование происходит внутри цилиндра. Для обеспечения эффективного сгорания смеси существенную роль играет процесс распыления выходящего из форсунки топлива.

Во впускной трубопровод двигателя с непосредственным впрыском топлива, в отличие от двигателя с внешним смесеобразованием, подается исключительно воздух. Таким образом, исключается попадание топлива на стенки впускного трубопровода.

Если при внешнем смесеобразовании в процессе сгорания обычно присутствует однородная топливовоздушная смесь, то при внутреннем смесеобразовании двигатель может работать как с однородной, так и с неоднородной смесью.

Работа двигателя при послойном распределении смеси

Смесь при послойном распределении заряда воспламеняется только в зоне вокруг свечи зажигания. В остальных частях камеры сгорания содержатся свежая смесь и остаточные отработавшие газы двигателя без следов несгоревшего топлива. На режимах холостого хода и при малой нагрузке таким образом обеспечивается работа на обедненной смеси, что приводит к снижению расхода топлива.

Работа двигателя при наличии однородной смеси

Однородная смеси занимает полностью объем камеры сгорания (как и при внешнем смесеобразовании), и весь заряд свежего воздуха, поступившего в камеру, участвует в процессе сгорания. Поэтому этот способ образования смеси применяется в условиях работы двигателя при полной и средней нагрузках.

Многоточечный распределенный впрыск топлива: что это за система

3187 Просмотров

Система впрыска – основной составляющий элемент системы топлива в транспортном средстве, форсунка выступает в качестве основного рабочего «органа». На сегодняшний день не составит труда найти большое количество разнообразных устройств, их задача сводится к обеспечению впрыска. В статье будет рассмотрен многоточечный впрыск – его особенности, достоинства, а также основные отличия от некоторых других систем.

Особенности действия

Особенности деятельности и существования данной системы базируются на том, что необходимо обеспечивать бесперебойную подачу топлива в цилиндры с помощью форсунок, число которых равно количеству цилиндров.

Если рассматривать классификационные моменты по принципу работы, то можно выделить две основные группы систем – непрерывный впрыск и импульсную подачу. Есть электронный и механический варианты контроля их работы.

Разновидности

Рассматривая конструкции, которые предполагают распределенный впрыск топлива, можно выделить наиболее распространенные моменты:

  • K-JETRONIC – механический элемент в непосредственной подаче топлива, используется часто.
  • L-JETRONIC – система, в которой наблюдается импульсное действие элементов, находящихся под электронным управлением.
  • KE-JETRONIC – механический элемент подачи топлива непрерывного типа.

Надо отметить, что все эти варианты уже устарели и являются очень капризными конструкциями.

Таким образом, система может иметь несколько разновидностей, зависящих от определенного набора факторов и характеристик работы.

Другой вариант классификации

Система может быть нескольких видов и вариантов.

  • Одновременная комбинация – с практической точки зрения встречается редко. За один оборот все форсунки в ней срабатывают в одновременном порядке.
  • Параллельная работа (попарно) – в течение одного оборота вала происходит парное срабатывание форсунок, по одному разу за оборот.
  • Фазированная, последовательная – когда за выполнение валом одного оборота происходит отдельное регулирование любой из форсунок. При этом открытие элемента осуществляется 1 раз перед впуском.

Независимо от варианта классификации все механизмы имеют различия по ряду параметров, учитываемых в ходе эксплуатации.

Устройство

Система в целом имеет в составе основные узлы.

  1. Бак топлива – является компактным элементом, который имеет насос, фильтр для чистки от механических частиц. Он предназначен для хранения топлива.
  2. Инжектор используется с целью образования смеси – эмульсии, а также для ее подачи в цилиндры.
  3. Блок управления – его установка осуществляется непосредственно на двигателях с инжектором.
  4. Топливный насос – используется обычно традиционный вариант. Он представлен электрическим двигателем с высокой мощностью.

Таким образом, рассматриваемый механизм является простым и прогрессивным, позволяет добиваться нужных результатов при его использовании и ездить с комфортом.

Особенности многоточечного механизма

Система впрыска используется почти всеми изготовителями авто.

Управление каждой форсункой производится в «личном» порядке. Время, когда это происходит, заложено программой управленческого блока. Если их активировать, происходит замена параллельным пуском.

Система по мере прогревания двигателя может демонстрировать должные качества работы на повышенных оборотах. Поломка датчика способствует иногда переходу устройства в полностью аварийный режим, его показания учитывает блок управления в процессе определения дозировки жидкости. Управление таким механизмом сегодня производится посредством специального компьютера, который называется электронным управленческим блоком. Для вычисления нужного момента открытия форсунок важно получать информационные данные от датчиков. Важный показатель – объем потоков, которые поступают в двигатель и измеряются датчиком.

В процессе вычисления подачи определенного количества топлива, которое необходимо для бесперебойной работы агрегата, компьютер анализирует другую информацию – это температурные и влажностные режимы, набор прочих параметров.

Резюме

Таким образом, рассматриваемая система впрыска топлива является достаточно простой и оригинальной в своей работе, позволяя пользователям достигать комфортного результата и чувствовать себя за рулем безопасно.

#10 Что такое впрыск топлива и как работает система впрыска? — DRIVE2

Что такое впрыск топлива и как работает система впрыска?

Впрыск топлива — это система дозированной подачи топлива в цилиндры двигателя. Существует много разновидностей систем впрыска — механический, моновпрыск, распределенный, непосредственный. В данной статье мы расскажем про современные электронные системы подачи топлива на основе системы управления двигателем, как они работает и из каких датчиков состоят.

Как работает система впрыска топлива?

На рисунке схематично показан принцип работы распределенного впрыска.

Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход или давление в ресивере.

Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.

Датчики системы впрыска топлива

Для функционирования электронной системы управления двигателем не обязательно наличие всех датчиков. Комплектации зависят от системы впрыска, от норм токсичности. В программе управления есть флаги комплектации, которые информируют ПО о наличии или отсутствии каких-либо датчиков. Например, в системах Евро-2 отсутствуют датчик неровной дороги.

Датчик кислорода (ДК) — рассчитывает содержание О2 в отработанных газах. Используется только в системах с катализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода — до катализатора и после него). Датчик фазы нужен для более точного расчета времени впрыска в системах с фазированным впрыском.

Датчик положения коленвала (ДПКВ) — считывает частоту вращения коленвала и его положение. Служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик массового расхода воздуха (ДМРВ) — определяет массовый расход воздуха, поступающего в двигатель. Служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик температуры охлаждающей жидкости (ДТОЖ) — следит за температурой охлаждающей жидкости. Служит для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Сигнал ДТОЖ подается только на электронный блок управления, для индикации на панели используется другой датчик.

Датчик положения дроссельной заслонки (ДПДЗ) — определяет положение дросселя (нажата педаль «газа» или нет). Служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик детонации — служит для контролем детонации двигателя. При обнаружении последней, блок управления двигателем включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания. В первых системах впрыска применялся резонансный датчик детонации, пришедший с системы GM. Сейчас повсеместно используются широкополосные датчики.

Датчик скорости (ДС) — определение скорость движения автомобиля. Используется при расчетах блокировки/возобновления топливоподачи при движении. Этот сигнал так же подается на приборную панель для расчета пробега. 6000 сигналов с ДС примерно соответствуют 1 км. пробега автомобиля.

Датчик фазы (ДФ) — определяет положение распредвала. Служит для точной синхронизации по времени впрыска в системах с фазированным (последовательным) впрыском. При аварии или отсутствие датчика система переходит на попарно — параллельную (групповую) систему подачи топлива.

Датчик неровной дороги — служит для оценки уровня вибраций двигателя. Это необходимо для правильной работы системы обнаружения пропусков воспламенения, чтобы определить причину неравномерности (применяется в связи с вводом норм токсичности Евро-3).

Исполнительные механизмы системы впрыска

По результатам опроса датчиков системы впрыска, программа электронного блока управления осуществляет управление исполнительными механизмами (ИМ).

Форсунка — электромагнитный клапан с нормированной производительностью (встречаются пьезоэлектрические). Служит для впрыска вычисленного для данного режима движения количества топлива.

Бензонасос — предназначен для нагнетания топлива в топливную рампу. Давление в топливной рампе поддерживается вакуумно-механическим регулятором давления. В некоторых системах регулятор давления топлива совмещен с бензонасосом.

Модуль зажигания — электронное устройство управления искрообразованием. Содержит в себе два независимых канала для поджига смеси в 1-4 и 2-3 цилиндрах. То есть реализуется принцип «холостой искры». В последних модификациях низковольтные элементы модуля зажигания помещены в электронный блок управления, а для получения высокого напряжения используются либо выносная двухканальная катушка зажигания, либо катушки зажигания непосредственно на свече.

Регулятор холостого хода — служит для поддержании заданных оборотов холостого хода. Представляет собой прецизионный шаговый двигатель, регулирующий обводной канал воздуха в корпусе дроссельной заслонки, для обеспечения двигателя воздухом, необходимым для поддержания холостого хода (7-12 кг./час) при закрытой дроссельной заслонке.

Вентилятор системы охлаждения — управляется электронным блоком управления по сигналам датчика температуры охлаждающей жидкости. Разница между включением/выключением как правило 4-5°С.

Сигнал расхода топлива — выдается на маршрутный компьютер — 16000 импульсов на 1 расчетный литр израсходованного топлива. Данные эти приблизительные, т.к рассчитываются они на основе суммарного времени открытия форсунок с учетом некоторого эмпирического коэффициента, который необходим для компенсации погрешностей измерения, вызванных работой форсунок в нелинейном участке диапазона, асинхронной топливоподачей и другими факторами. Как показывает практика, сигнал расхода топлива более — менее соответствует истине на системах с ДК.

Адсорбер — является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 не предусмотрен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг.

Электронный блок управления

Электронный блок управления — по сути специализированный микрокомпьютер, обрабатывающий данные, поступающие с датчиков и по определенному алгоритму управляющий исполнительными механизмами.

Сама программа хранится в микросхеме ПЗУ, английское название микросхемы — CHIP (чип), отсюда и пошло название чип-тюнинг, то есть изменение программы управления двигателем. Содержимое «чипа» — обычно делится на две функциональные части — собственно программа, осуществляющая обработку данных и математические расчеты и блок калибровок. Калибровки — набор (массив) фиксированных данных (переменных) для работы программы управления.

Следует иметь ввиду, что для правильной работы любой системы впрыска необходимо наличие полностью исправных датчиков и исполнительных механизмов.

Спасибо, что прочитали статью до конца
Удачи на дорогах

Системы впрыска топлива — DRIVE2

В конце 60х-начале 70х годов ХХ века остро встала проблема загрязнения окружающей среды промышленными отходами, среди которых значительную часть составляли выхлопные газы автомобилей. До этого времени состав продуктов сгорания двигателей внутреннего сгорания никого не интересовал. В целях максимального использования воздуха в процессе сгорания и достижения максимально возможной мощности двигателя состав смеси регулировался с таким расчетом, чтобы в ней был избыток бензина. В результате в продуктах сгорания совершенно отсутствовал кислород, однако оставалось несгоревшее топливо, а вредные для здоровья вещества образуются главным образом при неполном сгорании. В стремлении повышать мощность конструкторы устанавливали на карбюраторы ускорительные насосы, впрыскивающие топливо во впускной коллектор при каждом резком нажатии на педаль акселератора, т.е. когда требуется резкий разгон автомобиля. В цилиндры при этом попадает чрезмерное количество топлива, не соответствующее количеству воздуха. В условиях городского движения ускорительный насос срабатывает практически на всех перекрестках со светофорами, где автомобили должны то останавливаться, то быстро трогаться с места. Неполное сгорание имеет место также при работе двигателя на холостых оборотах, а особенно при торможении двигателем. При закрытом дросселе воздух проходит через каналы холостого хода карбюратора с большой скоростью, всасывая слишком много топлива. Из-за значительного разрежения во впускном трубопроводе в цилиндры засасывается мало воздуха, давление в камере сгорания остается к концу такта сжатия сравнительно низким, процесс сгорания чрезмерно богатой смеси проходит медленно, и в выхлопных газах остается много несгоревшего топлива. Описанные режимы работы двигателя резко повышают содержание токсических соединения в продуктах сгорания.
Стало очевидно, что для понижения вредных для жизнедеятельности человека выбросов в атмосферу надо кардинально менять подход к конструированию топливной аппаратуры.
СИСТЕМЫ ВПРЫСКА ТОПЛИВА

Для снижения вредных выбросов в систему выпуска было предложено устанавливать каталитический нейтрализатор отработавших газов. Но катализатор эффективно работает только при сжигании в двигателе так называемой нормальной топливо-воздушной смеси (весовое соотношение воздух/бензин 14,7:1). Любое отклонение состава смеси от указанного приводило к падению эффективности его работы и ускоренному выходу из строя. Для стабильного поддержания такого соотношения рабочей смеси карбюраторные системы уже не подходили. Альтернативой могли стать только системы впрыска. Первые системы были чисто механическими с незначительным использованием электронных компонентов. Но практика использования этих систем показала, что параметры смеси, на стабильность которых рассчитывали разработчики, изменяются по мере эксплуатации автомобиля. Этот результат вполне закономерен, учитывая износ и загрязнение элементов системы и самого двигателя внутреннего сгорания в процессе его службы. Встал вопрос о системе, которая смогла бы сама себя корректировать в процессе работы, гибко сдвигая условия приготовления рабочей смеси в зависимости от внешних условий. Выход был найден следующий. В систему впрыска ввели обратную связь — в выпускную систему, непосредственно перед катализатором, поставили датчик содержания кислорода в выхлопных газах, так называемый лямбда-зонд. Данная система разрабатывалась уже с учетом наличия такого основополагающего для всех последующих систем элемента, как электронный блок управления (ЭБУ). По сигналам датчика кислорода ЭБУ корректирует подачу топлива в двигатель, точно выдерживая нужный состав смеси.
На сегоднящний день инжекторый (или, говоря по-русски, впрысковый) двигатель практически полностью заменил устаревшую карбюраторную систему. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).
Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:
точное дозирование топлива и, следовательно, более экономный его расход.
снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов.
увеличение мощности двигателя примерно на 7-10%. Происходит за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя.
улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси.
легкость пуска независимо от погодных условий.
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ (на примере электронной системы распределенного впрыска)

В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.
Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.
Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.
Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.
Датчик положения коленвала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.
Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).
Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.
Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.
Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)
Из всего перечесленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.
ТИПЫ

В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как у дизелей).

Одноточечный впрыск проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска. Немаловажно и то, что под моновпрыск легко адаптируются карбюраторные двигатели почти без конструктивных переделок или технологических изменений в производстве. У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.
Системы одноточечного впрыска, безусловно, являлись шагом вперед по сравнению с карбюраторными системами питания, но уже не удовлетворяют современным требованиям.

Более совершенными являются системы многоточечного впрыска, в которых подача топлива к каждому цилиндру осуществляется индивидуально. Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов. Основные преимущества распределенного впрыска:
возможность автоматической настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности автомобиль разгоняется гораздо быстрее;
бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседание во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.

Непосредственный впрыск как очередное и эффективное средство в деле оптимизации сгорания смеси и повышения КПД бензинового двигателя реализует простые принципы. А именно: более тщательно распыляет топливо, лучше перемешивает с воздухом и грамотней распоряжается готовой смесью на разных режимах работы двигателя. В итоге двигатели с непосредственным впрыском потребляют меньше топлива, чем обычные «впрысковые» моторы (в особенности при спокойной е

Каким бывает впрыск топлива. И как он влияет на характеристики мотора. — DRIVE2

На современных двигателях впрыск топлива полностью вытеснил карбюраторную систему питания. Но при этом, среди автопроизводителей до сих пор нет единого мнения, какая система впрыска предпочтительней, поскольку каждая из них обладает своими достоинствами и недостатками.
Одноточечный (или центральный) впрыск топлива: как альтернатива карбюратору стал широко применяться еще в 80-х годах прошлого века. Впрочем, особой разницы в принципе работы у этих систем питания не было: как и раньше воздух смешивался с топливом во впускном коллекторе, просто сложный и чувствительный к настройкам карбюратор заменила форсунка (поэтому такой впрыск и получил название одноточечного). Причем никакой электроники поначалу и в помине не было – управление подачей бензина осуществлялось механическими устройствами.
Тем не менее, впрыск обеспечивал мотору более высокие мощностные характеристики и лучшую экономичность. Дело в том, что форсунка позволяла точнее дозировать количество топлива и распылять его на мелкие частицы. В результате, с воздухом образовывалась однородная смесь, состав которой мог практически мгновенно меняться в зависимости от условий движения и режима работы двигателя.
Правда, были у такой системы и существенные недостатки. Например, большое сопротивление поступающему в цилиндры воздуху. Ведь форсунку зачастую устанавливали в корпус бывшего карбюратора, да и громоздкие по тем временам датчики затрудняли дыхание мотору. Но все это теоретически можно было легко исправить. А вот плохое распределение топливной смеси по цилиндрам – нет. Ведь ей приходится проделывать долгий путь по трубопроводам, которые обладают разной длиной и сопротивлением. А значит, и резервов для улучшения показателей двигателя почти не остается. Поэтому сегодня центральный или одноточечный впрыск практически не встречается.
Распределенный (или многоточечный) впрыск: отличается от предыдущей схемы тем, что в данном случае во впускном патрубке каждого цилиндра установлена индивидуальная форсунка, которая подает топливо прямо на впускной клапан. Таким образом, топливная смесь готовится непосредственно перед подачей в камеру сгорания. Поэтому она получается однородной по своему составу и примерно одинакова по качеству для каждого из цилиндров. В результате, это благотворно сказывается на мощности и экономичности мотора, а так же на токсичности выхлопных газов.
Распределенный впрыск постоянно совершенствовался. Поначалу он, также как и предыдущая схема, управлялся механическим путем. Но бурное развитие электроники позволило не только сделать систему питания более эффективной, но и скоординировать ее действия с другими компонентами двигателя. Поэтому современный мотор может не только сигнализировать водителю о неисправности, но даже в случае необходимости перейти на аварийный режим работы (он позволит добраться до дома или сервиса без эвакуатора) или исправить некоторые ошибки в пилотировании в сотрудничестве с системами безопасности.
Внедрение дополнительных датчиков позволило перевести распределенный впрыск с параллельной на последовательную схему подачи топлива. В первом случае в определенный момент времени открывались все форсунки, топливо перемешивалось с воздухом, и получившаяся смесь ждала открытия впускных клапанов, чтобы попасть в цилиндр. Во втором случае время срабатывания каждого инжектора рассчитывается индивидуально, чтобы бензин подавался за строго определенное время перед открытием клапана. Эффективность и точность такого впрыска несколько выше, но он и стоит дороже. Поэтому иногда встречаются и более дешевые комбинированные схемы (форсунки в этом случае срабатывают попарно).

Система Впрыска EFI(Electronic Fuel Injection). — DRIVE2

EFI — электронная система впрыска топлива(Electronic Fuel Injection).

Первым коммерческим электронным впрыском топлива (EFI) является система Electrojector, разработанная компанией Bendix, и которая была предложена компанией American Motors Corporation (AMC) на двигателе 327 объемом 5,4 литра установленном на автомобиль Rambler Rebel в 1957 году. Впрыск Electrojector являлся опцией для 327 двигателя. Его мощность составила 288 л.с. (214,8 кВт). Пик крутящего момента сдвинулся на 500 оборотов в минуту вниз, чем аналогичный двигатель с карбюраторным впрыском. Стоимость опции EFI составляла $395 по состоянию на 15 июня 1957 года. С системой Electrojector было продано очень мало автомобилей и не одна из них не являлась серийной. Система EFI установленная в Rambler Rebel отлично зарекомендовала себя при положительных температурах, а при отрицательных наблюдались серьезные проблемы с пуском двигателя.

В 1958-м году компания Chrysler предложила свою систему Electrojector на автомобилях Chrysler 300D, DeSoto Adventurer, Dodge D-500 и Plymouth Fury. Это были первые серийные автомобили оснащенные системой EFI. Эта система EFI была совместно разработана компаниями Chrysler и Bendix. Большинство из 35 автомобилей изначально оборудованные электронной системой впрыска были переоборудованы с 4-карбюраторных систем. Патенты системы впрыска Electrojector впоследствии были проданы компании Bosch.

Компания Bosch разработала электронную систему впрыска топлива D-Jetronic, которая впервые была применена на автомобиле VW 1600TL/E в 1967 году. Это была первая электронная система впрыска топлива, которая для расчета топливо-воздушной смеси использовала показания датчиков частоты вращения двигателя и плотности воздуха во впускном коллекторе. Эта система была адаптирована для автомобилей таких производителей, как VW, Mercedes-Benz, Porsche, Citroën, Saab и Volvo. В 1974-м году Bosch модернизировала систему D-Jetronic до систем K-Jetronic и L-Jetronic, хотя некоторые автомобили (например Volvo 164) продолжали использовать систему D-Jetronic еще на протяжении несколько лет. В 1970 году компания Isuzu вместе с Bosch адаптировали систему впрыском топлива D-Jetronic для автомобиля Isuzu 117 Coupe, которая продавалась только в Японии.

В 1975-м году на автомобиле Cadillac Seville появилась система EFI разработанная компанией Bendix и смоделированная практически аналогична Bosch D-Jetronic. Система L-Jetronic впервые появилась в 1974-м году на автомобиле Porsche 914, которая использует механический счетчик расхода воздуха. Этот подход требует дополнительных датчиков для измерения атмосферного давления и температуры, для того чтобы в конечном итоге вычислить «воздушную массу». L-Jetronic получила широкое распространение на европейских автомобилей того периода, и несколько японских моделей спустя некоторое время.

В Японии в январе 1974-м году Toyota впервые установила систему EFI на двигатель 18R-E, которым опционально оснащался автомобиль Toyota Celica. Система EFI установленная на двигатель 18R-E являлась многоточечной системой впрыска топлива. Nissan предложил электронную многоточечную систему впрыска топлива в 1975 году. Это была система компании Bosch L-Jetronic, установленной на двигатель Nissan L28E и Nissan Fairlady Z, Nissan Cedric и Nissan Gloria. Вскоре Toyota последовала той же технологии в 1978 году, которую опробовала на двигателе 4M-E, устанавливающимся на Toyota Crown, Toyota Supra и Toyota Mark II. В 1980 году в качестве стандартного оборудования Isuzu Piazza и Mitsubishi Starion оснастили электронной системой впрыска топлива, разработанных отдельно обеими компаниями дизельных двигателей. В 1981 году Mazda продемонстрировала систему EFI на автомобиле Mazda Luce с двигателем Mazda FE, а в 1983 Subaru оснастила ею свой двигатель EA81, установленный на автомобиль Subaru Leone. Honda в 1984 разработала собственную систему PGM-FI для Honda Accord и Honda Vigor (двигатель Honda ES3).

В 1980 году Motorola представила первый электронный блок управления двигателем(ECU) ЕЭС III. Он тесно интегрирован с системами управления двигателем, например, впрыском топлива и зажиганием. На сегодняшний день это стандартный подход для управления системами впрыска топлива.

Основные типы электронного впрыска
SPFI (Single Point Fuel Ijection) − Одноточечный инжектор устанавливается в корпусе дроссельной заслонки, в том месте, где в раньше устанавливался карбюратор. Таким образом электронный впрыск выполняется при помощи одной форсунки сразу для всех цилиндров.

Такая схема впрыска была введена в 1940-х годах на больших авиационных двигателях. В автомобильной промышленности на двигателях легковых автомобилях одноточечный инжектор стали устанавливать в 1980-е годы. У разных производителей система имела разные названия, например TBI у General Motors, CFI у Ford, EGI у Mazda. Из-за того, что топливо впрыскивается во впускные каналы, такая схема имеет общее название «мокрый впрыск».

Самый главный плюс системы SPFI состоит в низкой стоимости самой системы. Большинство вспомогательных компонентов карбюратора, таких как воздушный фильтр, впускной коллектор и воздушный тракт могут использоваться совместно с системой SPFI без дополнительных доработок. Система SPFI широко использовалась на американском рынке с 1980-го по 1995-й год, на европейском же была популярна в начале и середине 1990-х годов.

CFI (Continuous Fuel Injection) − Непрерывный впрыск топлива. Топливо впрыскивается непрерывно при помощи одной или нескольких форсунок, но с переменной скоростью. Это главное отличие от большинства систем впрыска, в которых топливо впрыскивается короткими импульсами различной продолжительности каждого импульса.

Непрерывный впрыск может быть, как одноточечным так и многоточечный, но не может быть непосредственным.
Самая распространенная система непрерывного впрыска K-Jetronic производства Bosch, который появился в 1974-м году. Система K-Jetronic использовалась на протяжении многих лет с 1974-го до середины 1990-х годов такими авто-производителями, как BMW, Lamborghini, Ferrari, Mercedes-Benz, Volkswagen, Ford, Porsche, Audi, Saab, DeLorean, Volvo и Toyota.

CPFI (Central Port Fuel Injection) − Центральный впрыск топлива. Эту систему использовала General Motors с 1992-го по 1996-й год. В ней используются каналы с тарельчатыми клапанами от центрального инжектора для распыления топлива в каждый впускной канал, а не в корпус дроссельной заслонки, как в системе SPFI. Давление топлива аналогично системе SPFI.

MPFI (Multi Point Fuel Injection) − Многоточечный(Мультиточечный) впрыск топлива. Впрыск топлива осуществляется во впускной канал чуть выше от впускного клапана каждого цилиндра, а не в центральной точке впускного коллектора. Система MPFI (или MPI) может быть одновременной или последовательной, т.е. все форсунки работают ассинхронно, каждая из них управляется отдельно CPU двигателя и подает импульс в необходимый момент для каждой форсунки каждого цилиндра.

Многие современные системы EFI используют последовательную систему впрыска топлива MPFI. Но в новых бензиновых двигателях систему MPFI уверенно начинают заменять системы прямого(непосредственного) впрыска.

DFI (Direct Fuel Injection) − Прямой(Непосредственный) впрыск топлива. В двигатель с непосредственным впрыском, в отличие от всех других систем впрыска, топливо впрыскивается непосредственно в камеру сгорания.
Впервые система непосредственного впрыска топлива DFI была применена на двигателе Mitsubishi (GDI − Gasoline Direct Injection). Сегодня эта система впрыска активно применяется на новых двигателях автомобильных производителей Audi (TFSI), Volkswagen (FSI, TSI), Toyota D4 и т.д.

Использование непосредственного впрыска позволяет достичь 15% топливной экономичности и повысить экологичный класс двигателя.

Система DFI достаточно дорога относительно других систем электронного впрыска топлива за счет того, что для обеспечения ее нормальной работы требуется достичь большое давление в топливной магистрали. Для этого используется специальный топливный насос высокого давления(ТНВД). В свою очередь форсунки подвергаются более высокому давлению и температуре, из-за чего для их производства применяются более дорогостоящие материалы. А так же требуются высокоточные электронные системы, чтобы впрыск топлива в цилиндры происходил в строго определенное время. С такой системой весь впускной коллектор становится сухим, что позволяет содержать систему впуска в идеально чистом состоянии.

Общая Схема Инжектора

Barik-CZ › Блог › Тонкости настройки форсированных двигателей работающих на современных ЭБУ.

Следующий аспект, который необходимо обсудить, это влияние фазы топливоподачи на эффективные показатели двигателя с искровым зажиганием.

Современные ЭБУ позволяют настраивать не только гоночные автомобили, но и открывают новые возможности при установке на обычные машины, и при этом не потеряв функционала всех основных бортовых систем

Распределённый впрыск, или многоточечный впрыск (Multi Point injection, MPi) — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе вблизи впускного клапана. В то же время различают несколько типов распределённого впрыска:

Одновременный (Simultaneous, Batch Fire Injection) — все форсунки открываются одновременно.

Попарно-параллельный (Bank Fire Injection) — форсунки открываются парами, причём одна форсунка открывается непосредственно перед тактом впуска, а вторая перед тактом выпуска. В связи с тем, что за попадание топливо-воздушной смеси в цилиндры отвечают клапаны, это не оказывает сильного влияния. В современных моторах используется фазированный впрыск, попарно-параллельный используется только в момент запуска двигателя и в аварийном режиме при поломке датчика положения распределительного вала (так называемой фазы).

Фазированный впрыск (Sequential Injection) — каждая форсунка управляется отдельно и открывается непосредственно перед тактом впуска.

Непосредственный впрыск (Direc Injection, DI) — впрыск топлива происходит прямо в камеру сгорания.

Одновременный или групповой тип распределенного впрыска (Simultaneous or Bank Fire Injection)

При групповом типе распределенного впрыска все инжектора впрыскивают топливо одновременно, один раз в течение одного оборота коленчатого вала, то есть два раза в течение полного рабочего цикла в четырехтактном двигателе (см. картинку выше). Таким образом, при групповом механизме организации подачи топлива, форсунки иногда впрыскивают бензин в уже закрытый клапан, и все же данный тип имеет свои преимущества в простоте.

Сверх того, тот факт, что впрыск топлива происходит дважды, это в свою очередь позволяет использовать инжектора меньшего размера, что уменьшает стоимость. Кроме того, использование форсунок меньшего размера имеет дополнительное преимущество при работе двигателя на не высоких частотах вращения, при малой нагрузке, и особенно на холостом ходу т.к. это позволяет увеличить длительность открытия форсунок и пропустить второй импульс т.е. впрыскивать только один раз за каждых два оборота коленчатого вала. Это в свою очередь улучшит точность измерения длительности открытия форсунок, потому что большинство инжекторов становятся неустойчивыми при длине импульса меньше 2 миллисекунд.

Видео Sequential Injection vs Batch Fire Injection

Фазированный впрыск (Sequential Injection)

Большинство современных автомобилей используют фазированную систему распределенного впрыска, которая позволяет осуществлять подачу топлива синхронно с открытием впускных клапанов индивидуально для каждого цилиндра.

Обычно, на серийных автомобилях фаза впрыскивания начинается около 40-50 градусах до начала открытия впускного клапана. Чтобы обойти трудности, вызванные использованием больших форсунок, распыляющих именно тогда, когда впускной клапан открыт, достаточно часто производители устанавливают малого размера инжектора. Поэтому в режиме круиз и малых нагрузках, форсунки заканчивают впрыск топлива еще до момента закрытия впускных клапанов. Это снижает вредные выбросы, уменьшает расход и улучшает реакцию на педаль газа.

Однако, с увеличение частоты вращения и нагрузки, сток форсунок уже не достаточно для впрыскивания топлива в столь короткий промежуток времени, пока впускной клапан открыт (в среднем около 250 градусах). Поэтому, для обеспечения подачи н

О системах впрыска — DRIVE2

На современных автомобилях используются различные системы впрыска топлива. Система впрыска (другое наименование — инжекторная система, от injection – впрыск) как следует из названия, обеспечивает впрыск топлива.

Система впрыска используется как на бензиновых, так и дизельных двигателях. Вместе с тем, конструкции и работа систем впрыска бензиновых и дизельных двигателей существенным образом различаются.

В бензиновых двигателях с помощью впрыска образуется однородная топливно-воздушная смесь, которая принудительно воспламеняется от искры. В дизельных двигателях впрыск топлива производится под высоким давлением, порция топлива смешивается со сжатым (горячим) воздухом и почти мгновенно воспламеняется. Давление впрыска определяет величину порции впрыскиваемого топлива и соответственно мощность двигателя. Поэтому, чем больше давление, тем выше мощность двигателя.

Система впрыска топлива является составной частью топливной системы автомобиля. Основным рабочим органом любой системы впрыска является форсунка (инжектор).

☑ Системы впрыска бензиновых двигателей

В зависимости от способа образования топливно-воздушной смеси различают следующие системы впрыска бензиновых двигателей:

✔ система центрального впрыска;
✔ система распределенного впрыска;
✔ система непосредственного впрыска.

Системы центрального и распределенного впрыска являются системами предварительного впрыска, т.е. впрыск в них производится не доходя до камеры сгорания — во впускном коллекторе.

Центральный впрыск (моновпрыск) осуществляется одной форсункой, устанавливаемой во впускном коллекторе. По сути это карбюратор с форсункой. В настоящее время системы центрального впрыска не производятся, но все еще встречаются на легковых автомобилях. Преимуществами данной системы являются простота и надежность, а недостатками — повышенный расход топлива, низкие экологические показатели.

Система распределенного впрыска (многоточечная система впрыска) предполагает подачу топлива на каждый цилиндр отдельной форсункой. Образование топливно-воздушной смеси происходит во впускном коллекторе. Является самой распространенной системой впрыска бензиновых двигателей. Ее отличает умеренное потребление топлива, низкий уровень вредных выбросов, невысокие требования к качеству топлива.

Перспективной является система непосредственного впрыска. Впрыск топлива осуществляется непосредственно в камеру сгорания каждого цилиндра. Система позволяет создавать оптимальный состав топливно-воздушной смеси на всех режимах работы двигателя, повысить степень сжатия, тем самым обеспечивает полное сгорание смеси, экономию топлива, повышение мощности двигателя, снижение вредных выбросов. С другой стороны ее отличает сложность конструкции, высокие эксплуатационные требования (очень чувствительна к качеству топлива, особенно к содержанию в нем серы).

Системы впрыска бензиновых двигателей могут иметь механическое или электронное управление. Наиболее совершенным является электронное управление впрыском, обеспечивающее значительную экономию топлива и сокращение вредных выбросов.

Впрыск топлива в системе может осуществляться непрерывно или импульсно (дискретно). Перспективным с точки зрения экономичности является импульсный впрыск топлива, который используют все современные системы.

В двигателе система впрыска обычно объединена с системой зажигания и образует объединенную систему впрыска и зажигания (например, системы Motronic, Fenix). Согласованную работу систем обеспечивает система управления двигателем.

☑ Системы впрыска дизельных двигателей

Впрыск топлива в дизельных двигателях может производиться двумя способами: в предварительную камеру или непосредственно в камеру сгорания.

Двигатели с впрыском в предварительную камеру отличает низкий уровень шума и плавность работы. Но в настоящее время предпочтение отдается системам непосредственного впрыска. Несмотря на повышенный уровень шума, такие системы имеют высокую топливную экономичность.

Определяющим конструктивным элементом системы впрыска дизельного двигателя является топливный насос высокого давления (ТНВД).

На легковые автомобили с дизельным двигателем устанавливаются различные конструкции систем впрыска:

✔ система впрыска с рядным ТНВД;
✔ система впрыска с распределительным ТНВД;
✔ система впрыска насос-форсунками;
✔ система впрыска Сommon Rail.

Прогрессивные системы впрыска — насос-форсунки и система Сommon Rail.

В системе впрыска насос-форсунками функции создания высокого давления и впрыска топлива объединены в одном устройстве – насос-форсунке. Насос-форсунка имеет постоянный (неотключаемый) привод от распределительного вала двигателя, поэтому подвержена интенсивному износу. Это качество насос-форсунки направляет предпочтения автопроизводителей в сторону системы Сommon Rail.

Работа системы впрыска Common Rail основана на подаче топлива к форсункам от общего акку

О нашем GDI — KIA Pro_Ceed GT, 1.6 л., 2014 года на DRIVE2

Стало интересно что же за двигатель и почему люди с презрение относятся к нему.
Итак, все по порядку…
У киа ставятся движки с надписями MPI, DOCH, DOCH CVVT, GDI более понятные обозначения, до новичков NU CVVL, theata CVVT MPI… Эти обозначения расшифровываются как например MPI (Multi Point Injection (многоточечный впрыск»)). Многоточечный тип впрыска означает, что в двигателе с такой системой горючее подается в каждый цилиндр через отдельную форсунку, причем форсунка изолирована. CVVT (Continuous variable valve timing(Система изменения фаз газораспределения)) Система регулирует параметры открытия клапанов в соответствии со скоростью вращения и нагрузкой на двигатель. DOCH (Double overhead cam-shafts(два распределительных вала)) Теперь надеюсь стало более понятно что это за буковки. Бывают и различные вариации DOCH CVVT например.
Теперь наш GDI и о нем подробнее.
GDI (Gasoline Direct Injection (бензиновый с непосредственным впрыском)) Для большинства ясно что не водородный, но все самое “интересное” заключено в DI.
Немного истории… Долгое время смесеобразованием в двигателе занимался его величество карбюратор, который с течением времени обрастал отдельным ХХ, добавлял камеры т.е. всячески обновлялся. Стоит заметить что принцип работы древнего карбюратора мало отличался от современных образцов. Важный момент заключается в том, что ТВС (топливно-воздушная смесь) должна быть идеальной(14 частей воздуха к 1 бензина(для карбулятора)). К этому собственно и стремились в 80-е. Только тяжело для карбюратора организовать такую смесь. С появлением MPI многоточечный впрыск ГРУБО ГОВОРЯ на каждый цилиндр стал использоваться 1-н инжектор, который обеспечивал идеальную ТВС.\\ ради справедливости добавлю что можно оснастить двигатель не 1-м карбюратом, а несколькими вплоть до 1 карба на цилиндр. Теперь самое основное. У карбюратора образование смеси происходит перед поступлением в камеру сгорания при этом расходуется мощность и падает КПД. При инжекторе топливо уже не засасывается, а впрыскивается под давлением и потери мощности уже нет. Естественно бывает одна форсунка в коллекторе на все цилиндры, или как MPI у каждого цилиндра свой коллектор с форсункой распределенный впрыск! Вроде бы все хорошо, но смесь образуется до поступления в цилиндры как и в случае с карбюратором) соответственно предел управления подачей топлива… Вот тут и появляется непосредственный впрыск. Впервые данная технология появилась аж в 1925 году! Изобретателем был Хессельман, двигатель Хессельмана так и назвали. Работать он мог на бензине, дизеле, керосине… на всем кроме поленьев))) Технология активно стала использоваться с 2000-х годов. Митсубиши каризма оснащалась 1.8 GDI в далеком 1997, а в 1999 технолгию лицензировали хундай и пежо. Как мы знаем киа и хундай являются концерном! Далее подключились рено и GM (с 2009 года камаро оснащается 3,6л непосредственный впрыск) Так же опеля, бмв и с недавнего времени мазда используют одно и тоже.
Вот такие дела… Теперь друзья подписчики или просто те кто интересуется… Введите в яндекс FSI (Fuel Stratified Injection (послойный впрыск топлива)) или TFSI добавление турбины. В целом тот же непосредственный впрыск. Скайактив DICI или DISI двигатели тоже непосредственный впрыск!
Погоня за топливной экономичностью, снижению выбросов и приводит нас к совершенствованию технологий. Турбины дело другое, не о них. Так что нечего тайного в GDI нет для нас.
Думаю количество презирающих GDI от кия снижается и происходит понимание что непосредственный впрыск это настоящее… Вот электрокары это забытое наше будущее(электрокары появились очень давно).

То что забыл написать в середине(пару технических моментов о GDI)…
В двигателях созданных по технологии GDI бензин впрыскивается непосредственно в камеру сгорания, воспламеняется свечой, синхрон

Каким бывает впрыск топлива

Одноточечный..

ВПРЫСК, который также иногда называют центральным, стал широко применяться на легковых автомобилях в 80-х годах прошлого века. Подобная система питания получила свое название из-за того, что топливо подавалось во впускной коллектор лишь в одной точке.

Многие системы того времени были чисто механическими, электронного управления у них не было. Частенько основой для такой системы питания был обычный карбюратор, из которого просто удаляли все “лишние” элементы и устанавливали в районе его диффузора одну или две форсунки (поэтому центральный впрыск стоил относительно недорого). К примеру, так была устроена система TBI (“Throttle Body Injection”) компании “General Motors”.

Но, несмотря на свою кажущуюся простоту, центральный впрыск обладает очень важным преимуществом по сравнению с карбюратором – он точнее дозирует горючую смесь на всех режимах работы двигателя. Это позволяет избежать провалов в работе мотора, а также увеличивает его мощность и экономичность.

Со временем появление электронных блоков управления позволило сделать центральный впрыск компактнее и надежнее. Его стало легче адаптировать к работе на различных двигателях.

Однако от карбюраторов одноточечный впрыск унаследовал и целый ряд недостатков. К примеру, высокое сопротивление поступающему во впускной коллектор воздуху и плохое распределение топливной смеси по отдельным цилиндрам. Как результат – двигатель с такой системой питания обладает не очень высокими показателями. Поэтому сегодня центральный впрыск практически не встречается.

Кстати, концерн “General Motors” также разработал интересную разновидность центрального впрыска – CPI (“Central Port Injection”). В такой системе одна форсунка распыляла топливо в специальные трубки, которые были выведены во впускной коллектор каждого цилиндра. Это был своего рода прообраз распределенного впрыска. Однако из-за невысокой надежности от использования CPI быстро отказались.

Распределенный

ИЛИ МНОГОТОЧЕЧНЫЙ впрыск топлива – сегодня самая распро¬страненная система питания двигателей на современных автомобилях. От предыдуще¬го типа она отличается прежде всего тем, что во впускном коллекторе каждого цилиндра стоит индивидуальная форсунка. В определенные моменты времени она впрыскивает необходимую порцию бензина прямо на впускные клапаны “своего” цилиндра.

Многоточечный впрыск бывает параллельным и последовательным. В первом случае в определенный момент времени срабатывают все форсунки, топливо перемешивается с воздухом, и получившаяся смесь ждет открытия впускных клапанов, чтобы попасть в цилиндр. Во втором случае период работы каждого инжектора рассчитывается индивидуально, чтобы бензин подавался за строго определенное время перед открытием клапана. Эффективность такого впрыска выше, поэтому большее распространение получили именно последовательные системы, несмотря на более сложную и дорогую электронную “начинку”. Хотя иногда встречаются и более дешевые комбинированные схемы (форсунки в этом случае срабатывают попарно).

Поначалу системы распределенного впрыска тоже управлялись механически. Но со временем электроника и здесь одержала верх. Ведь, получая и обрабатывая сигналы от множества датчиков, блок управления не только командует исполнительными механизмами, но и может сигнализировать водителю о неисправности. Причем даже в случае поломки электроника переходит на аварийный режим работы, позволяя автомобилю самостоятельно добраться до сервисной станции.

Распределенный впрыск обладает целым рядом достоинств. Помимо приготовления горючей смеси правильного состава для каждого режима работы двигателя такая система вдобавок точнее распределяет ее по цилиндрам и создает минимальное сопротивление проходящему по впускному коллектору воздуху. Это позволяет улучшить многие показатели мотора: мощность, экономичность, экологичность и т.д. Из недостатков многоточечного впрыска можно назвать, пожалуй, лишь только довольно высокую стоимость.

Непосредственный..

“Goliath GP700” стал первым серийным автомобилем, двигатель которого получил впрыск топлива.

ВПРЫСК (его еще иногда называют прямым) отличается от предыдущих типов систем питания тем, что в данном случае форсунки подают топливо прямо в цилиндры (минуя впус¬кной коллектор), как у дизельного двигателя.

В принципе такая схема системы питания не нова. Еще в первой половине прошлого века ее использовали на авиационных двигателях (например на советском истребителе “Ла-7”). На легковых машинах прямой впрыск появился чуть позже – в 50-х годах ХХ века сначала на автомобиле “Goliath GP700”, а затем на знаменитом “Mercedes-Benz 300SL”. Однако через некоторое время автопроизводители практически отказались от применения непосредственного впрыска, он остался лишь на гоночных автомобилях.

Дело в том, что головка блока цилиндров у двигателя с прямым впрыском получалась очень сложной и дорогой в производстве. Кроме того, конструкторам долгое время не удавалось добиться стабильной работы системы. Ведь для эффективного смесеобразования при прямом впрыске необходимо, чтобы топливо хорошо распылялось. То есть подавалось в цилиндры под большим давлением. А для этого требовались специальные насосы, способные его обеспечить.. В итоге на первых порах двигатели с такой системой питания получались дорогими и неэкономичными.

Однако с развитием технологий все эти проблемы удалось решить, и многие автопроизводители вернулись к давно забытой схеме. Первой была компания “Mitsubishi”, в 1996 году установившая двигатель с непосредственным впрыском топлива (фирменное обозначение – GDI) на модель “Galant”, затем подобные решения стали использовать и другие компании. В частности, “Volkswagen” и “Audi” (система FSI), “Peugeot-Citroёn” (HPA), “Alfa Romeo” (JTS) и другие.

Почему же такая система питания вдруг заинтересовала ведущих автопроизводителей? Все очень просто – моторы с прямым впрыском способны работать на очень бедной рабочей смеси (с малым количеством топлива и большим – воздуха), поэтому они отличаются хорошей экономичностью. Вдобавок подача бензина непосредственно в цилиндры позволяет поднять степень сжатия двигателя, а следовательно и его мощность.

Система питания с прямым впрыском может работать в разных режимах. Например, при равномерном движении автомобиля со скоростью 90-120 км/ч электроника подает в цилиндры очень мало топлива. В принципе такую сверхбедную рабочую смесь очень трудно поджечь. Поэтому в моторах с прямым впрыском используются поршни со специальной выемкой. Она направляет основную часть топлива ближе к свече зажигания, где условия для воспламенения смеси лучше.

При движении с высокой скоростью или при резких ускорениях в цилиндры подается значительно больше топлива. Соответственно из-за сильного нагрева частей двигателя возрастает риск возникновения детонации. Чтобы избежать этого, форсунка впрыскивает в цилиндр топливо широким факелом, ко¬торый заполняет весь объем камеры сгорания и охлаждает ее.

Если же водителю требуется резкое ускорение, то форсунка срабатывает два раза. Сначала в начале такта впуска распыляется небольшое количество топлива для охлаждения цилиндра, а затем в конце такта сжатия впрыскивается основной заряд бензина.

Но, несмотря на все свои преимущества, двигатели с непосредственным впрыском пока еще недостаточно распространены. Причина – высокая стоимость и требовательность к качеству топлива. Кроме того, мотор с такой системой питания работает громче обычного и сильнее вибрирует, поэтому конструкторам приходится дополнительно усиливать некоторые детали двигателя и улучшать шумоизоляцию моторного отсека.

Автор
Юрий УРЮКОВ
Издание
Клаксон №4 2008 год
Фото
фото из архива “Клаксона”

Непосредственный впрыск. — DRIVE2

Любой работник автосалона с гордостью заявит вам, что двигатель предлагаемого вам автомобиля «оборудован новейшим непосредственным впрыском». Чаще всего, при этом, смысл и принцип работы нововведения объяснить затруднится, но зато посулит немыслимую экономию («до 30%») и «увеличение мощности».

Между тем, «новейший» непосредственный впрыск, это технология разработанная еще в середине 30-х и серийно применявшаяся в годы Второй мировой, например, на истребителях «Мессершмитт 109».

Вскоре после войны немецкая инженерия несколько раз пыталась применить этот принцип на мелкосерийных автомобилях, в числе которых был и культовый Mercedes 300SL c механическим непосредственным впрыском — по сути, настоящий «бензиновый дизель».

Количество поломок систем первого поколения оказалось решающим — про принцип в промышленном масштабе забыли на пяток десятилетий, несмотря на заметную экономию на фоне примитивного карбюраторного смесеобразования.

Идея распылять топливо непосредственно в цилиндр стала практически полезной только в начале 90-х. Причина проста — экология и ее нормативы. Значительное количество времени при городском режиме движения автомобиль работает в режиме малых и частичных нагрузок, иногда топливо тратится практически «в пустую» — фактически только на поддержание холостых оборотов.

Хорошо было бы, подумали инженеры, для режимов малых нагрузок наполнять цилиндры бедной смесью, сильно отступив от пропорций стехиометрии. И если для полноценного горения за идеал принято соотношение 14.7 кг воздуха на 1 кг бензина плюс-минус 10%, то выгодным, с точки зрения экологии, было бы найти возможность поджигать смесь в несколько раз более бедную, экономя бензин. Раза так в 2-3 более бедную, иначе заметного результата не будет. Из практики однако известно, что уже соотношение более 15,7 вызывает проблемы с горением. При соотношениях более 22:1 эффективного воспламенения уже не происходит, что грозило затее провалом.

Вот тут-то про непосредственный впрыск и вспомнили. В отличие от обычного распределенного впрыска, где форсунка льет прямо во впускной канал, поместив форсунку прямо в цилиндр, мы получаем возможность управлять фазой и длительностью впрыска — впускной клапан уже не мешает. Это как видео против киноаппарата с обтюратором — когда источник топлива уже в цилиндре, управляй им как хочешь — ничто не мельтешит перед форсункой и не отвлекает от процесса. 🙂

Для режима частичных нагрузок впрыскивание организовали в момент начала такта сжатия. Топливо долетает до днища поршня специальной формы, попутно забирая часть тепла в цилиндре и препятствуя тем самым детонации, хорошо перемешивается с воздухом и вспыхивает к моменту конца сжатия совместно с дополнительно поданной порцией в итоговом соотношении всего около 40:1(!). В обычном же режиме, двигатель работает на уже привычном соотношении воздуха и бензина, близком к стехиометрии. Вот вам и зримая экономия.

Это как бы осязаемые плюсы. А теперь сюрприз, поговорим о недостатках.

Система питания обычного двигателя работает при давлении около 3,5 атм. Для этого нам требуется электронасос, не шибко отличающийся по конструкции, надежности и цене от насоса «Малыш» у вас на даче. Также потребуется несколько форсунок, по числу цилиндров — а это тоже не ахти какие большие затраты как при производстве так и при последующей возможной замене. Добавляем сюда только обычные шланги и фильтр. Неисправный насос сразу даст о себе знать и может быть довольно просто продиагностирован и заменен на аналогичный. С форсунками возни и проблем еще меньше — живут десятками лет.

А теперь вот вам, форсунка непосредственного впрыска, по сравнению с распределенным впрыском, это недешевые, сложные в производстве и довольно капризные форсунки с давлением от 50 до 200 атм. Сравните с 3,5 атм. Да, это не дизель с 1800-2500 атм, но уже совсем точно не «обычный» распределенный впрыск.

Систему дополнительно усложняет наличие ТНВД — самого насоса, который обеспечивает столь высокое давление. В принципе, любой насос — штука механическая. А если давления высокие, то потенциально проблемная.

Идем далее: осмоление и закоксовка рабочей части форсунки нарушают точность ее работы — чувствительность к качеству топлива заметно повышается. Надежность — нет.

Требования экологии подразумевают рециркуляцию картерных газов — избытка давления в масляной системе. Это минимум. А иногда еще и части выхлопных газов… То есть, пока двигатель не прогрет, часть выхлопных газов снова отправляется на впуск, «на переработку». Экология…

Вспоминаем теперь, что форсунка во впускные каналы уже не прыскает — грязь и отложения не смывает. А вентиляция именно через них и организована, что в итоге?! А вот что:

Закоксовывание приводит к затруднению закрытия клапана, что в скором времени гарантирует снижение компрессии в цилиндрах. Мотор начинает ощутимо потряхивать, а после цилиндры и вовсе отключаются. Применение масел обычного качества, что норма для всех производителей (LowSAPS, с низкой щелочностью и высоким NOACK индексом)
отпускает мотору пару-тройку лет сравнительно беспроблемного существования.

Теперь поговорим про прирост мощности и экономичности. Как современный (года так с 1990) автомобиль с условным 3-х литровым двигателем ел по городу 15-16 литров, так и ест. Без улучшений. Что с непосредственным впрыском, что с распределенным. Какие тесты журналисты не проводят — там везде примерно одни и те же цифры фактического расхода.

Мощность, точнее — момент? Для примера рассмотрим в сравнении два практически идентичных мотора — BMW N52 и BMW N53. Ну едва ли этот эксцесс в 20 Н/м можно назвать достижением, чиптюнингом можно достичь сравнимых результатов.

Что в итоге?

Непосредственный впрыск для реальных условий эксплуатации это:

1.Использование конструктивно сложных и потенциально ненадежных узлов и агрегатов.
2.Исключительно высокие требования к качеству топлива, а особенно — масла.
3.Снижение потребления топлива и увеличение мощности на практике малозначительны, или вообще отсутствуют.
4.Диагностирование неисправностей и ремонт значительно усложнены.

Покупая автомобили BMW, Audi, Mercedes и прочих марок с непосредственным впрыском топлива, найдите время разобраться с особенностями эксплуатации этих двигателей на основе практического опыта владельцев, а не рекомендаций производителя.

видов впрыска топлива | 1A Авто

Сравнение впрыска корпуса дроссельной заслонки и многопортового впрыска и прямого впрыска

Проще говоря, ваш двигатель сжигает смесь топлива и воздуха внутри своих цилиндров, чтобы перемещать поршни, которые создают движение вперед или назад, которое в конечном итоге передается на колеса. Как топливо попадает в цилиндры, когда оно попадает туда и как топливо используется, — вот некоторые из наиболее важных факторов, определяющих мощность и эффективность вашего двигателя.

В более старых двигателях для дозирования топлива в двигатель использовался карбюратор. В карбюраторных двигателях поступающий воздух во впускной патрубок создает вакуум, который вытягивает топливо из трубки в карбюраторе, называемой трубкой Вентури. Эта система была относительно простой и удобной в работе, и многие годы она пользовалась успехом. В конце концов, впрыск топлива оказался более эффективным. Двигатели с впрыском топлива могут производить больше мощности, потреблять меньше топлива и легче соответствовать все более строгим стандартам выбросов.Сегодня все новые автомобили используют тот или иной вид впрыска топлива.

Со временем были разработаны различные методы впрыска топлива в двигатель. Их можно разделить на категории в зависимости от места добавления топлива. Со временем точка впрыска сдвигалась все ближе и ближе к самим цилиндрам. Три основных типа впрыска топлива известны как впрыск дроссельной заслонки, многоточечный впрыск и прямой впрыск. Мы проведем вас по трем типам, объясним, как работает каждый из них, и опишем преимущества и недостатки каждого типа.

Система впрыска дроссельной заслонки

Впрыск дроссельной заслонки (TBI), также называемый одноточечным впрыском, был первым типом впрыска топлива, широко использовавшимся в автомобилях. Он работал очень похоже на карбюратор в том, что он дозировал топливо в переднюю часть впускного коллектора за корпусом дроссельной заслонки. Топливо и воздух смешиваются во впускном коллекторе и втягиваются в цилиндры за счет всасывания, производимого во время такта впуска каждого цилиндра.

Впрыск дроссельной заслонки был большим улучшением по сравнению с карбюратором.Бортовой компьютер транспортного средства, блок управления двигателем (ЭБУ), мог контролировать количество дозированного топлива и время подачи топлива. Это делает TBI более эффективным, чем карбюрация, в более широком диапазоне рабочих условий.

Однако у TBI были определенные общие проблемы с карбюрацией. Во-первых, поскольку топливо должно проходить относительно большое расстояние к цилиндрам, оно может конденсироваться и скапливаться во впускном коллекторе. Цилиндры, расположенные ближе к корпусу дроссельной заслонки, также могут получать более богатую смесь топлива и воздуха по сравнению с цилиндрами, находящимися дальше, которые получают более бедную смесь.

Хотя у TBI было то преимущество, что он был простым, имея только один, а иногда и два инжектора, в конечном итоге от него отказались в пользу многопортового впрыска.


Многопортовый впрыск

Многоточечный впрыск (иногда называемый многоточечным впрыском) использует отдельные форсунки для распыления топлива в каждый цилиндр. Форсунки устанавливаются во впускные каналы, сразу за впускным клапаном каждого цилиндра.Были использованы два типа впрыска через центральный порт и последовательный многопортовый впрыск.

При впрыске через центральный канал центральный топливный блок отправляет топливо по ряду ветвей, которые заканчиваются тарельчатыми клапанами. Внешний вид этого типа инжектора побудил некоторых людей называть его инжектором-пауком. Все клапаны выпускают топливо одновременно, что означает, что часть топлива остается в ожидании следующего такта впуска. Это дает топливу возможность конденсироваться, а значит, оно не так легко воспламеняется.

Последовательный впрыск топлива решает эту проблему, поскольку каждый клапан форсунки открывается одновременно с соответствующим впускным клапаном. ЭБУ управляет синхронизацией форсунок так же, как и моментом зажигания.

Впрыск через центральный порт более эффективен, чем TBI, и последовательный многопортовый впрыск также более эффективен. Каждая из этих систем, хотя и более сложна, с большим количеством движущихся частей, что усложняет работу над ними и увеличивает их стоимость.При этом последовательный многоточечный впрыск является сегодня наиболее распространенной системой дозирования топлива в автомобилях с бензиновым двигателем.

Прямой впрыск

В системах с прямым впрыском топливо впрыскивается непосредственно в цилиндр. Это обеспечивает наилучшее сочетание топлива и воздуха. Прямой впрыск использовался в дизельных двигателях с 1920-х годов и в бензиновых авиационных двигателях примерно со времен Второй мировой войны, но в последнее время он широко применяется только в автомобилях с бензиновым двигателем. Производители высокопроизводительных автомобилей, такие как Audi и BMW, обнаружили, что более эффективное сгорание при непосредственном впрыске бензина (GDI) помогает производить более мощные двигатели.Некоторые автопроизводители также начали использовать GDI, чтобы двигатели потребляли меньше газа. В двигателях GM Ecotec и Ford Ecoboost используется GDI.

Двигатели GDI могут использовать очень бедную топливно-воздушную смесь, когда двигатель находится под небольшой нагрузкой. Это помогает экономить газ, но создает выбросы закиси азота. Двигатели GDI полагаются на рециркуляцию выхлопных газов и специально разработанные каталитические нейтрализаторы для очистки этих выбросов. Системам GDI также нужны более прочные форсунки. Форсунки подвергаются воздействию тепла и давления камеры сгорания, и форсунка должна распыляться против высокого давления камеры сгорания.В то время как обычные топливные форсунки распыляют бензин со скоростью от 40 до 60 фунтов на квадратный дюйм, прямые форсунки должны распылять топливо под давлением в тысячи фунтов на квадратный дюйм.

Таким образом, хотя прямой впрыск является лучшим вариантом с точки зрения мощности и эффективности, это также самая сложная и дорогая система.

По мере развития технологий производство двигателей с прямым впрыском может упроститься, но на данный момент последовательный многоточечный впрыск остается наиболее распространенной системой впрыска топлива в современных автомобилях.Он обеспечивает оптимальное сочетание эффективности и доступности для большинства приложений.


Типы топливных форсунок — Изучение инженерного дела

Типы топливных форсунок

Типы топливных форсунок: — Топливные форсунки — это механические устройства с электронным управлением, которые в основном используются для впрыска или распыления топлива на двигатель, чтобы подготовить правильная смесь воздуха и топлива, которая возвращается в двигатель при эффективном сгорании.

Положение топливных форсунок варьируется для двигателей различной конструкции, но в большинстве случаев они устанавливаются на головке двигателя с наконечником внутри камеры сгорания двигателя.

Типы топливных форсунок s

С развитием технологий впрыска топлива появилось множество механизмов впрыска топлива, таких как впрыск топлива в корпус дроссельной заслонки, многоточечный впрыск топлива, последовательный впрыск топлива и прямой впрыск, которые используется в соответствии с требуемым применением, тогда как когда речь идет о топливных форсунках типа , то действительно сложно классифицировать каждую из них. Двигаясь дальше, топливные форсунки можно отнести к категории —

А.На основе топлива

На основе топливных форсунок форсунки классифицируются как-

1. Дизельные топливные форсунки: (Типы топливных форсунок)

Дизельные топливные форсунки используются для распыления дизель прямо в камеру сгорания дизельного двигателя. Дизельное топливо распыляется в камере сгорания, и для этого требуется сильная накачка, поскольку это более тяжелое топливо по сравнению с бензином, которое отвечает за дальнейшее сгорание за счет сжатия.

Капилляр и сопло форсунок дизельного топлива сконструированы таким образом, что они могут образовывать пакеты дизельного топлива, которые помогают распылять топливо внутри камеры сгорания двигателя.

2. Бензиновые топливные форсунки: (Типы топливных форсунок)

Бензиновые топливные форсунки — это те форсунки, которые используются для впрыска бензина напрямую или через впускной коллектор в камеру сгорания двигателя, который инициировал дальнейшее сгорание путем Искра.

Здесь не требуется высокая прокачка бензина, так как он легче дизеля.

B. На основе учета топлива

На основе учета топлива топливные форсунки классифицируются следующим образом:

1. Топливные форсунки с механическим управлением

Топливные форсунки с механическим управлением — это те топливные форсунки, которые отвечают за управление скоростью топлива, его количеством, синхронизацией и давлением, что осуществляется механически с помощью пружины и плунжера, а входной сигнал принимает расположение кулачка и топливного насоса или распределителя топлива.

2. Топливные форсунки с электронным управлением

Топливные форсунки с электронным управлением — это такие топливные форсунки, в которых управление скоростью топлива, его количеством, давлением и синхронизацией осуществляется электронным способом и только с помощью электронного соленоида, который принимает входные данные. от распределителя топлива или от электронного блока управления автомобилем.

Детали и функции топливной форсунки

Если мы обсудим конструктивную конструкцию топливной форсунки, то нужно сказать, что она во многом напоминает форсунку садового душа, которая обычно используется для распыления воды на траву.Назначение топливной форсунки очень похоже, но разница только в том, что форсунка распыляет топливо внутри двигателя. Прокрутите вниз, чтобы узнать больше о конструкции топливной форсунки с механическим управлением и топливной форсунки с электронным управлением: —

A. Топливная форсунка с механическим управлением s

Топливные форсунки с механическим управлением состоят из следующих частей: —

Корпус форсунки: (Функция топливных форсунок)

Корпус форсунки — это внешняя крышка корпуса, которую также можно назвать оболочкой всех остальных частей форсунок , которые устроены так же, как садовый душ.Внутренняя часть корпуса форсунки сконструирована таким образом, что она может удерживать точно спроектированный капилляр или канал, по которому топливо под высоким давлением из топливного насоса может двигаться вперед.

Пружины: (Функция топливных форсунок)

Две пружины в основном используются внутри топливных форсунок с механическим управлением, которые:

1. Пружина поршня

Пружина поршня отвечает за управление и для движения плунжера, который отвечает за управление давлением топлива внутри топливной форсунки, которое увеличивается и, таким образом, приводит к открытию форсунки, а затем возвращается в исходное положение, когда давление уменьшается, форсунка закрывается.

2. Основная пружина

Основная пружина управляет входным отверстием топливной форсунки. Основная пружина работает под действием давления топлива, которое обычно создается топливным насосом.

B. Топливная форсунка с электронным управлением s

Топливная форсунка с электронным управлением — это интеллектуальная форсунка, управляемая электронным блоком управления двигателя и также называемая мозгом современных двигателей.

Корпус форсунки: (Функция топливных форсунок)

Корпус форсунки такой же, как и у топливной форсунки с механическим управлением, которая представляет собой точно спроектированный корпус, внутри которого систематически расположены все части.

Плунжер: (Функция топливных форсунок)

Плунжер — это устройство, которое используется для открытия и закрытия форсунки в топливной форсунке с электронным управлением с помощью электромагнита.

Источник изображения: — Fahadhvhassan, Borgwarner, Slideplayer

4 типа систем впрыска топлива для специалистов по автозапчастям

Не нужно быть профессиональным автомобилестроителем, чтобы знать, что двигатели нуждаются в топливе для работы.Однако многие не знают, как это топливо заставляет двигатель работать после того, как оно залито в бак. Двигатели сжигают смесь топлива и воздуха внутри своих камер, чтобы перемещать поршни, которые создают движение автомобиля вперед и назад. Это движение передается на колеса, что заставляет машину двигаться. Однако то, как топливо подается в цилиндры, зависит от типа системы впрыска топлива, установленной в автомобиле. Различные типы систем впрыска дают очень разные результаты.

Как начинающий специалист по автозапчастям, вы преуспеете в своей карьере, зная множество различных вариантов автомобильных запчастей.Начните обучение, прочитав о четырех различных типах систем впрыска топлива, используемых в транспортных средствах.

1. Специалисты по автозапчастям могут знать систему впрыска дроссельной заслонки

Система впрыска в корпус дроссельной заслонки (TBI) — одна из первых систем впрыска, когда-либо используемых в транспортных средствах. До TBI автомобили использовали карбюратор. Карбюратор подает топливо в двигатель, когда поступающий воздух всасывает топливо через трубку в камеры сгорания. Топливо будет смешиваться с воздухом и производить энергию, необходимую для работы двигателя.Хотя карбюраторы служили своей цели, они были очень неточными и обычно приводили к потере топлива.

TBI работают аналогично карбюратору. Топливо все еще всасывается в цилиндры из-за всасывания, создаваемой двигателем. Тем не менее, TBI контролируются электронным компьютером в транспортном средстве. Компьютер обеспечивает большую точность, определяя количество топлива, которое должно быть залито в двигатель. Такая точность сокращает расход топлива и позволяет автомобилю работать более эффективно.

2. Профессионалы в сфере автозапчастей должны знать многопортовую систему впрыска топлива

Системы многоточечного впрыска топлива (MPFI) работают так, как следует из их названия: с несколькими впускными отверстиями. Как, вероятно, знают профессионалы , специализирующиеся на автомобильных запчастях, — это шаг вперед по сравнению с системами впрыска дроссельной заслонки, которые имеют только один порт.

На каждое впускное отверстие установлено

MPFI. Эти впускные каналы расположены снаружи цилиндров двигателя.В MPFI на каждый цилиндр направляется собственное прямое распыление топлива. Итак, в шестицилиндровом двигателе было бы шесть отверстий для впрыска.

Все форсунки распыляют одновременно. Иногда это может привести к проблемам, когда остатки топлива остаются в ожидании следующего периода приема. Топливо может конденсироваться в жидкую форму, а затем выводиться из строя двигателем. Хотя MPFI более эффективен, чем TBI, последовательный впрыск топлива обеспечивает еще лучшую топливную экономичность.

3.Специалисты по автозапчастям могут знать о системе последовательного впрыска топлива

Системы последовательного впрыска топлива почти не отличаются от MPFI. Однако их одно важное отличие преодолевает основную проблему с системами MPFI. Последовательный, иначе известный как впрыск по времени, запускает каждую форсунку индивидуально в оптимизированное время, чтобы обеспечить попадание всего топлива во впускной клапан. Этот процесс может помочь уменьшить отходы топлива. Кроме того, он обеспечивает наиболее оптимальное соотношение топлива и воздуха в камерах сгорания.Как специалист по автозапчастям , вы можете узнать, что это помогает автомобилю работать с более высоким уровнем эффективности.

Система последовательного впрыска топлива обеспечивает более высокий уровень топливной экономичности

4. Профессионалы в сфере автозапчастей должны знать систему прямого впрыска

Системы прямого впрыска отличаются от других систем впрыска топлива, поскольку они обходят впускные клапаны и подают топливо прямо в камеру сгорания цилиндра.

На протяжении всей своей карьеры вы, скорее всего, столкнетесь с системами прямого впрыска в автомобилях с дизельным двигателем.Прямой впрыск используется в дизельных двигателях с 1920 года и используется в бензиновых самолетах со времен Второй мировой войны. Однако производители высокопроизводительных автомобилей, такие как Audi и BMW, также начинают использовать систему прямого впрыска в своих автомобилях. Поскольку топливо впрыскивается прямо в двигатель, оно обеспечивает высокий уровень мощности и эффективности, что идеально подходит для автомобилей с высокими характеристиками.

Заинтересованы ли вы в обучении автомобильным запчастям?

Свяжитесь с консультантом в Автомобильных учебных центрах сегодня!

Категории: Карьера по автомобильным запчастям, Surrey
Теги: карьера по автозапчастям, специалист по автозапчастям, обучение по автомобильным запчастям

Электронная система впрыска топлива (EFI)

Целью электронной системы впрыска топлива является регулирование и оптимизация соотношения топливо / воздух, поступающего в двигатель транспортного средства.Впрыск топлива в последнее время стал основной системой подачи топлива, используемой в автомобильных бензиновых двигателях. В этом посте будет обсуждаться, что такое система электронного впрыска топлива (EFI), ее архитектура, типы, принцип работы, применение, преимущества и недостатки.

Что такое электронная система впрыска топлива (EFI)

Система, направленная на оптимизацию соотношения топливо / воздух, поступающего в двигатель транспортного средства, называется электронной системой впрыска топлива. Система EFI почти полностью заменила использование карбюраторов.

Рис. 1 — Введение в электронную систему впрыска топлива

Карбюраторы хороши с точки зрения производительности, но из-за их неопределенной природы они не могут развить большую мощность, увеличить расход топлива и пройти испытание на выбросы выхлопных газов. все с той же настройкой, у них также было много механических частей, которые со временем могли стать липкими. Это означает, что они требовали более интенсивного обслуживания, а восстановление карбюратора часто являлось частью планового технического обслуживания.

OEM-производители обращались к EFI для решения своих сложных проблем с выбросами.Первоначальный EFI состоял в основном из карбюраторов, управляемых процессором, подключенных к датчику кислорода и датчику положения дроссельной заслонки, и все они были подключены к электронному блоку управления.

Электронная система впрыска топлива состоит из электронных компонентов и датчиков. Он должен быть чистым и хорошо откалиброванным, чтобы повысить мощность и эффективность двигателя, а также снизить потребление газа.

Рис. 2 — Топливный инжектор (a) Двухколесный (b) Четырехколесный

Типы впрыска топлива

Чтобы лучше понять концепцию, мы сначала должны понять типы впрыска топлива.Типы впрыска топлива, используемые в более новых автомобилях:

  • Одноточечный впрыск или дроссельный впрыск
  • Портовый или многоточечный впрыск топлива
  • Последовательный впрыск топлива
  • Прямой впрыск

Одноточечный или дроссельный впрыск

Первым и простым видом впрыска топлива был одноточечный впрыск. Здесь карбюратор заменен одной или двумя форсунками топливной форсунки в корпусе дроссельной заслонки, который является горловиной впускного коллектора двигателя.

Одноточечный впрыск был ступенькой к более сложной многоточечной системе для некоторых производителей. Они экономичны и просты в обслуживании.

Портовый или многоточечный впрыск топлива

При многоточечном впрыске топлива отдельная форсунка предназначена для каждого цилиндра, прямо за его впускным портом, из-за чего система также называется системой впрыска через порт. Когда пары топлива выбрасываются близко к впускному отверстию, это обеспечивает полное всасывание топлива в цилиндр.

Основным преимуществом является то, что расходомер MPFI более точен, чем конструкции TBI. Это лучше при достижении желаемого соотношения топливо / воздух и улучшении всех связанных аспектов. Кроме того, это почти исключает возможность конденсации или скопления топлива во впускном коллекторе. TBI и карбюраторы сконструированы таким образом, что впускной коллектор отводит тепло двигателя, которое является мерой испарения жидкого топлива.

В двигателях, оснащенных MPFI, впускной коллектор может быть изготовлен из более легкого материала, даже из пластика.Система MPFI приводит к повышенной экономии топлива. Стандартные металлические впускные коллекторы должны располагаться наверху двигателя для отвода тепла, но в случае MPFI их можно расположить более творчески, предоставляя инженерам гибкость при проектировании.

Рис.3 — (a) Одноточечный или дроссельный корпус (b) Портовый или многоточечный (c) Система прямого впрыска топлива в двигатель

Последовательный впрыск топлива

Последовательный впрыск топлива, также известный как Последовательный впрыск топлива через порт (SPFI) или впрыск по времени — это тип многопортового впрыска.Хотя MPFI имеет несколько форсунок, все они распыляют топливо одновременно или группами. Это может привести к «зависанию» топлива в порте до 150 миллисекунд во время работы двигателя на холостом ходу.

Может показаться, что это не так уж много, но этого ограничения достаточно, чтобы инженеры устранили его, т.е.последовательный впрыск топлива запускает каждую форсунку отдельно. Они в основном синхронизируются по времени, как свечи зажигания, и распыляют топливо непосредственно перед или при открытии впускного клапана.Хотя это кажется незначительным шагом, улучшения эффективности и выбросов достигаются в исключительно малых дозах.

Прямой впрыск

Прямой впрыск впрыскивает топливо прямо в камеры сгорания, мимо клапанов. Система прямого впрыска широко используется в дизельных двигателях и начинает появляться в конструкциях бензиновых двигателей, иногда называемых DIG для бензина с прямым впрыском. Дозирование топлива по-прежнему более точное, чем в другой системе впрыска.

Система прямого впрыска предоставляет инженерам дополнительную переменную, позволяющую точно влиять на то, как происходит сгорание в цилиндрах.Дисциплина проектирования двигателя тщательно исследует, как топливно-воздушная смесь вращается в цилиндрах и как взрыв распространяется от точки воспламенения. Прямой впрыск может использоваться в двигателях с низким уровнем выбросов на обедненной смеси.

Архитектура электронной системы впрыска топлива

Компоненты электронной системы впрыска топлива включают:

  • Датчики
  • Электронный блок управления (ЭБУ)
  • Индикатор «Проверьте двигатель» / Индикатор «Скоро сервисное обслуживание двигателя»
  • Топливные форсунки
  • Топливный насос

Рис.4 — Принципиальная схема электронной системы впрыска топлива

Датчики

Датчики установлены во многих точках двигателя, и их функция заключается в отправке информации в ЭБУ. Используются следующие датчики:

  • Датчик температуры двигателя
  • Датчик температуры впуска
  • Датчик температуры выхлопных газов
  • Датчик частоты вращения двигателя
  • Датчик положения дроссельной заслонки
  • Датчик, который отвечает за измерение концентрации топлива в топливе / воздухе смесь

Исполнительные механизмы — это компоненты, которые получают информацию от ЭБУ и действуют в системе питания, изменяя объем топлива, которое получает двигатель.

Он использует следующие исполнительные механизмы:

  • Топливная форсунка
  • Свеча зажигания
  • Дроссельная заслонка

Электронный блок управления

Электронный блок управления отвечает за измерение датчиков и оценку действий для каждый привод с учетом ограничений по времени. Блок-схема системы впрыска топлива показана на рис. 3. Временные ограничения системы накладываются характеристиками двигателя внутреннего сгорания, которым необходимо управлять.

Определяется, что поворот двигателя на 360 ° совершается каждые 5 микросекунд при 12000 об / мин. Привод дроссельной заслонки рассматривает положение 0 ° как импульс в 1 миллисекунду и 90 ° как за импульс в 2 миллисекунды в течение периода 25 миллисекунд. Принимая во внимание эти временные ограничения, считывание датчиков и расчет времени срабатывания исполнительных механизмов следует обрабатывать не более чем за 15 миллисекунд.

Индикатор «Проверьте двигатель» / Индикатор «Сервисный двигатель скоро»

Индикатор «Проверьте двигатель» (или индикатор «Сервисный двигатель скоро») на консоли загорается во время сканирования и гаснет, когда все датчики работают.

Топливная форсунка

Помогает впрыскивать топливо во впускные каналы двигателя.

Топливный насос

Он помогает перекачивать бензин из топливного бака автомобиля в двигатель и распределять топливо в систему впрыска топлива под более высоким давлением.

Как работает система EFI

Система впрыска топлива состоит из множества датчиков, расположенных вокруг вашего автомобиля, как показано на рис. 5. Каждый раз, когда вы заводите автомобиль, электронный блок управления (ECU) сканирует каждый из них. этих датчиков, чтобы проверить их работоспособность.

Индикатор «Check Engine» (или индикатор «Service Engine Soon») на консоли загорается во время сканирования и гаснет, когда все датчики работают.

Рис. 5 — Блок-схема электронной системы впрыска топлива

Датчики непрерывно определяют значения многих параметров, таких как давление воздуха, температура воздуха, угол дроссельной заслонки, плотность воздуха, температура топлива, давление топлива, давление масла, температура охлаждающей жидкости, температура выхлопных газов, угол поворота коленчатого вала, синхронизация, частота вращения двигателя, скорость и т. д.

Все эти данные обрабатываются через ЭБУ (электронный блок управления), чтобы установить время, в течение которого топливные форсунки открыты и впрыскивают топливо во впускные отверстия двигателя. Форсунки обычно открываются только на несколько миллисекунд за раз. Форсунка состоит из форсунки и клапана. Мощность для впрыска топлива исходит от топливного насоса или резервуара под давлением, расположенного далеко в задней части источника топлива. Топливо, проходящее через систему, распыляется путем принудительной прокачки его через маленькую форсунку под очень высоким давлением.

Приложения электронной системы впрыска топлива

Приложения включают:

  • Система EFI включает в себя современную программу управления выбросами, расходом топлива и требованиями к производительности
  • Система также включает технологию Smart Ignition для управления система зажигания, предоставляя производителям комплектного оборудования гибкость для достижения лучшего в своем классе расхода топлива

Преимущества электронной системы впрыска топлива

Преимущества:

  • Повышение объемного КПД двигателя
  • Прямой впрыск топлива в двигатель цилиндр исключает смачивание коллектора
  • Хорошее распыление топлива даже на низкой скорости, поскольку распыление не зависит от скорости вращения коленчатого вала
  • Меньше детонации благодаря улучшенному распылению и испарению
  • Исключается образование льда на дроссельной заслонке
  • Можно использовать топливо с низкой летучестью как дистрибьютор не зависит от парообразования
  • Поскольку изменение соотношения топливо / воздух практически незначительно, это приводит к хорошей производительности двигателя
  • Высота двигателя может быть меньше, поскольку положение узла впрыска не так критично

Недостатки электронного топлива Система впрыска

К недостаткам можно отнести:

  • Высокая стоимость обслуживания
  • Сложность в обслуживании
  • Возможность выхода из строя некоторых датчиков
  Читайте также:
Система SCADA - Компоненты, Аппаратная и Программная Архитектура, Типы
Встроенная система - характеристики, типы, преимущества и преимущества; Недостатки
Глобальная система позиционирования (GPS) - архитектура, приложения, преимущества
  

История и различные типы топливных форсунок | Автор: Мерсад Берберович

История и различные типы топливных форсунок

Если вы не живете в Нью-Йорке, Филадельфии, Чикаго или другом мегаполисе Америки, который обеспечивает общедоступный общественный транспорт, то, скорее всего, вы живите в регионе, где у вас нет выбора, кроме как передвигаться пешком или на машине.Более того, наиболее вероятно, что из двух вариантов вам нужно будет передвигаться по городу на машине.

Краткая история топливных форсунок и их интеграции в американскую промышленность

Топливные форсунки — относительно новое явление в области автомобильных технологий и изобретений, но их концепция — это древняя сказка. Системы впрыска циркулируют уже более века, а глобальное коммерческое использование в дизельных двигателях различных автомобилей — невероятно популярный шаг, сделанный в 1920-х годах различными производителями — и стал самым популярным в 1950-х годах.

Самое раннее зарегистрированное использование топливных форсунок относится к 1902 году, когда французский летчик Леон Левавассер внедрил прототипную версию системы впрыска в свой самолет Antoinette 8V, который, кстати, стал первой системой двигателя V8, установленной на любом транспортном средстве в истории.

Двадцать три года спустя, в 1925 году, шведский инженер и изобретатель Йонас Хессельман использовал раннюю форму прямого впрыска бензина на ранней версии двигателя Хессельмана, в которой бензин вводился в последний момент такта сжатия, который затем, в свою очередь, запускает свечу зажигания.

Топливные форсунки в современной истории Америки

Вторая мировая война сыграла важную роль в повсеместном росте впрыска топлива в западной автомобильной промышленности. 1980-е годы стали свидетелями быстрого распространения электронных топливных форсунок, которые почти повсеместно распространились в различных европейских странах и на предприятиях автомобилестроения.

В конце того же десятилетия Соединенные Штаты продали последний автомобиль со стандартным бензиновым карбюраторным двигателем — Subaru Justy 1990 года выпуска.

Subaru Justy 1991 года выпуска и продавался с новой топливной форсункой. За 25 лет, прошедших с тех пор, каждый автомобиль, собранный, произведенный и проданный в Соединенных Штатах, был или в настоящее время приводится в действие механизмом топливной форсунки.

Почему топливные форсунки?

Топливные форсунки, несомненно, являются одним из величайших технологических изобретений для автомобилей нашего времени. До их изобретения подавляющее большинство автомобилей эксплуатировалось за счет использования стандартных бензиновых двигателей, большинство из которых довольно сильно истощали кошельки людей, снижали топливную эффективность двигателей и, как следствие, их воздействие на окружающую среду.

Чтобы контролировать топливную форсунку, требуются определенные знания и исследования. Сюда входят такие основы, как работа систем топливных форсунок, как диагностировать проблемы с вашей системой топливных форсунок и даже то, как восстановление топливной форсунки — самый экономичный и экологически безопасный из всех методов изготовления форсунок — может спасти вас. сотни долларов и бесчисленные часы головной боли.

Частью этого исследования является определение и знание типов топливных форсунок, а также того, какие из них лучше всего подходят для вашей конкретной марки автомобиля.

Различные типы топливных форсунок

Хотя системы впрыска топлива высочайшего качества, вообще говоря, являются лучшей системой подачи газа в отрасли, не все из них подходят для вашей конкретной автомобильной системы.

Фактически существует несколько видов топливных форсунок, и каждый из них специально разработан для различных типов автомобилей. Знание, каким типом форсунки оснащен ваш автомобиль — или какой из них лучше всего подходит для вашего конкретного автомобиля — является ключом к тому, чтобы ваши поездки были максимально экономичными и экологически безопасными.

  • Топливные форсунки корпуса дроссельной заслонки. Метод впрыска топлива в корпус дроссельной заслонки (TBI) — один из самых распространенных и наиболее известных типов топливных форсунок. Фактически, это первый тип, который начал коммерческую замену карбюратора. Эти конкретные форсунки сохраняют только две основные версии: корпус дроссельной заслонки и корпус топлива.

Корпус дроссельной заслонки содержит различные порты, которые собирают сигналы для передачи на датчик давления в системе, а затем в часть системы, которая контролирует выбросы углерода.Топливный корпус TBI просто обеспечивает постоянный поток бензина в корпус дроссельной заслонки через специальный клапан, который контролирует и поддерживает воздушный поток в системе.

Корпус дроссельной заслонки с автоматическим управлением подает бензин в те же цилиндры, что и традиционный карбюратор, но его гораздо проще поддерживать в управлении, в отличие от старых ручных систем, которые было так же трудно удерживать на месте и регулировать в соответствии с сиюминутными потребностями.

Старые карбюраторы выделяли большое количество избыточного топлива, что приводило к заиканию двигателя во время ускорения автомобиля, что приводило к образованию большого количества отработанного топлива, загрязнения окружающей среды и выбросов углерода, которые оставляли бы огромный отпечаток в окружающей среде в течение длительного периода. времени.

  • Многоточечная топливная форсунка. Этот конкретный тип инжектора — это то, что многие эксперты называют «следующим логическим развитием» на этапах впрыска топлива. В этой системе инжектор размещается точно там, где впускной клапан встречается с камерой сгорания.

Это позволяет форсунке равномерно распределять топливо между шестью цилиндрами в системе двигателя автомобиля. Многоканальный тип топливной форсунки обеспечивает одновременную работу всех форсунок, в то время как сам бензин остается в режиме ожидания за пределами впуска до тех пор, пока он не понадобится.

Этот экономичный метод отказа от бензина значительно увеличивает эффективность двигателя, даже когда двигатель работает на холостом ходу. Многопортовый инжектор — это еще один вид инжектора, который значительно улучшает экологическую эффективность.

  • Форсунка последовательного действия. Последовательная топливная форсунка расположена так же, как и вышеупомянутая многоточечная топливная форсунка, но с еще более совершенными электронными средствами управления двигателем.

Ключевое различие между последовательным инжектором и многопортовой системой заключается в том, что, в то время как многопортовый механизм заливает бензин сразу во все доступные форсунки, последовательная система ритмично распыляет топливо прямо перед открытием впускного клапана для каждый отдельный цилиндр в системе.

Это определенно незначительное обновление по сравнению с многопортовой системой, но тем не менее обеспечивает значительное повышение эффективности по сравнению с предшественниками.

Заключительные мысли

Независимо от того, являетесь ли вы новичком, только начинающим исследовать различные типы топливных форсунок, или профессиональным экспертом, для надлежащего обслуживания и ухода за ними необходим базовый уровень знаний о различных типах топливных форсунок. автомобиль. Вооружившись историей и знанием типов топливных форсунок, вы в кратчайшие сроки станете экологически чистым и экономичным водителем!

Основы впрыска топлива — Помощь по ремонту автомобилей

ОСНОВЫ ВПРЫСКА ТОПЛИВА
Лэнс Райт

За последние двадцать пять лет автомобильные топливные и выхлопные системы подвергались постоянным преобразованиям в соответствии с федеральными выбросами стандарты и корпоративные требования к средней экономии топлива.Большинство существенным изменением стало использование каталитических нейтрализаторов и топлива инъекция. Во многом это было вызвано требованиями Калифорнии в области чистоты. воздух. Представьте, что Калифорния — самый густонаселенный штат и, следовательно, крупнейший рынок автомобилей в США, наборы Калифорния повестка дня Детройта и зарубежных автопроизводителей.

Каталитический преобразователи — фантастические устройства контроля выбросов, потому что они имеют возможность превратить вредные выбросы автомобиля в углерод диоксид и водяной пар.Для эффективной работы каталитические нейтрализаторы требуется точная воздушно-топливная смесь. Соотношение четырнадцати частей воздуха на одну часть топлива, было установлено, что обеспечивает наиболее эффективный каталитический работа конвертера. Любые изменения в топливно-воздушной смеси, слишком сильные или слишком мало топлива, повлияет на работу каталитического нейтрализатора, в результате дорогостоящий ремонт авто. Из-за этого инженерам пришлось спроектировать топливную систему, которая способна поддерживать постоянный воздух / топливо соотношение во всем диапазоне работы двигателей и условиях.Компьютер впервые были использованы регулируемые карбюраторы, но их способность обеспечивать был ограничен контроль топлива для соответствия всем условиям эксплуатации автомобиля. Электронный Было установлено, что системы впрыска топлива обеспечивают более широкий диапазон регулирования подачи топлива. и дополнительное преимущество в виде лучшей экономии топлива и повышенной производительности над карбюраторными системами.

Есть два основных типа систем впрыска топлива, используемых на легковых автомобилях и легкие грузовики, распределенный впрыск топлива и впрыск топлива через корпус дроссельной заслонки.Поскольку они обеспечивают более низкий уровень выбросов и более эффективную работу, большинство автомобили сегодня оснащены системами многоточечного впрыска топлива.

В системах многоточечного впрыска топлива используется одна форсунка на цилиндр. В форсунки установлены во впускном коллекторе и расположены так, чтобы направлять мелкая струя топлива прямо на впускной клапан. Напряжение зажигания подается на каждую форсунку, а цепь заземления подключается к модуль управления двигателем.Требования к подаче топлива для двигателя удовлетворяются путем контроля количества времени, в течение которого инжектор включен. Управление топливными форсунками является функцией модуля управления и осуществляется водителями топливных форсунок. Драйверы топливных форсунок расположены внутри модуль управления двигателем и используются как крошечные переключатели для завершения цепь массы к форсункам. Количество доставленного топлива к двигателю определяется количеством времени, в течение которого топливная форсунка приказано.Этот период времени называется шириной импульса форсунки. и измеряется в миллисекундах. Некоторые конструкции впрыска топлива в порт будут изменяйте давление топлива вместо ширины импульса для управления подачей топлива.

Дроссельная заслонка системы впрыска тела используют инжектор или пару инжекторов, размещенных в корпусе дроссельной заслонки для подачи топлива в двигатель. Топливо распыляется попадает во впускной воздух двигателя и распределяется между отдельными цилиндры у впускного коллектора.Как и при многоточечном впрыске топлива системы форсунки работают в импульсном режиме, чтобы поддерживать надлежащий воздух / топливо. соотношение. Эта система использовалась как менее дорогая альтернатива многопортовой впрыск топлива, но был не таким эффективным. Контроль автомобильных выбросов правила, которые вступили в силу для модели 1996 года, почти отменены использование системы впрыска дроссельной заслонки на легковых и легких грузовиках.

(Копье 30 лет владел собственной автомастерской, а в 2006 году ушел на пенсию.)

Типы системы впрыска топлива

В цикле постоянного давления или дизельном двигателе воздух сжимается в цилиндре, а затем топливо впрыскивается в цилиндр с помощью системы впрыска топлива. Для правильной работы и хорошей работы двигателя необходим впрыск топлива. Используются разные типы системы впрыска топлива. Давайте обсудим этот другой тип используемой системы впрыска топлива.

В основном система впрыска топлива подразделяется на две категории:
  • Система впрыска воздуха
  • Система твердого впрыска

Система впрыска твердых веществ снова классифицируется ниже:

  • Отдельная система насоса и форсунок
  • Насос-форсунка
  • Система Common Rail
  • Распределительная система

Теперь давайте подробно обсудим все вышеперечисленные типы:

Впрыск воздуха — это метод уменьшения выбросов выхлопных газов путем нагнетания воздуха в каждое из выхлопных отверстий двигателя, так что воздух смешивается с горячими выхлопными газами и окисляет HC и CO.


В этой системе топливо нагнетается в цилиндр с помощью сжатого воздуха. В настоящее время он мало используется, потому что требует громоздкого многоступенчатого воздушного компрессора. Это приводит к увеличению веса двигателя и дальнейшему снижению выходной мощности тормоза.

Производители используют эту систему под другим именем:
Вот список различных компаний и их соответствующих названий для использования этой системы:
American Motors называет ее Air Guard
Chrysler называет ее системой впрыска воздуха
Ford называет ее системой впрыска воздуха Thermactor и
General Motor называет его Air Injector Reactor (AIR)

Как это работает?

Насос для впрыска воздуха нагнетает воздух в выхлопную систему сразу после выпускного коллектора, чтобы помочь перехватить и сжечь несгоревшее топливо.Крайне важно помочь автомобилям соответствовать государственным стандартам выбросов.

Это впрыск распыленного жидкого топлива в камеру сгорания дизельного двигателя под давлением самого жидкого топлива.

Система впрыска твердых веществ также называется безвоздушной механической системой впрыска.

В этой системе жидкое топливо впрыскивается непосредственно в камеру сгорания без помощи сжатого воздуха. Отсюда и название безвоздушной системы механического впрыска.

Теперь мы можем более подробно рассмотреть различные типы впрыска в системе впрыска твердых веществ:

  • Отдельная система насоса и форсунок:

В этой системе каждый цилиндр снабжен одним насосом и одним инжектором.

Как видно из рисунка выше, для каждого цилиндра предусмотрен отдельный дозирующий и компрессионный насос. Насос может быть расположен рядом с цилиндром, или они могут быть расположены кластером. Плунжер насоса высокого давления приводится в действие кулачком и создает давление топлива, необходимое для открытия клапана форсунки в нужное время.

Количество впрыскиваемого топлива зависит от эффективного хода плунжера.

В этой системе насос и форсунка объединены в одном корпусе.Каждый цилиндр снабжен одной насос-форсункой. Топливо подается к форсунке насосом низкого давления, где в надлежащее время коромысло приводит в действие плунжер, так что он впрыскивает топливо в цилиндр.

За счет эффективного хода плунжера регулируется количество впрыскиваемого топлива.

В этой системе насосы высокого давления подают топливо под высоким давлением в коллектор. Высокое давление в коллекторе направляет топливо к каждой форсунке, расположенной в цилиндрах этой системы.В это время клапан с механическим управлением позволяет топливу поступать в соответствующий цилиндр через форсунку. Изменяя длину хода толкателя, регулируется количество топлива, поступающего в цилиндр.

В этой системе насос, который нагнетает топливо, также измеряет его и рассчитывает время. Топливный насос после дозирования необходимого количества топлива подает его на вращающийся распределитель в нужное время для подачи в каждый цилиндр. Количество тактов впрыска за цикл для насоса равно количеству цилиндров, используемых в этой системе.

Вся вышеуказанная система впрыска твердых веществ состоит в основном из следующих компонентов:

  • Топливный бак.
  • Насос подачи топлива для подачи топлива из основного топливного бака в систему впрыска.
  • ТНВД для дозирования и повышения давления топлива для впрыска.
  • Регулятор, обеспечивающий соответствие количества впрыскиваемого топлива изменению нагрузки.
  • Форсунка для забора топлива из насоса и его распределения в камере сгорания путем распыления на мелкие капли.
  • Топливные фильтры для предотвращения попадания пыли и абразивных частиц в насос и форсунки, что сводит к минимуму износ компонентов.

Вы также можете ознакомиться с требованиями к системе впрыска топлива.

.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *