Как работает стробоскоп: Для чего нужен стробоскоп?

Содержание

Для чего нужен стробоскоп?

Скачать статью

При использовании стробоскопа для наблюдения за движущимся объектом свет оказывает такое же влияние на глаза, как и вспышка фотокамеры на плёнку. Каждый импульс стробоскопа даёт чёткое, ясное изображение, поэтому можно рассматривать мельчайшие детали объекта или поверхности на высоких скоростях без возникновения эффекта смазывания. Именно по этой причине стробоскопическое освещение используется как инструмент для визуального осмотра невооружённым глазом многих непрерывных процессов, а также для усовершенствования анализа движения или видеографии.

Стробоскопическое освещение широко применяется в тех областях промышленности, где оператор должен наблюдать за процессом производства, но наблюдение затруднено из-за эффекта смазывания. Настройки стробоскопа и получаемый результат будут зависеть от области промышленности, процесса, продукта и внешнего освещения.

 

Что такое стробоскопическое освещение?

Стробоскоп

– это источник света, который мгновенно загорается и потухает. Это инструмент для демонстрации и настройки движущихся или вибрирующих объектов с помощью подсвечивания их импульсными лампами для создания эффекта неподвижности.


Стробоскоп был изобретён в 1836 году Жозефом Антуаном Фердинаном Плато, профессором Гентского университета (Бельгия). В 1931 году профессор Массачусетского Технологического Института д-р Гарольд Юджин Эджертон разработал ксеноновую импульсную лампу. Благодаря этому изобретению стробоскоп получил применение ещё и в фотографии, а также во многих областях коммерции и промышленности.


Стробоскопическая лампа производит очень короткую вспышку света длиною в одну стотысячную секунды. Благодаря коротким вспышкам высокой интенсивности изображение предмета «застывает» на cетчатке глаза, создавая чёткий стоп-кадр. Если предмет продолжает двигаться, его движение воспринимается как серия стоп кадров, будь то движение бейсбольного мяча или танец человека под светом стробоскопа на дискотеке.

В основном люди сталкиваются с действием стробоскопа на дискотеках или при проведении осмотра двигателя с помощью стробоскопических ламп. В таких случаях частота вспышки достаточна низка, поэтому человек может с лёгкостью проследить паузу между вспышками лампы. При этом прибор, как правило, работает с частотой 10-30 вспышек в секунду (10-30 Гц) и создаёт эффект мерцания.

Когда лампа стробоскопа превышает скорость 60Гц, вспышки появляются настолько часто, что человеческий глаз не улавливаем момент включения/выключения света. Таким образом больше не ощущается раздражающего мерцания, как в вышеуказанных случаях.

Работа стробоскопов с частотой выше 60Гц внешне ничем не отличается от освещения люминесцентными лампами или лампами накаливания, кроме того, что стробоскоп освещает движущийся предмет, создавая его чёткое изображение, на котором фокусируется глаз.

 

Как работает стробоскопическая лампа?

Когда предмет движется быстро, то глаза не могут сосредоточиться на нём. В зависимости от скорости движения предмета по отношению к расстоянию от смотрящего предмет может казаться размытым (расплывчатым) изображением. Например, лопасти вентилятора при вращении кажутся полупрозрачной плоскостью. Наблюдатель пытается сконцентрироваться на лопастях, но так как они продолжают движение, глаза получают только размытую картинку:

Размытие изображения называется «motion blur» (смазывание). Из-за эффекта смазывания невозможно чётко видеть предмет, движущийся со скоростью 80 м/мин, и довольно затруднительно различить предмет, скорость которого находится в диапазоне от 40 до 80 м/мин

.

Попытки сконцентрироваться на движущемся предмете ясно демонстрируют нам ограниченность нашего зрения. Реагирование глаза на свет можно сравнить с реакцией химических веществ на плёнке фотоаппарата. Когда свет попадает на химические вещества, они активируются и формируют изображение на плёнке. Если фотографируемый объект движется слишком быстро, изображение получается смазанным. Чтобы решить эту проблему, фотограф увеличивает выдержку затвора. При короткой выдержке сокращается время активации светом химического материала. Так как затвор открыт на меньший интервал времени, объект лучше фиксируется и получается менее размытым на плёнке. Таким образом, фотограф получает более чёткое изображение. Очевидно, что мы не можем увеличить частоту восприятия наших глаз, поэтому нам необходимо подобрать подходящий фотографический затвор, который не произведёт разрушающий, раздражающий или ограничивающий наши возможности эффект.

Вспышка стробоскопической лампы замораживает движение предмета так же, как это делает затвор фотоаппарата. На вспышку длиною 10-30 мкс сетчатка глаза реагирует как на стоп-кадр. Объект, движущийся со скоростью 600 м/мин, проходит расстояние в 0,1 мм за это время, и оно представляется настолько ничтожным, что глаз воспринимает его как отсутствие движения. Таким образом устраняется эффект размытости и повышается контрастность, которая имеет решающее значение для выделения и распознавания предмета. При увеличении частоты вспышки в поле зрения глаза прокручивается последовательность изображений, которая стимулирует выявление и идентификацию дефектов. Когда глаз видит один и тот же дефект несколько раз, он сосредотачивается на нём и дефект отпечатывается в сознании.

 

Синхронизация стробоскопической вспышки

При изменении времени появления вспышки стробоскопа или интервалов между вспышками (частоты вспышек) движущийся или вращающийся объект может казаться:

  1. остановившимся
  2. немного отклоняющимся вперёд или назад.

В вышеупомянутом примере с вентилятором лопасть будет казаться неподвижной, если вспышка будет синхронизирована с определённым положением лопасти при вращении. Это происходит оттого, что стробоскопическая вспышка отображает одно и то же изображение на сетчатке глаза. Поскольку сетчатка не видит движения лопастей между импульсами стробоскопа, глаз воспринимает это как состояние покоя.

Если стробоскоп синхронизирован на частоту вспышек, немного превышающую скорость вращения вентилятора, то лопасть не будет успевать принимать то же положение при возникновении следующей вспышки. В таком режиме на сетчатке глаза будет отображена последовательность положений лопасти с отклонением назад в каждом последующем кадре. Поэтому будет казаться, что вентилятор медленно движется в обратном направлении.

Рис1: Если кажется, что вентилятор движется в обратную сторону, то частота стробоскопической вспышки выше скорости вращения лопастей:

Если стробоскоп синхронизирован на частоту вспышек, немного отстающую от скорости вращения вентилятора, то лопасть будет вставать в то же положение раньше возникновения следующей вспышки. В таком режиме на сетчатке глаза будет отображена последовательность положений лопасти с отклонением вперёд в каждом последующем кадре. Поэтому будет казаться, что вентилятор медленно движется вперёд.

Рис2: Если кажется, что вентилятор движется вперёд, то частота стробоскопической вспышки ниже скорости вращения лопастей:

 

Наблюдение за технологической линией без отпечатанного изображения

При наблюдении линейно движущейся линии, например, при обработке стали, можно наблюдать аналогичный с вентилятором алгоритм.

При наблюдении технологических линий важно поддерживать частоту вспышки выше значения 50-60 Гц. Так как при отсутствии повторяющегося шаблона глаза не могут зафиксироваться, необходимо преодолевать частоту мерцания. В таком случае устанавливается такая частота вспышки лампы, которой будет достаточно, чтобы зафиксировать «зернистую структуру» поверхности. Обычно частота составляет 65 до 85 вспышек в секунду, что значительно превышает обнаруживаемую частоту мерцания. Зерновой рисунок металлической поверхности на полосе может казаться неподвижным или «плавающим». Увеличивая или уменьшая частоту вспышки, вы можете передвигать зернистую структуру вперед или назад по полосе. После того, как вы зафиксировали зернистую структуру, любой дефект, выбивающийся из

обычной схемы прокатки, будет легко обнаружить. Такая зернистая структура является результатом процесса шлифовки валов конвейера при прокатке, которые передают свой рисунок прокатываемому материалу.

Возможно, вы столкнётесь с материалом без зернистой структуры. Например, такое можно наблюдать, когда поверхность валов конвейера гладкая, т. е. они изготовлены из нержавеющей стали высокого качества. В таком случае рекомендуется настроить частоту вспышек выше 70 Гц.

 

Инерция зрения

Существуют ошибочные представления о работе стробоскопов, которые необходимо прояснить.

Часто с работой стробоскопа ассоциируется мерцание. Благодаря феномену инерции зрения при высокой частоте вспышки мерцание не наблюдается. Лампа стробоскопа быстро включается и выключается каждую секунду, при этом каждая вспышка длится только 10 мкс за импульс. Из математического соотношения видно, что свет практически никогда не включён. Даже при частоте 60-100 Гц лампа находится в выключенном состоянии 99% времени. Тем не менее, глаз поглощает свет подобно тому, как губка впитывает влагу. Губка впитывает влагу быстро, но испаряет её очень медленно. Вспышка света активирует химические вещества глаза. Когда свет выключается (или в нашем случае в промежуток между вспышками) реакция на химические вещества угасает экспоненциально и занимает 350 мс до полного угасания.


При частоте вспышки выше 60 Гц химические вещества активируются заново быстрее, чем угасает свет, поэтому глаз не улавливает пауз между вспышками. Фотохимический процесс глаза, заключающийся в удерживания света, называется «инерцией зрения».

Каждый световой импульс освещает предмет только в течение одной стотысячной секунды или при частоте 60 Гц 6/10 000 секунды. Но при частоте выше 50-60 Гц благодаря инерции зрения промежутки темноты нивелируются и предмет кажется непрерывно освещённым.

Именно из-за инерции зрения вы не замечаете отдельных кадров кино- или телеизображения, частота которых не превышает 48-60 вспышек в секунду. Ниже представлен раскадровка обычного кинофрагмента. По этой же причине вы видите пятно после того, как вы делаете снимок с включённой вспышкой фотокамеры. Вспышка перегружает химическую реакцию сетчатки глаза, и пятно остается там на какое-то время.

 

Наблюдение за технологической линией печати

В определённых областях применения, таких как полиграфия, частота вспышки, скорее всего, будет ниже 50 Гц и световой импульс будет заметен. И в этом случае благодаря инерции глаза вы не будете испытывать дискомфорт, потому что передаваемое на сетчатку глаза изображение будет оставаться там до тех пор, пока следующая вспышка не обновит изображение.

Подобно лопастям вентилятора, синхронизированным со вспышкой, печатная серия также будет казаться неподвижной. Глазам станет дискомфортно, только когда частота будет ниже 20 Гц. Тем не менее, такая частота вспышки допускается и в определённых случаях понижается до 5 Гц.

 

Яркость против чёткости

Многие люди считают, что если на поверхность быстродвижущегося объекта падает большое количество света, то дефекты этого объекта будет легче рассмотреть.

Вернёмся к описанию работы глаза, когда на плёнке фотоаппарата появляется размытый снимок из-за продолжительности движения во время открытия затвора. Если вы не можете управлять выдержкой камеры (или глаза в данном случае), всё, что вы получаете от яркого света – это более яркий эффект смазывания.  

Поскольку у глаза нет затвора, мы создадим эффект затвора с помощью импульсной лампы стробоскопа. Лампа стробоскопа создаёт короткий световой импульс. Как упоминалось ранее, свет не горит 99% времени. Это отличается от действия ламп накаливания, люминесцентных, ртутных и галогенных ламп. Такие лампы образуют непрерывный свет, который постоянно активируют химическую реакцию глаза. Именно поэтому при таком непрерывном свете вы наблюдаете призрачные или размытые изображения быстродвижущихся предметов. При правильной установке прибора всего нескольких сотен люксов
стробоскопического света достаточно для рассмотрения мельчайших деталей. Короткий импульс света действует подобно затвору, передавая серию чётких, ясных изображений на сетчатку глаза наблюдателя. Квалифицированные инспекторы и операторы прокатного стана, которые имеют представление о дефектах поверхности, могут незамедлительно выявить изъяны при скорости до 2000 м/мин.

Неопытным операторам будет легче определять дефекты при стробоскопическом освещении, и они быстро научатся выявлять дефекты производства.

 

Влияние внешнего освещения на стробоскопическое

Стробоскопический эффект снижается, если стробоскопическое освещение смешивается с внешним освещением. Для достижения необходимого стробоскопического эффекта стробоскопическое освещение должно быть в 4 раза сильнее внешнего. Под внешним освещением понимается весь свет, который прямо или косвенно попадает на осматриваемую поверхность, т.е. свет от ламп накаливания, люминесцентных, кварцевых, натриевых/ртутных ламп, а также и естественный свет. В некоторых случаях необходимо принять меры по уменьшению интенсивности данных видов освещения. 

Рис: Ослабление стробоскопического эффекта при соотношении внешнего и стробоскопического освещения 1/1 вместо 1/4:

При усилении внешнего освещения стробоскопический эффект ослабевает. В таком случае следует либо установить стробоскоп ближе к поверхности, либо усилить стробоскопическое освещение, либо  оборудовать колпак для защиты наблюдаемой зоны от внешнего света.

 

Стробоскопическое освещение в промышленности

При использовании стробоскопа для наблюдения за движущимся объектом свет оказывает такое же влияние на глаза, как и вспышка фотокамеры на плёнку. Каждый импульс стробоскопа даёт чёткое, ясное изображение, поэтому можно рассматривать мельчайшие детали объекта или поверхности на высоких скоростях без возникновения эффекта смазывания. Именно по этой причине стробоскопическое освещение используется как инструмент для визуального осмотра невооружённым глазом многих непрерывных процессов, а также для усовершенствования анализа движения или видеографии.

Стробоскопическое освещение широко применяется в тех областях промышленности, где оператор должен наблюдать за процессом производства, но наблюдение затруднено из-за эффекта смазывания. Настройки стробоскопа и получаемый результат будут зависеть от области промышленности, процесса, продукта и внешнего освещения.

Существует два основных типа процессов, для наблюдения которых используется стробоскоп: вращательные и линейные:

  • При наблюдении за такими вращательными элементами, как двигатели, валы, зубчатые колёса, лопасти и т. п. наблюдаемый объект вращается в определённом пространстве и может быть зафиксирован для проверки на наличие дефектов, вибрации, рассогласованности, бокового зазора и т. д.
  • При наблюдении за линейными процессами, такими как производство стали, текстиля, пластмассы, печать и переработка происходит проверка на наличие двух типов дефектов – повторяющихся и случайных. Повторяющийся дефект воспроизводится через фиксированные интервалы. Это может быть отметка вальца на стали или царапина на печатной форме. Случайный дефект появляется на наблюдаемых поверхностях один раз или несколько раз через разные интервалы. Поскольку стробоскопический эффект обеспечивает передачу нескольких изображений на сетчатку глаза, одиночный дефект проявляется несколько раз, когда он проходит под стробоскопом, что облегчает его обнаружение оператором. Как упоминалось ранее, если глаз видит изображение несколько раз, оно запоминается. Таким образом, оператор сможет выявить и повторяющиеся, и случайные дефекты и принять соответствующие меры.

Важнейшей областью применения стробоскопов Unilux является осмотр поверхностей в сетях и полосах при производстве бумаги, печати, переработке, обработке металлов, также стробоскопы используются и во многих других отраслях.


Источник публикации – Unilux Europe GmbH

Стробоскоп — это… Что такое Стробоскоп?

        первоначально прибор-игрушка, представлявшая два диска, вращающихся на общей оси (рис. 1). На одном диске, как на циферблате часов, рисовались фигурки в различных фазах какого-либо повторяющегося процесса, например отдельные положения движения шагающего человека. Ещё один диск, скрепленный с первым, прорезан радикальными щелями, через которые можно видеть расположенные за ними картинки.

         При вращении дисков зритель в смотровое окошко и сквозь щели вращающегося диска видит последовательно на короткие мгновения каждую из картинок и это расчленённое по времени на дискретные фазы движение объекта воспринимается им в виде слитного образа, совершающего непрерывное движение. Такое синтезирование единого зрительного образа движущегося предмета из последовательно предъявляемых через некоторые интервалы на короткое время отдельных его смещенных друг по отношению к другу изображений называется стробоскопическим эффектом (См. Стробоскопический эффект) 1-го типа.          Принцип действия древней игрушки был основан на фундаментальных свойствах аппарата человеческого зрительного восприятия, что позволило с успехом использовать его в ряде научных и технических применений. Так, на нём основано воспроизведение движущихся изображений в современной кинематографии (См. Кинематография) и телевидении (См. Телевидение).

         Стробоскопический эффект 2-го типа — иллюзия не движения, а, напротив, неподвижности предмета, на самом деле совершающего движения. При этом условием кажущейся остановки стробоскопически наблюдаемого предмета, совершающего периодическое движение с частотой fo будет равенство или кратность этой частоты частоте стробоскопического освещения fcтр.

         Если, например, частота вспышек света, который освещает вращающуюся спицу (рис. 2), будет равна числу оборотов спицы за 1 сек, то спица будет освещаться каждый раз в одном и том же положении «О» (в одинаковой фазе кругового движения) и зрительно она будет казаться неподвижной. Если же частоту появления вспышек несколько уменьшить, то период между вспышками увеличится и за этот период спица будет совершать целый оборот, плюс поворот ещё на небольшой угол, следовательно, при каждой следующей вспышке она будет казаться немного сдвинутой в направлении вращения, последовательно в положении 1, 2,3 и т.д., т. е. она будет казаться медленно вращающейся в том же направлении, как это показано на рис. 2, а.

         В том случае, когда частота вспышек немного больше числа оборотов спицы в сек, каждая последующая вспышка будет освещать спицу в положении, пока она не сделала ещё полного оборота, т. е. последовательно в положениях 0, 1, 2, 3. .. и т.д. (рис. 2, б), и она будет казаться медленно вращающейся в противоположную сторону от её реального движения. Такое же кажущееся обратное вращение спицы возникает и в случае, когда частота вспышек почти вдвое, втрое или вчетверо меньше вращения спицы. Это — т. н. стробоскопическая иллюзия, которую мы иногда видим в кино.

         Следует заметить, что при частотах вспышек, кратных частоте вращения спицы, возникает удвоение, утроение, учетверение и т.п. увеличение кажущегося числа спиц, застывающих неподвижно на равных друг от друга угловых расстояниях по ходу её вращения.

         Для использования стробоскопического эффекта требуются источники прерывистого освещения с регулируемой частотой. В настоящее время (последняя четверть 20 в.) для периодического пропускания света применяются всевозможные оптические и электронные затворы (например, Керра ячейка), а также источники импульсного освещения с регулируемыми параметрами. Приборы такого рода и называются собственно стробоскопами.          Развитие стробоскопических методов привело к созданию стробирования (См. Стробирование) выделения отдельной фазы движения какого-либо объекта путём пропускания света от него к глазу наблюдателя с определённой Скважностью, чем достигается отделение этой фазы от мешающих наблюдателю др. фаз движения этого объекта или иных помех.          С. находят широкое применение во всех областях человеческой практики, связанных с использованием стробоскопического эффекта. Так, стробоскопический эффект 2-го типа применяется при изучении движения объектов с периодической структурой (вращающиеся диски, движущиеся линейки с делениями, колёса, валы и т.п.), его используют, например, в индикаторах угловых скоростей. См. также статьи Стробоскопические приборы, Стробоскопический метод измерений, Стробоскопия и лит. при них.

         Н. Л. Валюс.

        

        Рис. 1 к ст. Стробоскоп.

        

        Рис. 2 к ст. Стробоскоп.

Польза от тактического фонаря стробоскопа: миф или реальность ?

Многие из наших клиентов, которым мы привезли «тактический фонарик» под заказ — нет, да нет, да и спрашивают, про полезность такой вещи, как функция стробоскопа (быстро воспроизводить повторяющиеся яркие световые импульсы). К сожалению, в Российской практике стробоскопический ослепляющий эффект  практически не освещен, что привело к возникновению многих мифов и заблуждений. В этой  статье мы попытаемся это исправить. Начать следует с предыстории: как появился эффект стробоскопа и что это собственно такое.

Что такое стробоскоп ?
Стробоскопом (от греческого «strobos» (кружение, беспорядочное движение) и «skopio» (смотрю)) называется источник света (лампа, фонарик, прожектор), вспыхивающий с разной частотой. У человека, увидевшего эти вспышки возникает ощущение вспышек электросварки, звездного неба или разряда молнии. Соответственно, под тактическим фонарем стробоскопом подразумевается яркий фонарь, способный быстро мигать (мерцать) и ослеплять противника. Однако, как оценить эффективность этого ослепления (и, соответственно, оценить пользу от стробоскопа) ?. Для начала следует углубиться в теорию.

Эффект Буча
Еще в далеких 1950-х годах была «открыта» дезоориентационная способность световых вспышек. При воздействии низкочастотного мигающего или мерцающего света человек начинал испытывать легкое помутнение сознание. На данный феномен не стали обращать большое внимание, если бы не участившиеся жалобы экипажей вертолетов, жалующихся не дезориентацию и головокружение. Глядя на небо, члены экипажа подвергались слепящему воздействию солнца: вращающиеся лопасти вертолета заставляли свет «мерцать», создавая эффект стробоскопа и мешая пилотам управлять машиной, вследствии чего довольно часто случались ЧП.

Из-за поднявшейся в прессе шумихи начались научные изыскания. Первым в мире научно это воздействие описал доктор Буч. Его имя к сожалению было утеряно, однако лавры первооткрывателя остались. В дальнейшем психологическое воздействие стробоскопа было названо «дисбалансом клеточной активности мозга, вызванной воздействием низкочастотного мерцания яркого света«. Для достижения нужного эффекта, «мерцание» должно было производиться с частотой от 1 до 20 герц, т.е. примерно совпадать с частотой мозговых волн человека. К слову сказать — приблизительно из-за тех же причин случаются эпилептические припадки. Также этот эффект называют «Flicker vertigo» (Wikipedia.org/wiki/Flicker_vertigo). Нынче, если обратить внимание, можно заметить, что практически все пилоты вертолетов (в т.ч. в к\ф) носят солнцезащитные поляризационные очки — одной из причин для этого является тот самый «эффект Буча».

Принципы повсеместного развития стробоскопа
История тактических фонарей далеко не нова — были раньше, есть и сейчас. Однако, раньше возможность фонаря с функцией стробоскопа не могла быть реализована чисто физически в силу неподходящей для этого технологии.

Сейчас, когда ламповые фонари практически отошли в прошлое и почти 95% продукции реализовано на светодиодах — для строба открыты все дороги. Решается это парой секунд в программировании микроконтроллера. Помимо функции стробоскопа (быстрое мигание) светодиоды позволяют реализовать и функции попроще: например подачу SOS сигнала или режим маяка.

Тем не менее, зачастую производители пихают стробоскоп до кучи (лишь бы был), хитро используя маркетинг в своих целях. Мол, не сомневайтесь, уважаемый покупатель, он вам пригодится. Как определить, является ли наличие строба в фонаре хитрой уловкой продавцов, или же это действительно важная тактическая инновация ?

Необходимо взвесить плюсы и минусы.

___________________________________________

 

Стробоскоп нарушает зрение противника, т.е. напрямую влияет на его возможность применять грубую физическую силу а также нарушает психическое состояние, вызывая эффект смятения, т.е. напрямую влияет на его возможность предпринимать ЛЮБЫЕ действия (в т.ч. стрелять по вам на поражение, коли говорить НЕ о физическом противодействии).


Стробоскопический эффект базируется на восприятии мозгом так называемого «остаточного изображения». С подобным сталкивался практически каждый из нас, долгое время посмотрев на солнце или на яркую лампочку. В мозгу человека (а не на сетчатке, как многие думают) создается так называемый «визуальный отпечаток», вызванный кратковременным воздействием точечного света с высоким уровнем интенсивности. Этот отпечаток представляет из себя нематериальное изображение (т.е. не въевшееся в сетчатку), которое может меняться (размеры, форма и т.д.) в зависимости от длительности и частоты светового воздействия. Эффект дезориентации и головокружения возникает в том случае, если подобные отпечатки-изображения возникают и пропадают с слишком большой скоростью, т.е. меняются так часто, что мозг не успевает приспособиться к их циклу и частоте.
Стробоскопические тактические фонари не позволяют фоторецепторам обнуляться, т.е. вызывают тот самый сбой в поле зрения человека. Яркий мерцающий свет обманывает человеческое восприятие, имитируя информацию, поступающую сегментами, в то время как мозг пытается склеить из них цельный образ, который меняется с каждой вспышкой. «Остаточные изображения» с каждым мерцанием накапливаются, что загружает мозг противника по полной и практически мгновенно вызывает дезоориентацию.
Самодельный прототип подобного «оружия» уже многие годы является инструментом психологического давления на допросе: мало кто не видел, как преступнику светят лампой в глаза.

В кино мы неоднократно видели, как добрые дяди следователи-полисмены  помещают источник яркого света прямо напротив глаз подозреваемого. Если напрячь память — многие вспомнят сцены, где лампа при допросе покачивалась. Тогда, за неимением светодиодных фонарей, эффект стробоскопа создавали именно так, выводя допрашиваемого из ментального равновесия. Если же лампа не покачивалась, то ее перемещали (например, двигали по столу) вручную, дополняя это криками «Будешь отвечать ?! Говори ! Ну же !». Это делалось для того,  чтобы аудиальное воздействие (крики) имело больший психологический эффект в силу того, что визуальное восприятие мира (зрение) недоступно из-за слепящего эффекта.

Это, кстати говоря, одна из главных причин, по которой нельзя сидеть лицом к костру (в особенности смотря на огонь). Так сидят лишь беспечные туристы, либо полные новички в «выживальщическом» ремесле — профессионалы знают, что огонь «притягивает взгляд». По научному это «притягивание» объясняется тем, что человеческий глаз активнее реагирует на движении, нежели на неподвижность. Этим пользуются многие преподаватели и учителя, когда на уроке не сидят неподвижно за своим столом, а расхаживают по кабинету, вынуждая студентов и учеников следить за собой и концентрировать внимание. Также, это объясняется тем, что огонь различается по интенсивности светового воздействия и световому градиенту (одни куски светлее, другие темнее, цвет и сила света постоянно меняется (языки и всполохи пламени, мерцающие угли и прочее)). Это означает засвечивание определенных частей глаза и потерю боеспособности (засвеченная часть глаза временно не будет видеть движения).

Подобный эффект лишний раз доказывает эффективность стробоскопа.

Резюмируя плюсы и преимущества стробоскопа:

У фонаря с функцией стробоскопа есть несколько наиболее достоверных и неоднократно проверенных временем плюсов, а именно :
1) Дезориентирует противника
2) Нарушает прямое и периферийное зрение противника
3) Увеличивает время адаптации противника к ситуации
4) Вызывает кратковременный страх, смятение, оцепенение
5) Увеличивает время восстановления ночного зрения противника
6) Создает визуальное и психологическое препятствие против агрессии

Тем не менее, помимо преимуществ существуют некоторые недостатки и тактические проблемы, способные сильно помешаеть в реальном боевом столкновении.

___________________________________________

   

При световом воздействии БЕЗ сопровождения источника постоянного (не мерцающего) света (например фонарь налобник или напарник с обычным фонарем или офицер прикрытия с прожектором) стробоскоп «размазывает» зрение его владельца, что приводит к тому, что человек без опыта применения строба ТЕРЯЕТ возможность замечать медленные или плавные движения. Подобный эффект вы могли встретить практически на любой дискотеке, попробовав поводить рукой в мелькающих лучах света.

В США, среди офицеров полиции, была проведена серия тестов, имитирующих реальное задержание. Офицер становился напротив преступника и включал фонарь стробоскоп, деморализуя противника. Результаты тестов показали, что инструктор, играющий роль бандита, абсолютно спокойно мог подвинуть руки на дистанцию до 20-30 см длинной, до того, как полицейский замечал его угрожающие намерения. Стоит заметить, что если в роли «бандита» выступаете вы, то движения следует сделать максимально плавными, медленными и осторожными, чтобы избежать преждевременного обнаружения.
Кроме того, воздействие любого яркого света на сетчатку в условиях низкой освещенности (в темноте в особенности) мгновенно и напрочь отшибают ночное зрение. Исследований на тему «что сильнее бьет по глазам в темноте — строб или прямой свет» практически нету, но де-факто строб будет воздействовать СИЛЬНЕЕ, т.к. помимо засветки ночного зрения он привносит эффект дезориентации в пространстве. Это связано с тем, что период адаптации зрения человека после кратковременной вспышки гораздо короче, нежели после серии мерцаний.
Если объяснять на пальцах, то многие из нас, находясь в темноте, неоднократно получали «световой удар» по глазам — например подсветкой от телефона (посмотрели время ночью), включившимся телевизором (на яркой сцене, особенно с полной белой засветкой экрана) или например монитором компьютера (легли отдохнуть, послушали пару песен, монитор погас (тайм-аут экрана). встали, «пробудили» монитор — по глазам резануло).

Можно взять еще более жизненные варианты — случайный отсвет от обычного зеркала в темноте, вызывающий дискомфорт и мгновенную дезориентацию. Все эти случаи — единичная вспышка, после которой зрение способно БЫСТРО (буквально за 1-2 секунды) восстановиться и адаптироваться к изменившимся условиям, т.е. ночное зрение вновь «включается». После череды же подобных вспышек глаза начинают уставать и «терять» картинку.
Подобное можно наблюдать на темной аллее, освещенной фонарями, стоящими довольно далеко друг от друга (т.е. когда между освещенными площадями попадаются «кусочки» темноты.

Человек, шагая по такой местности в темное время суток, постоянно подвергается дезориентации, т.к. глаз не успевает сфокусировать резкость и окружающее темное пространство «размыливается». Подобные моменты неоднократно показывались в кино — когда жертва, идя по освещенной подобным способом улице,  не замечает следящего за ней маньяка.
Те, кто неоднократно бывают за рулем на НЕосвещенном шоссе в темное время суток — прекрасно поймут данную часть статьи, т.к. по сути постоянно подвергаются «эффекту стробоскопа» от встречных машин. Каждая из них движется с разной скоростью и имеет свой тип фары с разным углом наклона к земле и разной интенсивностью освещения, а также разным типом  светового элемента (лампа накаливания, ксенон и т.д.).  Водитель авто получает по глазам вспышки разной частоты, яркости и интенсивности, что постоянно держит его полуслепым и НЕспособным быстро отреагировать на экстренное изменение дорожной ситуации. Если же еще начинается снег или дождь, где каждая из капель, по сути, является фокусирующей свет линзой…

Связано сие «ослепление» с так называемым фактором «темновой адаптации глаз». Если вкратце, то заключается оно в следующем :
0) темновая адаптация начинается с момента погружения глаз в темноту и делится на три стадии
1) во время первой (15-30 мин в зависимости от возраста и состояния зрения) происходит наболее интенсивная адаптация к условиям малой освещенности (или полного отсутствия света)
2) во время второй (30-60 мин) происходит постепенное и непрерывное нарастание световой чувствительности
3) во время третьей (60-80 мин) происходит окончательная и полная адаптация к темноте и полноценное «включение» ночного зрения.
Это происходит из-за того, что человеческий глаз состоит из нескольких слоев нервных клеток, заканчивающихся концевым аппаратом: колбочками и палочками, которые и представляют собой рецепторы света. Эти рецепторы различным образом реагируют на разную интенсивность света. Колбочки обладают более низкой чувствительностью и представляют собой аппарат дневного света, позволяющий различать цвета. Палочки — наоборот, отличаются высокой чувствительностью к слабым интенсивностям света и являются аппаратами ночного зрения (их в сетчатке намного больше).
Иными словами, адаптация происходит лишь после того, как слои данных рецепторов адаптируются и «устаканятся» в вашем глазу.
При эффекте стробоскопа «устаканиться» они не могут, т.к. вынуждены постоянно реагировать на очередное изменение цвета и освещенности «видимого» пространства. Это проявляется даже в мелочах — практически любой человек хоть раз выходил из ярко освещенного помещения на темное крыльцо, где сразу же «терялся» и становился практически слепым. Или наоборот — из темного, не освещенного подъезда, выйти на свет. Самый интересный факт, что после подобной смены локаций человек НЕ СПОСОБЕН вести эффективное наблюдение приблизительно вплоть до середины второй стадии, т.е. практически 45 минут человек не представляет из себя достойного часового.
Согласно динамике темновой адаптации глаз, через 5 минут чувствительность глаза увеличивается всего лишь на 30% от исходного уровня, а через 15-20 минут — на 80%. Это время зависит от «перепада» между старой и новой, устанавливающейся чувствительностью. Одно дело, когда человек погружается в темноту из полумрака, другое — когда он предварительно находился в ярко освещенном помещении. Тогда же, когда человек постоянно чередует освещенные и неосвещенные локации, чувствительность глаза падает еще ниже 30%. «Слепота» максимальна тогда, когда человек погружается в темноту сразу после преодоления освещенного участка. В случае со стробоскопом негативным фактором является то, что использующий строб человек САМ подвергается его воздействию, пусть и в значительно меньшей степени, постоянно попадая из освещенного «участка» во тьму.

Резюмируя вкратце минусы и недостатки стробоскопа:

1) Стробоскоп мешает замечать медленные или плавные движения
2) Стробоскоп слепит своего владельца, даже если направлен в другую сторону
3) Боевое использование стробоскопа противопоказано не привыкшим к его воздействию новичкам
4) Все вышеперечисленные пункты решаются наличием независимого дополнительного источника ПОСТОЯННОГО  света, т.е. второго НЕ мерцающего фонаря (напр. налобного) или напарника с фонарем.
_______________________________________

Необходимость использования стробоскопа

В ходе полноценного боевого столкновения недостаточная информированность и нехватка данных о противнике сами по себе являются сильным психологическим фактором, вызывающим стресс, а также… страх. Именно на этом базируется «тактический» стробоскоп — на визуальном и психологическом давлении на врага. По сути своей, дезориентация перед стробом — это страх перед неизвестностью, перед непонятным «пугающим» воздействием.  Одна из задач полицеской мигалки – именно такое воздействие (вращающийся либо мигающий проблесковый маячок создает тот самый стробоскопический эффект).

Находясь под воздействием вспышек, в большинстве своем человек ограничен в способности получать визуальную информацию о происходящем вокруг, т.е. его внимание не способно ни на чем сконцентрироваться, что приводит к моментальному дискомфорту, а следом и постепенному зарождению страха. Террористы не способны идентифицировать размер  и угрозы (полиции, спецназа), количество штурмующих, их физическое присутствие, точное местоположение, условия окружающей среды и многое другие. Все это служит достаточно сильным сдерживающим фактором и может быть весьма и весьма эффективно в умелых руках. Оценить эффективность подобного болееменее можно по вот этому видео :

Даже несмотря на опосредованное воздействие (через камеру) становится заметно — со стробоскопом перемещения проходят намного эффективнее (менее заметными для противника).
В ходе тестов офицеров полиции США было выявлено, что передвижение с применением стробоскопа намного эффективнее, нежели без него. Используя тактический строб, офицер успевал пройти до 25 футов (~8 метров) ДО ТОГО, как «бандит» замечал, что он движется. Практически все перемещения офицера на меньшие расстояния оставались незамеченными и неправильно или не точно опознанными. В тех же тестах при СТАТИЧНОМ воздействии (т.е. офицер стоял на месте) стробоскоп терял свою эффективность намного быстрее. Однако, важную роль здесь играет светочувствительность периферийного зрения. Если стробоскоп статичен (находится на одном месте), а его владелец смещен чуть дальше (например, стоит в нескольких шагах сбоку), то велики шансы того, что враг либо не заметит владельца, либо  не сможет адекватно оценить степень угрозы и постарается в первую очередь выбить сам стробоскоп. Иными словами, если положить мерцающий фонарик, а самому отойти и занять огневую позицию чуть в стороне — вы окажетесь в большей безопасности, нежели скрываясь за стробоскопом. Подобные тактики идеальны при защите объектов или удержании коридоров и прочих узких мест.

Резюмируя вкратце :

1) Тактический стробоскоп вещь больше полезная, нежели наоборот
2) Наибольшую эффективность строб выдает при постоянном перемещении своего носителя
3) Динамический стробоскоп (перемещающийся) эффективен в атаке
4) Статический стробоскоп (неподвижный) эффективен при оборонительной тактике и удержании позиций

________________________________________

Частота стробоскопа
Существенную роль играет частота мерцания стробоскопа:
— Частота до 2 герц (1-2 вспышки в секунду) используется в пожарных сигнализациях, школах, больницах, стадионах и тд и является полностью безопасной.
— Частота до 8 герц (6-8 вспышек в секунду)  оказывает на человека незначительное воздействие (возможны зрительные затруднения и появление разноцветных засветов).
— Частота до 12 герц (10-12 вспышек в секунду) оказывает полноценный стробоскопический ослепляющий эффект
— Частота до 16 герц (14-16 вспышек в секунду) оказывает полноценный стробоскопический ослепляющий эффект
— Частота до 25 герц (23-25 вспышек в секунду) мало эффективна и практически не оказывает ослепляющего эффекта
Большинство современных «тактических» фонарей стробоскопов имеют заводское ограничение по частоте мерцания в 10-12 герц (10-12 вспышек в секунду). Как правило, этого вполне достаточно для ослепления.

________________________________________

Стробоскоп, эпилептические припадки и Закон о Полиции
Пусть и редко, но стробоскопический эффект способен вызвать у ослепляемого человека судороги и приступ светочувствительной эпилепсии. Одним из примеров подобного может служить случай, произошедший в 1997 году в Японии. Во время показа одной из серий мультсериала «Pokemon» был изображен большой взрыв, представляющий собой чередование мигающих синих и красных огней, в результате чего 685 детей, увидевших эту сцену, были отправлены в госпиталь. Причиной этому было то, что показанный взрыв представлял собой стробоскопические вспышки, задействовавшие несколько цветов с частотой приблизительно в 20 герц. Несмотря на то, что 90% из 685 госпитализированных детей жаловались всего лишь на головокружение, некоторых из них пришлось положить на лечение в силу индивидуальных особенностей.
Подобная практика имеется и в архивах спецслужб — в основном западных, ибо в Российских МВД подобное мало задокументировано. Некоторые из преступников, на задержание которых офицеры полиции пришли с фонариком-стробоскопом, впадали в ступор и испытывали незначительный приступ судорог, что позволяло скрутить их без особых усилий. В большинстве случаев это были люди, находящиеся под воздействием ПАВ (наркотических средств), либо воздействием сильного алкоголя. В отличии от электрошокера и прочих подобных инструментов воздействия на преступников, фонарь-стробоскоп не является спец.средством, разрешен к свободной продаже и полностью легален. В случае приступа судорог у пойманного преступника офицер полиции, использовавший стробоскоп, не попадает под действия Закона О Полиции т.к. нанесенный им вред не являлся умышленным, а также сам по себе не попадает под категорию «вреда» или «насилия» (обычный фонарь).

________________________________________

Заключение:
В заключение можно сказать, что фонарь с функцией стробоскопа — вещь полезная и нужная и может пригодиться в трудный момент. Плюсы стробоскопического ослепляющего эффекта перевешивают минусы — всего то и требуется, что потренироваться и привыкнуть к стробу перед его «боевым использованием».
Купить тактический фонарь с функцией стробоскопа можно под заказ в нашем магазине.

Схема стробоскопа авто УОЗ » Паятель.

Ру
Одним из важнейших условий исправной работы автомобильного бензинового двигателя является правильная установка угла опережения зажигания. В двигателях автомобилей ВАЗ установка угла опережения зажигания производится по четырем меткам, — одной на шкиве коленвала, и трем на корпусе блока. Обычно, для регулировки зажигания пользуются довольно громоздким прибором, — стробоскопом.


По питанию стробоскоп подключают к аккумулятору автомобиля, а третий провод, — к свечному проводу первого цилиндра. При работающем двигателе лампа стробоскопа вспыхивает каждый раз, как только импульс высокого напряжения поступает на свечу первого цилиндра. Свет лампы направляют на метки.

В результате синхронного вспыхивания лампы мы видим четыре метки, три на блоке и одну на шкиве, которая нам кажется неподвижной. По взаимному расположению этих меток определяют правильность установки зажигания (метка на шкиве должна быть напротив средней метки на блоке, если это не так, нужно поправить поворотом корпуса трамблера).

Стандартный стробоскоп довольно громоздкий, тяжелый и хрупкий прибор, в основном, благодаря имеющейся в нем газоразрядной лампе и импульсному трансформатору. Но, используя современную элементную базу, можно сделать стробоскоп немногим больше шариковой ручки.

На рисунке 1 показана схема стробоскопа, в котором вместо газоразрядной лампы работает светодиодная автомобильная лампочка на 12V (сейчас такие светодиоды-лампы стало модно устанавливать в подфарники вместо ламп накаливания).

Подключается прибор к системам автомобиля тремя проводами с зажимами Крокодил. Два — к аккумулятору, а третий к проводу 1-го цилиндра. Третий Крокодил (подключаемый к свечному проводу) немного переделан, — его зубы загнуты внутрь, чтобы не портить свечной провод, и он скорее напоминает металлическую прищепку.

Как только импульс высокого напряжения поступает на свечу 1-го цилиндра, через емкость между жилой свечного провода и корпусом Крокодила-прищепки всплеск напряжения поступает на вывод 2 элемента D1. 1 (стабилитрон VD1 защищает вход элемента от перенапряжения). Одновибратор на элементах D1.1-D1.2 формирует импульс, длительность которого около 1 mS.

Этот импульс через буферный каскад на элементах D1.3 и D1.4 поступает на базу транзистора VT1, входящего в состав импульсного ключа VT1-VT2. Ключ открывается и вспыхивает светодиодная лампочка HL2.

Теперь о деталях схемы. С1, R1 и R2 распаяны непосредственно в ручке Крокодила, подключаемого на свечной провод.

Соединительный кабель, — мягкий экранированный, длиной не более 50 см. Для подключению к аккумулятору, — обычные провода, как для переноски, любой длины (в разумных пределах). Диод VD2 служит дня защиты схемы от случайной переплюсовки питания. Светодиод HL1 — индикатор правильного подключения к аккумулятору.

Основой для прибора послужил цилиндрический китайский карманный фонарик. Все его внутренности (выключатель лампочка, батарейки) удалены, оставлен пустой корпус и конический отражатель. Основание отражателя немного расширено так, чтобы в него можно было установить светодиодную автомобильную лампочку.

Рис.2
В корпусе размещена печатная плата (рис. 2) на которой смонтировано большинство деталей. В корпусе просверлены отверстия под соединительные провода и светодиод HL1.

Подстроечный резистор R4 служит для установки длительности вспышки HL2 такой, при которой метка на вращающемся шкиве работающего двигателя видна неподвижной и не размазанной, но видимость, при этом остается достаточной.

Если прибор не реагирует на импульсы в свечном проводе, к которому подключен Крокодил-прищепка, или реагировать начинает только при сильном сжатии Крокодила, нужно увеличить сопротивление R2.

Вместо светодиодной лампочки можно использовать обычный сверхяркий светодиод, включив его через резистор сопротивлением около 10 Оm. Но пользоваться стробоскопом будет не так удобно, потому что из-за меньшей яркости света нужно будет его располагать ближе к меткам на двигателе.

Проверка и установка момента зажигания

Опытный автолюбитель в большинстве случаев должен почувствовать, что с двигателем не все в порядке. Для автолюбителя-новичка ненормальности в работе могут оставаться долго незамеченными, а когда он поймет, что дело не ладно, то может быть уже поздно.

Вот почему завод рекомендует проверять правильность установки момента зажигания при каждом техническом обслуживании.

Нормальная работа двигателя обеспечивается правильной установкой опережения зажигания. В случае позднего зажигания из-за неполноты сгорания рабочей смеси двигатель теряет мощность, приемистость, перегревается и расходует значительно больше топлива, чем должен.

В случае другой крайности, т. е. при слишком раннем зажигании, возникают детонационные стуки, случаются прогары поршней, клапанов и пр. В силу этих возможных неприятностей, правильность установки момента зажигания должна быть под пристальным и постоянным контролем.

Хотя выполнение этой операции и требует определенного навыка, выполнять ее при условии соблюдения приводимых ниже рекомендаций под силу любому автолюбителю.

Установка момента зажигания осуществляется по совпадению контрольных меток, расположенных на шкиве коленчатого вала и крышке цепного привода механизма газораспределения (передняя крышка блока цилиндров). Хотим напомнить, что на крышке 3 цепного привода имеются три метки.

Установка момента зажигания

При совпадении установочной метки на шкиве (на торце в этом месте имеется прилив) с меткой 4 на крышке, коленчатый вал устанавливается с опережением зажигания на 10°, с меткой 5 — на 5°, а с меткой 6 (самая длинная) — на 0°. Обычно метку на шкиве совмещают с меткой 5 на крышке.

Метка верхней мертвой точки (ВМТ) первого цилиндра

Начальный угол опережения зажигания при использовании бензина с октановым числом 93 и 95 составляет 5° (средняя метка на передней крышке).

Для проведения регулировки и правильной установки момента зажигания, прежде всего необходимо установить поршень первого цилиндра в положение конца такта сжатия.

Чтобы найти это положение, следует вывернуть свечу, в свечное отверстие вставить резиновую пробку или заткнуть его пальцем руки и, медленно поворачивая коленчатый вал с помощью пусковой рукоятки, определить повышение давления в цилиндре.

Следует помнить и о порядке работы цилиндров: 1-3-4-2.

Регулировка зажигания

Проверять и регулировать момент зажигания удобно с помощью специального прибора — стробоскопа. При отсутствии стробоскопа возможно проверить и отрегулировать зажигание с помощью контрольной лампы или вольтметра.

Обратите внимание! Момент зажигания в бесконтактной системе (с датчиком-распределителем и коммутатором) проверяется и регулируется только с помощью стробоскопа.

Проверка установки момента зажигания с помощью контрольной лампы или вольтметра

В случае, если ранее проводилась регулировка угла опережения зажигания по шкале октан-корректора, установите корпус распределителя в нулевое положение октан-корректора. (Не путать со старым механическим октан-корректором!).

Для этого зубилом на приливе блока отметьте середину шкалы, она и будет нулевым положением октан-корректора.

Для справки:

До 1980 г. автомобили ВАЗ «Жигули» комплектовались распределителем Р-125Б, который устанавливался совместно с карбюраторами типа 2103.

Данный трамблер имел механический октан-корректор, с помощью которого можно было несколько изменять угол опережения зажигания.

Следует напомнить, что поворот гайки 7 такого октан-корректора на одно деление соответствует 1° поворота коленчатого вала двигателя. Общий запас регулировки с помощью октан-корректора в ту или иную сторону от нулевой отметки составляет 5°.

Впоследствии, после 1980 года на двигатели стали устанавливать карбюратор «Озон» и распределитель 30.3706, который имеет встроенный вакуумный регулятор опережения зажигания.

Подсоедините один конец провода контрольной лампы к клемме «плюс» распределителя зажигания (клемма «плюс» — это клемма питающего провода, идущего от катушки зажигания к прерывателю-распределителю), а второй конец провода — к «массе».

Включите зажигание и, медленно проворачивая пусковой рукояткой коленчатый вал, следите за контрольной лампой. При отсутствии специального ключа, повернуть коленчатый вал можно вращая ведущее колесо. Для этого вывесите одно из задних колес и включите прямую передачу. В момент загорания лампы заметить, совместилась ли метка на шкиве с установочной меткой на передней крышке блока цилиндров. Если метки не совпадут, необходимо произвести регулировку, а именно изменить угол опережения зажигания с помощью октан-корректора.

Установка и регулировка момента зажигания без использования стробоскопа

Самый простой и относительно надежный способ установки момента зажигания в «домашних» условиях, на наш взгляд, это установка с помощью контрольной лампы. Подготовьте обтирочную ветошь, капроновую щетку, щуп, пусковую рукоятку и контрольную лампочку напряжением 12 В.

Последовательность выполнения операции такова:

1. Установите коленчатый вал в положение верхней мертвой точки такта сжатия поршня первого цилиндра. Если распределитель зажигания не снимали с двигателя, то такт сжатия первого цилиндра определяем, сняв его крышку — контакт ротора должен стоять против внутреннего контакта крышки, соединенного проводом со свечой первого цилиндра.

Если распределитель зажигания (после замены или ремонта) только установлен на двигатель — установите поршень первого цилиндра на начало такта сжатия.

2. Ослабьте затяжку гайки крепления стопорной пластины.

Поворачиваем корпус прерывателя-распределителя зажигания

3. Поворачивайте корпус распределителя вокруг своей оси по часовой стрелке до замыкания контактов прерывателя — лампа погаснет.

Медленно поворачивайте корпус распределителя против часовой стрелки до загорания лампы, при этом слегка прижимайте ротор против часовой стрелки, чтобы выбрать зазор в приводе.

Удерживая его в таком положении, затяните гайку стопорной пластины.

Проверка и установка момента зажигания при помощи стробоскопа

Порядок работ по установке момента зажигания с помощью стробоскопа практически не отличается от проверки с помощью лампы. Отличие лишь в более простой и точной установке.

1. Ослабьте ключом на «13» затяжку гайки крепления стопорной пластины распределителя зажигания.

2. Подключите стробоскоп в соответствии с инструкцией по эксплуатации.

3. Если трамблер имеет вакуумный регулятор опережения зажигания, то отсоедините от него вакуумный шланг.

4. Направьте свет от стробоскопа на шкив коленвала.

5. Запустите двигатель и доведите число оборотов до значения для установки момента зажигания (чаще всего настройка происходит на холостых оборотах). Под воздействием вспышек излучаемых стробоскопом с определенной частотой вы увидите помеченную заранее метку на шкиве коленвала неподвижной.

Поверните корпус распределителя зажигания таким образом, чтобы метка на шкиве коленчатого вала располагалась на одной линии со средней меткой на передней крышке. В этом положении затяните гайку крепления пластины прерывателя-распределителя к кронштейну.

В случае, если метка под воздействием лучей стробоскопа не стоит на одном месте и бегает «туда-сюда», это говорит о наличии неисправности в системе зажигания (контакты, конденсатор и др. ).

Корректировка угла опережения зажигания

После регулировки и установки момента зажигания необходимо произвести корректировку угла опережения зажигания. Для подстройки угла опережения под конкретный состав топлива на корпусе распределителя зажигания нанесена шкала октан-корректора.

Проверьте на слух, нормально ли работает двигатель, нет ли перебоев в работе или детонационных стуков.

Детонационные стуки легко определить, резко изменяя частоту вращения коленчатого вала в сторону увеличения. Если при этом будет прослушиваться мелкая «барабанная» дробь, значит, это детонация, и октан-корректор необходимо повернуть по часовой стрелке.

Если при резком изменении частоты вращения коленчатого вала двигатель плохо набирает обороты, как бы «задумывается» перед этим, в этом случае необходимо повернуть октан-корректор против часовой стрелки.

Позднить — по часовой, раньше — против.

Следует напомнить, что правильность установки момента зажигания эффективнее всего определяется на движущемся автомобиле. При прогретом до рабочей температуры двигателе, двигаясь на IV передаче с постоянной скоростью 50 км/ч, резко нажимаем на педаль «газа». Если при этом детонация (по звуку она похожа на звон клапанов) появится на короткое время, 1-3 сек. — момент зажигания выбран правильно. При продолжительной детонации угол опережения зажигания уменьшаем на 1/2 деления шкалы октан-корректора, а при ее отсутствии — увеличиваем. Затем проводим повторную проверку в движении и при необходимости корректировку.

Если же двигатель после установки момента зажигания работает без перебоев и детонации, значит, эта операция вам удалась.

Что такое стробоскоп? — Тахометр стробоскопа и принцип его работы

Что такое стробоскоп?

Стробоскоп или стробоскоп — это инструмент, работающий с феноменом стробоскопического эффекта. Он создает эффект остановки движения вращающегося объекта, мигая на нем светом высокой интенсивности. Этот вид неподвижного движущегося объекта можно использовать для изучения вращающихся, колеблющихся или вибрирующих объектов.

Следовательно, стробоскопический инструмент может использоваться для измерения скорости вращения или вращательного движения или угловой скорости (RPM) двигателя или любого вращающегося объекта.Угловые скорости в диапазоне от 600 до 20000 об / мин могут быть измерены с помощью тахометра стробоскопа. В тахометре стробоскопа используется мигающий свет переменной частоты, называемый строботроном.


Стробоскоп Тахометр:

Стробоскоп или стробоскопический тахометр также называют стробоскопом-фонариком, который используется для измерения угловой скорости или скорости вращения стробоскопическим методом. Он состоит из мигающей лампы переменной частоты, с помощью которой можно регулировать частоту мигания света стробоскопа.Генератор переменной частоты используется для управления частотой мигания света. Регулируя частоту генератора, можно измерить угловую скорость. Ниже показано измерение скорости вращения с помощью стробоскопического метода.

Для измерения угловой скорости вала или любого вращающегося тела. Диск с отличительными знаками установлен на вращающийся вал, угловая скорость которого должна быть измерена. Стробоскоп снабжен газоразрядной неоновой лампой.Стробоскоп настроен так, что свет мигает прямо на референтных метках.

Частота этих вспышек варьируется и регулируется с помощью ручки регулировки частоты до тех пор, пока контрольные метки на диске не станут неподвижными. Это происходит, когда частота мигающей лампы равна скорости вращения контрольных меток на диске и, следовательно, на валу. Таким образом, частота мигания стробоскопа дает угловую скорость или скорость при калибровке по скорости.

Строботрон:

Строботрон — это устройство, которое используется в качестве источника мигающего света в стробоскопическом методе измерения угловой скорости. Строботрон — это газоразрядная трубка с горячим катодом, состоящая из двух электродов (катод и анод) и двух сеток (внутренняя и внешняя). Проводимость в газоразрядной трубке начинается, когда потенциал внутренней решетки меньше или потенциал внешней решетки больше определенного значения. Затем, чтобы остановить проводимость, потенциал анода должен быть равен нулю.

Генератор переменной частоты является частью схемы строботрона и подключен к газоразрядной трубке, как показано на рисунке выше. Генератор подает сигнал, который отвечает за мигание света. Когда строботрон (газовая трубка) получает колебательный сигнал от генератора, ионизированная трубка начинает мигать. Из-за процесса мигания конденсатор C разряжается. Чтобы снова зарядиться, конденсатор C потребляет большой ток. Это приводит к высокому падению напряжения на резисторе R, что, в свою очередь, приводит к уменьшению потенциала анода.

Снижение потенциала анода останавливает ионизацию газа в газоразрядной трубке и, следовательно, прекращается мигание света. Мигание света начинается снова, когда он получает следующий импульс от генератора. Изменяя частоту генератора (т. Е. Колебательного сигнала), можно изменять частоту мигания света и, таким образом, управлять.


Преимущества тахометра стробоскопа:

  • В этом методе угловая скорость может быть измерена без физического контакта с валом i. е., не создавая нагрузки на вал.
  • Этот метод лучше всего подходит для случаев, когда физический контакт с вращающимся валом невозможен.

Недостатки тахометра стробоскопа:

  • Трудно измерить угловую скорость, если доступный свет в окружающей среде или окружающий свет превышает определенный уровень.
  • На точность измерений влияет, если частота генератора не стабилизируется для получения фиксированной частоты.

Стробоскоп | FDA

[Предыдущая глава] [Содержание] [Следующая глава]

ОТДЕЛ. ЗДРАВООХРАНЕНИЯ, ОБРАЗОВАНИЯ И
СЛУЖБА БЛАГОПОЛУЧИЯ ОБЩЕСТВЕННОГО ЗДРАВООХРАНЕНИЯ
АДМИНИСТРАЦИЯ ПРОДУКТОВ И НАРКОТИКОВ
* ORA / ORO / DEIO / IB *

Дата: 03.08.73 Номер: 12
Смежные программные области:
Продукты питания, лекарства, устройства, производство и упаковка


ITG ТЕМА: СТРОБОСКОП

Стробоскоп — это интенсивный высокоскоростной источник света, используемый для визуального анализа периодически движущихся объектов и для высокоскоростной фотосъемки. Объекты, находящиеся в быстром периодическом движении, можно изучать с помощью стробоскопа, чтобы создать оптическую иллюзию остановленного или замедленного движения. Когда частота повторения вспышек стробоскопа точно такая же, как частота движения объекта или ее целая часть, движущийся объект будет казаться неподвижным. Когда частота вспышек строба близка к этим скоростям, можно увидеть медленную копию реального движения объекта. Используя этот стробоскопический эффект, стробоскоп можно использовать для широкого круга задач, включая контроль качества и проверки.Могут быть выполнены проверки и измерения скорости роторов, шестерен, кулачков, валов, шпинделей, схем распыления жидкости, наполнения и герметизации упаковки и т. Д. Стробоскоп использовался для контроля работы высокоскоростных машин для розлива и укупорки бутылок на пивоваренных заводах. Правильное наполнение можно приблизительно определить, наблюдая за количеством пены или пены, проливающейся на верхнюю часть бутылок. С помощью специально маркированного диска и стального стержня, на котором диск может свободно вращаться, можно измерить линейные скорости конвейерных лент. Когда диск прижимается к движущемуся ремню и приводится во вращение ремнем, стробоскопическое измерение скорости диска может быть легко преобразовано в футы ремня в минуту. Стробоскоп также используется для фотографирования объектов на высокой скорости, обеспечивая время экспозиции до долей микросекунды.

General Radio Type 1538-A Strobotac {{зарегистрированная торговая марка}} является хорошим примером универсального коммерчески доступного стробоскопа. Тип 1538-A имеет два основных режима работы; Внутреннее управление вспышкой и внешнее управление вспышкой.В режиме внутренней вспышки частота мигания устройства контролируется внутренним генератором, частота вспышек которого регулируется от 110 до 150 000 вспышек в минуту. Этот общий диапазон разделен на четыре диапазона прямого считывания, отображаемых на большой ручке управления диапазоном с подсветкой. Более крупный регулятор, концентричный с ручкой диапазона, обеспечивает точную настройку частоты мигания.

Когда регулятор диапазона Strobotac {{зарегистрированная торговая марка}} настроен для одного неподвижного изображения, оператор должен быть осторожен, чтобы не запутаться из-за ложных изображений. Оператор может идентифицировать ложные изображения несколькими способами. Когда обнаружено одно неподвижное изображение, он может уменьшать частоту мигания до тех пор, пока не появится другое одиночное изображение. Если это происходит при половине первого показания регулятора диапазона, первым показанием была фактическая скорость объекта. Если изображение появляется при другом чтении, первое значение было частным. Оператор также может удвоить частоту мигания и проверить наличие двойного изображения. Если есть двойное изображение, первая скорость была основной.Самый простой способ — перевернуть переключатель диапазонов на следующий более высокий диапазон. Из-за отношения типа 1538-A «шесть к одному» между диапазонами, будет отображаться образец изображения «шесть к одному», если первая скорость является основной скоростью. При просмотре симметричных объектов (например, четырехлопастного вентилятора) некоторая часть движущегося объекта должна быть отмечена, чтобы не быть обманутыми гармоничными изображениями.

Когда наблюдаемое движение не является периодическим, необходимы внешние средства запуска объекта, чтобы синхронизировать вспышки Strobotac {{зарегистрированный товарный знак}} с наблюдаемым движением объекта.В режиме внешней вспышки Strobotac типа 1538-A {{зарегистрированная торговая марка}} может запускаться извне путем замыкания механического контакта или электрического триггера. Для срабатывания механического замыкания механический контакт прикрепляется к наблюдаемому объекту таким образом, что контакт замыкается один раз в течение каждого цикла движения объекта. Механические контакты обычно используются на малых скоростях и в ситуациях, когда нагрузка на наблюдаемый объект не критична. Фотоэлектрический датчик — наиболее распространенный источник электрического запуска, используемый для запуска строба.Это устройство содержит светочувствительный элемент, который создает электрический импульс всякий раз, когда происходит изменение уровня света, например отражение от пятна на периодическом движении объекта или прием света через отверстие в объекте с периодическим движением. Могут быть изобретены различные средства для изменения уровня освещенности.

При использовании стробоскопа пользователя предупреждают, чтобы он не стал небрежным и не прикасался к исследуемому объекту, а также не позволял спутаться одежде. Также следует соблюдать осторожность при работе со стробоскопом в присутствии людей, подверженных мерцанию-головокружению.Периодическая вспышка стробоскопа может вызвать у таких людей эпилептическое состояние, даже если ранее не диагностировалось предрасположенность к эпилепсии.

General Radio типа 1538-A может работать от источника питания от 100 до 125 В, от 50 до 60 Гц Z или от аккумуляторной никель-кадиевой батареи. Базовый блок состоит из переносного ящика (содержащего электронику) и прикрепленной на петлях лампы / отражателя, который поворачивается на 360 градусов. Чехол для переноски служит регулируемой подставкой. 1538-А — 10.63 x 6,63 x 13 дюймов, вес 7,5 фунтов и в настоящее время внесен в список федеральных поставок по цене около 575 долларов. Аккумулятор в кожаном футляре с зарядным устройством стоит примерно 125 долларов. Один общий радиоприемник типа 1538-A Strobotac {{зарегистрированная торговая марка}} с батарейным блоком и по одному фотоэлектрическому датчику каждого типа 1536-A и типа 1537-A и с задержкой вспышки типа 1531-P2 теперь доступны на условиях аренды для использования в округе от DEIO / Отдел расследований (ГФУ-132). Задержка типа 1531-P2 обеспечивает усиление и питание фотоэлектрического датчика типа 1536-A, а также используется для задержки вспышки, чтобы можно было увидеть любой элемент цикла наблюдаемых объектов.Любые округа, заинтересованные в экспериментах с {{зарегистрированным товарным знаком}} Strobotac или нуждающиеся в дополнительной информации о {{зарегистрированном товарном знаке}} Strobotac, должны связаться с DEIO / Отделом расследований по телефону (301) 443-3340.

Артикул:

  1. Справочник по стробоскопии, 1966, General Radio Co., West Concord, Mass.
  2. Справочник по высокоскоростной фотографии, второе издание, 1967, General Radio Co. , West Concord, Mass.

[Предыдущая глава] [Содержание] [Следующая глава]

  • Текущее содержание с:

Стробоскоп

Стробоскоп также известен как стробоскоп.Стробоскоп — это испытательное оборудование, которое используется для того, чтобы циклически вращающийся объект казался медленно движущимся или неподвижным. Другими словами, мы можем сказать, что стробоскоп — это устройство для мониторинга и измерения, которое использует стробоскопические эффекты для наблюдения быстрых периодических движений.

Стробоскоп имеет различные применения, например:
  • Он используется для измерения частот колебаний механических и электронных систем
  • Он используется для измерения резонансных частот
  • Используется для изучения колебаний различных тел.
  • Используется для визуального контроля быстро движущихся частей машин.

Принцип работы :

В стробоскопе используется лампа-вспышка, которая приводится в действие электронным генератором. В качестве импульсной лампы обычно используется ксеноновая лампа, хотя иногда также используются светодиоды. Генератор запускает лампу с постоянной частотой вспышки. Скорость вспышки может варьироваться от нескольких раз в секунду до тысяч раз в секунду. Лампа-вспышка также состоит из отражателя, который увеличивает ее яркость и делает вспышку более направленной.

Доступны два основных типа стробоскопов:

  • Стробоскоп общего назначения — используется для развлечений
  • Научный стробоскоп — используется для научных или экспериментальных целей.

Модели для развлечений / вечеринок имеют ограниченную скорость и низкую стоимость. Частота вспышки для развлекательных стробоскопов обычно ограничена, поскольку было обнаружено, что вспышки с определенной частотой могут вызывать эпилептические припадки у некоторых людей.У них могут быть некоторые дополнительные функции, такие как многоцветные огни (которые мигают последовательно). У научных моделей нет таких ограничений скорости. Они должны уметь фиксировать высокоскоростные периодические движения.

Стробоскопы для научных и профессиональных целей также могут иметь несколько входов для внешнего запуска. Внешний триггер отменяет внутренний генератор. С помощью этих внешних триггерных входов можно легко синхронизировать стробоскоп с движущимся оборудованием и замедлить его движение для экспериментов / исследований.

Принцип работы стробоскопа

Стробоскоп, также известный как стробоскоп, представляет собой инструмент, который заставляет циклически движущийся объект казаться медленно движущимся или неподвижным. Этот принцип используется для изучения вращающихся, совершающих возвратно-поступательное движение, колеблющихся или вибрирующих объектов. Части машин и вибрирующие струны являются типичными примерами. Стробоскопический инструмент — это устройство для мониторинга и измерения, которое использует стробоскопические эффекты и используется для наблюдения за быстрыми периодическими движениями.Такие инструменты используются, например, для измерения частот колебаний механических и электронных систем, для измерения резонансных частот, для изучения колебаний различных тел и для визуального контроля быстро движущихся частей машин. Принцип действия стробоскопических приборов заключается в следующем: объект, совершающий периодическое движение, освещается и становится видимым в отдельные промежутки времени, которые очень малы по сравнению с периодом движения объектов. Если частота световых импульсов fstr совпадает с частотой fobj периода движения объектов, то объект оказывается неподвижным.Когда эти две частоты несколько различаются, кажется, что объект выполняет движение, которое медленнее, чем реальное движение. Частота F замедленного движения — это разница между двумя частотами, то есть F = fobj fstr.

Рис. Принципиальная схема стробоскопа

Стробоскоп в чем-то похож на кинокамеру. Затвор камеры, работающий на очень высокой скорости, разбивает действие на серию очень маленьких элементов, в которых движение не заметно ни в одном элементе.Затем фильм можно проецировать с любой желаемой скоростью, воссоздавая исходное движение

со скоростью быстрее, медленнее или равной исходному движению. Серия проецируемых кадров приобретает вид непрерывного, а не прерывистого движения из-за того, что известно как постоянство зрения, способность человеческого глаза удерживать каждое изображение в течение доли секунды, таким образом заполняя промежутки между кадрами. . Удовольствие от просмотра фильмов и оптические иллюзии стробоскопии в значительной степени зависят от стойкости зрения.

Затвор кинокамеры может производить стробоскопический эффект, если он находится в синхронизме или почти синхронизируется с некоторым циклическим движением. Если из-за режущего действия затвора камеры нам позволено мгновенно мельком увидеть вращающееся колесо телеги ровно 200 раз в минуту, и если это колесо вращается со скоростью 200 оборотов в минуту, то при каждом взгляде на повозку колесо, оно будет в том же положении. Поскольку затвор камеры никогда не позволяет нам видеть колесо в любом другом положении, кажется, что оно стоит на месте.Если скорость камеры увеличена так, что теперь нам дают, скажем, 205 кадров в минуту, то каждый кадр происходит на 1/205 минуты позже, чем предыдущий. Однако колесу требуется больше времени (1/200 минуты), чтобы вернуться в заданное положение, чтобы каждое последующее изображение захватило колесо на несколько более ранней части его цикла. Эффект, не редкость для кинофильмов, заключается в том, что колесо очень медленно вращается в обратном направлении. Если мы уменьшим скорость камеры до 190 кадров в минуту, каждый кадр захватывает колесо на несколько более поздней части своего цикла, и кажется, что колесо медленно вращается вперед.Таким образом, контролируя скорость, с которой мы прерываем зрение, мы можем воспроизвести копию высокоскоростного движения практически с любой желаемой медленной скоростью, вперед или назад. Прерывистость наблюдения может быть обеспечена путем механического прерывания линии обзора (как в случае с кинокамерой) или прерывистым освещением наблюдаемого объекта.

Современный промышленный стробоскоп — это, по сути, лампа плюс электронные схемы, необходимые для ее очень быстрого включения и выключения — фактически со скоростью до 150 000 вспышек в минуту.Электронное управление миганием лампы позволяет точно устанавливать и знать частоту мигания, и эта возможность приводит к широкому использованию стробоскопов в качестве тахометров. Если можно заставить движущееся устройство казаться неподвижным, освещая его светом, мигающим со скоростью, равной скорости устройства, можно также регулировать частоту мигания до тех пор, пока устройство не станет неподвижным, а затем определить скорость устройства, зная о частоте мигания.

Рисунок. Как стробоскоп создает замедленное изображение.Стробоскоп выше мигает каждые 11/8 оборота диска. В A одиночная вспышка фиксирует диск в его нулевой позиции. В B, пока стробоскоп не мигает, диск, вращающийся по часовой стрелке, делает лучше, чем полный оборот. В C следующая вспышка захватывает диск в позиции 45. Следующая вспышка, обозначенная буквой E, происходит после того, как стробоскоп сделает еще один оборот на 11/8. Глаз, сохраняя каждое изображение, которое он получает на долю секунды, вплетает A, C и E в изображение очевидного медленного движения вперед.

Типы стробоскопов Механические В своей простейшей механической форме это вращающийся цилиндр (или чаша с приподнятым краем) с равномерно расположенными отверстиями или прорезями, расположенными на линии прямой видимости между наблюдателем и движущимся объектом. Наблюдатель одновременно смотрит через отверстия / щели на ближней и дальней стороне, при этом щели / отверстия движутся в противоположных направлениях. Когда отверстия / прорези выровнены на противоположных сторонах, объект становится видимым для наблюдателя. В качестве альтернативы, одно подвижное отверстие или прорезь можно использовать с фиксированным / неподвижным отверстием или прорезью.Стационарное отверстие или прорезь ограничивает свет до единственного пути обзора и уменьшает блики от света, проходящего через другие части движущегося отверстия / прорези. Просмотр через одну линию отверстий / щелей не работает, поскольку кажется, что отверстия / щели просто проходят по объекту без стробоскопического эффекта. Скорость вращения регулируется так, чтобы она синхронизировалась с движением наблюдаемой системы, которая, кажется, замедляется и останавливается. Иллюзия вызвана временным наложением спектров, широко известным как стробоскопический эффект.

Рис. Ранний дисковый стробоскоп Электронный В электронных версиях перфорированный диск заменен лампой, способной испускать короткие и быстрые вспышки света. Обычно используются газоразрядные или твердотельные лампы, поскольку они способны испускать свет почти мгновенно при подаче питания и так же быстро гаснуть при отключении питания. Для сравнения, лампы накаливания имеют короткий прогрев при включении, за которым следует период охлаждения при отключении питания. Эти задержки приводят к размыванию и размытию деталей частично освещенных объектов во время периодов разогрева и охлаждения.Частота вспышки регулируется так, чтобы она была равна или составляла часть циклической скорости объекта, в этот момент объект виден либо неподвижным, либо медленно движущимся назад или вперед, в зависимости от частоты вспышки. Неоновые лампы или светоизлучающие диоды обычно используются для стробоскопов низкой интенсивности. Неоновые лампы были более распространены до появления твердотельной электроники, но в большинстве стробоскопов низкой интенсивности их заменяют светодиоды. Ксеноновые лампы-вспышки используются для стробоскопов средней и высокой интенсивности.Достаточно быстрое или яркое мигание может потребовать активного охлаждения, такого как принудительное воздушное или водяное охлаждение, чтобы предотвратить плавление ксеноновой лампы-вспышки.

Рис. Электронный стробоскоп

Стробоскопы

Я заметил, что в моих статьях в последнее время было немного много полезных советов и немного мало интересных фактов. Чтобы исправить это, я потратил время на небольшое исследование стробоскопов и откопал некоторые интересные — и, надеюсь, забавные — факты о них.

Перво-наперво, давайте рассмотрим само слово «стробоскоп».Строб — это сокращенная форма стробоскопа, которая частично происходит от греческого слова «стробос», что означает «кружить». Вы можете задаться вопросом, какое отношение имеет кружение к быстро мигающему свету. Что ж, еще в 1830 году австриец по имени Симон Риттер фон Штампфер обнаружил, что он может создать интересный эффект, вращая диск с последовательными, слегка изменяющимися изображениями и просматривая изображения на этом диске через щель, достаточно маленькую, чтобы показывать только одно изображение на экране. время. Он назвал свое устройство стробоскопом, и оно стало очень популярной «научной игрушкой».»

Позвольте мне немного отвлечься и обсудить постоянство зрения и то, как это применимо к стробоскопическим эффектам. Когда мы видим объект, изображение этого объекта остается на сетчатке на короткое время (примерно 1/5 во-вторых) даже после того, как он был удален из нашего поля зрения. Когда мы видим две вещи в быстрой последовательности, с небольшими изменениями от одного к другому, наш мозг объединяет два изображения, и мы воспринимаем их как один движущийся объект. открытие этого эффекта привело к изобретению многих ранних форм анимации, включая стробоскоп.

Отлично, но мы еще не говорили о стробоскопах, не так ли? Стробоскопические огни работают, позволяя нам видеть объект лишь несколько раз в секунду. Поскольку наш мозг все еще объединяет изображения, которые он получает от сетчатки, в результате мы воспринимаем объект в «замедленном движении». Некоторые объекты, такие как вращающаяся лопасть вентилятора или движущийся ремень, можно даже заставить казаться «замороженными», если сопоставить вспышки света со скоростью вращения объекта.

В 1931 году Гарольд Эдгертон, ученый и фотограф из Массачусетского технологического института, усовершенствовал технику использования стробоскопов для сверхскоростной и покадровой фотографии.Фотографии, которые он сделал с использованием этой техники (пуля, пробивающая яблоко, и разбивающаяся лампочка, среди многих, многих других), с тех пор стали всемирно известными. На протяжении многих лет термин «стробоскопический свет» применялся к любому свету, который довольно быстро мигает, а не только к высокоскоростным фотографическим стробоскопам.

Итак, как добиться наилучшего эффекта от стробоскопа? Во-первых, помните, что стробоскопический (замедленный) эффект возникает, когда изображение видно только несколько раз в секунду.Если ваш стробоскоп конкурирует с большим количеством окружающего света, эффект может ослабнуть или полностью исчезнуть. Возможные решения включают уменьшение количества окружающего света, увеличение мощности стробоскопа или перемещение стробоскопа ближе к объекту.

Возможно, вам даже не понадобится или не захочется стробоскопический эффект. Сегодня стробоскопы также используются в индустрии развлечений как способ добавить немного вспышки. Ударную установку можно украсить несколькими «яичными вспышками» (маленькими стробоскопами, которые можно вкрутить в стандартные розетки), чтобы выделить ее на фоне сцены.Стробоскопы для яиц также могут быть встроены в арки воздушных шаров или в дисплей для привлечения внимания. Мобильные ди-джеи также могут использовать эти миниатюрные стробоскопы для улучшения своих текущих осветительных установок, добавляя визуальный эффект к своим настройкам по довольно низкой цене.

Уф! От Вены 1830-х годов до Массачусетса 1930-х годов и до сегодняшних событий и концертов, я надеюсь, вам понравился наш небольшой набег на историю и принцип работы стробоскопа. Теперь, когда в следующий раз вас засыпают мигающими огнями в темной комнате вашего любимого дома с привидениями, вы можете объяснить гулям и гремлинам, что они движутся только в замедленном темпе из-за постоянного зрения и стробоскопических эффектов.Конечно, будьте готовы к лишним мучениям потом, эти гремлины — подлые.

********************************************

Отдел обслуживания клиентов Theater Effects
[email protected]
www.theatrefx.com
Theater Effects, 1810 Airport Exchange Blvd. # 400, Erlanger, KY 41018
Телефон: 1-800-791-7646 или 513-772-7646 Факс: 513-772-3579

********************************************
Уведомление об авторских правах — воспроизведение данной статьи без письменного разрешения запрещено.Вы можете разместить ссылку на эту страницу на своем веб-сайте, если вы не скрываете ее во фрейме или окне.

Стробоскоп — обзор | ScienceDirect Topics

Шея: гипофаринкс – гортань

Визуализация гортани и глотки является важной частью полного обследования головы и шеи. Хотя расположение этих структур часто препятствует прямой визуализации, для оценки этих анатомических структур в клинических условиях можно использовать простые методы.

Непрямая ларингоскопия может выполняться с помощью простого стоматологического зеркала или гибкого оптоволоконного эндоскопа.Эти процедуры могут выполняться пациентами, которые бодрствуют и готовы сотрудничать, и обычно хорошо переносятся. Пациенты с такими симптомами, как хронический кашель, дисфония, хроническая боль в горле, дисфагия, изменения голоса и симптомы аспирации, должны пройти тщательную ларингоскопию.

Также возможно проведение ларингоскопического исследования с жесткой эндоскопией. Доступны как жесткие эндоскопы под углом 70, так и 90 °. Их можно просматривать напрямую или прикреплять с помощью видеокамеры. Жесткие прицелы со стеклянными призмами обеспечивают четкий и детальный обзор.

Прямая ларингоскопия выполняется под общим наркозом и обычно используется, когда врачу необходимо более подробно изучить любую патологию гортани и, возможно, взять биопсию тканей. Жесткий ларингоскоп вводится в дыхательные пути (его можно размещать выше и ниже голосовых складок), а ткани исследуются под микроскопом. Поскольку пациент находится без сознания, врач, разумеется, не может исследовать движения голосовых связок во время фонации.

Растущие требования к качеству голоса и тонкой микроструктуре голосовых связок требуют минимально инвазивной хирургии.Эффективное лечение заболеваний голосовых связок приведет к неизменной звуковой функции и нормальному голосу.

Постепенно разрабатывались два типа голосовых микрохирургических техник: обычная микрохирургия гортани, при которой используются холодные инструменты, такие как горловой нож, ножницы и другие инструменты, и лазерная микрохирургия гортани.

Преимущества лазера CO 2 в лечении ранней ларингокарциномы признаны учеными. Однако его лечение доброкачественных заболеваний гортани и предраковых поражений, таких как полипы голосовых связок, узелки голосовых связок и лейкоплакия голосовых связок, остается спорным.

Фонохирургия — это набор хирургических процедур, направленных на сохранение, восстановление или улучшение человеческого голоса. Фонохирургия включает фонономикрохирургию (микрохирургия голосовых складок, выполняемая с помощью ларингоскопа), ларингопластическая фонохирургия (операция на открытой шее, реструктурирующая хрящевой каркас гортани и мягких тканей) и инъекции в гортань (введение в гортань лекарственных препаратов, а также синтетических препаратов). и органические биологические вещества).

Для надлежащего выполнения фонохирургии вам потребуется определенное специальное оборудование, такое как следующее: щипцы Бушайера, микроножницы, щипцы из крокодиловой кожи, щипцы в форме сердца, ланцетный нож, ретрактор голосовых связок, ларингоскопы различных размеров.

Узкополосная визуализация (NBI)

NBI — это технология оптического улучшения изображения, которая улучшает видимость сосудов и других тканей на поверхности слизистой оболочки. Узкополосное освещение, которое сильно поглощается гемоглобином и проникает только через поверхность тканей, хорошо усиливает контраст между ними. В результате при узкополосном освещении капилляры на поверхности слизистой оболочки отображаются на мониторе коричневым цветом, а вены в подслизистой оболочке отображаются голубым цветом.

Использование NBI обеспечивает лучшее обнаружение опухолей по сравнению с традиционной визуализацией в белом свете.

Кроме того, улучшенная визуализация капиллярных сетей позволяет анализировать прогрессирование опухоли.

С помощью NBI можно идентифицировать небольшие опухоли, что позволяет обнаруживать их на более ранней стадии.

Стробоскопия гортани

Стробоскопия — это специальный метод, используемый для визуализации вибрации голосовых складок. Он использует синхронизированный мигающий свет, проходящий через гибкий или жесткий телескоп.Вспышки света от стробоскопа синхронизируются с вибрацией голосовых связок с немного меньшей скоростью, что позволяет исследователю наблюдать вибрацию голосовых связок во время воспроизведения звука в замедленном движении.

Стробоскопическая визуализация продолжает играть центральную роль в голосовых клиниках, предоставляя более подробную информацию о голосовой функции.

Laser CO
2

Лазеры появились относительно недавно в хирургии гортани.

Использование лазеров в хирургии предложило эффективную по времени и затратам альтернативу холодным хирургическим методам и использовалось при лечении многочисленных патологий гортани, включая стенозы, рецидивирующий респираторный папилломатоз, лейкоплакию, узелки, злокачественные заболевания гортани и т. Д. полиповидная дегенерация (отек Рейнке).

Микродебрайдер гортани

Это инструмент с приводом, состоящий из вращающегося лезвия со встроенным всасывающим каналом в трубчатом корпусе. Если цепь активируется нажатием педали, она будет сосать и резать одновременно.

Это чрезвычайно ценный инструмент для:

Рецидивирующего респираторного папилломатоза (RRP)

Удаление опухоли трахеи или гортани

Длина лезвия от 18 до 45 см.Диаметр 9, 3,5 и 4,0 мм соответствует потребностям пациента с различной анатомией и позволяет свести к минимуму повреждение эпителия.

Аппараты для инъекционной ларингопластики (VOX Implant и Radiesse)

Существует широкий спектр материалов различного происхождения и эффективной продолжительности. Будь то искусственное и постоянное, как политетрафторэтилен (ПТФЭ, также известный как тефлон), или аутологичное и временное, как сбор жировой ткани, каждое вещество имеет свои преимущества, недостатки и потенциальные осложнения.

Самое последнее дополнение Radiesse в этом смысле ничем не отличается.

Он сделан из гидроксилапатита кальция (CaHA) — по существу эквивалентного минеральному компоненту человеческой кости.

Новинка заключается в том, что Radiesse состоит из пыли CaHA (частицы размером 25–46 мкм), взвешенной в геле-носителе из раствора карбоксиметилцеллюлозы. Это изменение делает его инъекционным.

VOX — это инъекционный наполнитель мягких тканей для восстановления голосовых связок с целью восстановления естественной речи.Вызывая медиальное смещение, позволяющее соединиться нормальной голосовой связкой, VOX может быть идеальным первичным средством лечения как одностороннего паралича гортани.

Говорящие клапаны (также называемые фоновыми клапанами)

Фонирующие клапаны — это широко используемые устройства, которые позволяют восстановить речь у трахеостомированных пациентов. Однако их использование не должно ставить под угрозу физиологические преимущества трахеостомии.

Основная функция : перенаправить воздух, пропуская его через трахеостому на вдохе.По истечении срока трахеостома закрывается, направляя выдыхаемый воздух через голосовую щель и верхние дыхательные пути.

Использование речевого клапана устраняет необходимость в окклюзии руки и позволяет говорить пациентам, которые не переносят затычку.

Использование речевого клапана может положительно повлиять на функциональную коммуникацию, некоторые биомеханики глотания и просвет дыхательных путей. Риск аспирации варьируется среди людей, и нет никаких доказательств, подтверждающих использование речевого клапана для сокращения времени, необходимого для отлучения от механической вентиляции.

Роботизированная хирургия (хирургическая система Да Винчи)

С помощью высокоточной роботизированной системы хирурги помещают тонкие инструменты и видеокамеру в рот пациента (TORS: трансоральная роботизированная хирургия), чтобы добраться до основания языка, миндалин и т. Д. области горла. Во время операции хирург сидит за пультом управления напротив пациента. Вспомогательный хирург остается у постели пациента, чтобы при необходимости отрегулировать инструменты и камеру. Операционный хирург имеет трехмерное изображение операционного поля и управляет роботизированными инструментами с консоли, которые точно воспроизводят движения руки хирурга.

Роботизированная система обеспечивает хирургов более качественным зрением, повышенной подвижностью и более легким доступом к труднодоступным участкам горла. Это также позволяет избежать обезображивающих и травмирующих аспектов традиционной открытой хирургии (сохранение челюсти нетронутой).

Другое приложение робота — это роботизированная трансаксиллярная хирургия щитовидной железы (RATS).

Его основные преимущества — улучшенный косметический результат без разрезов шейки матки. Основные недостатки — более длительное время операции и более высокая стоимость по сравнению с традиционной тиреоидэктомией.

Благодаря вкладу Кохера, сегодняшняя традиционная (открытая) тиреоидэктомия связана с очень низкой заболеваемостью, когда ее проводят опытные хирурги со специальной подготовкой в ​​области эндокринной хирургии, и остается золотым стандартом в большинстве центров. Кочер ввел тщательный гемостаз, строгую антисептику и, первоначально, вертикальный разрез для тиреоидэктомии. Обладая большим опытом операции, он перешел от вертикального разреза к разрезу по передней границе грудино-ключично-сосцевидной мышцы и, наконец, к низкому поперечному разрезу шейного отдела позвоночника.Сегодня большинство хирургов используют небольшой высокий шейный разрез, расположенный в заметной складке кожи, потому что это дает превосходный косметический эффект; однако не все пациенты довольны своим рубцом, а в некоторых случаях у них образуется гипертрофический рубец, а в редких случаях — келоидный рубец.

Основная причина разработки роботизированной тиреоидэктомии заключалась в том, чтобы избежать разреза на шее (разрезы в подмышечной впадине, груди, полости рта или вокруг уха, так называемая тиреоидэктомия без рубца). Преимущество таких подходов — косметическое, хотя некоторые предлагают лучшую визуализацию и увеличение операционного поля при видеоскопическом доступе, а также лучшую эргономику и маневренность хирурга при использовании роботизированного доступа.

Стробоскоп Визуальный осмотр медицинских устройств

Цифровые стробоскопы значительно облегчают визуальный осмотр сердечно-сосудистых медицинских устройств, поскольку они подвергаются ускоренной утомляемости. Стробоскоп — очень полезный инструмент для обнаружения отказов устройства и отслеживания движения во время тестирования.

Ускоренная утомляемость — это распространенный метод тестирования многих сердечно-сосудистых медицинских устройств, таких как стенты, сердечные клапаны и электроды стимуляторов. Отраслевые стандарты для ускоренных испытаний сердечно-сосудистых устройств на усталость включают ASTM F2477, ISO 5840-3 и ISO 25539-1.Во время ускоренных испытаний на усталость образцы обычно проходят 400 или 600 миллионов циклов для моделирования 10 или 15 лет жизненного цикла устройства.

Визуальный контроль при испытании

Проверки обычно выполняются как часть протокола испытаний на различных этапах, включая предварительные, во время и после испытаний. Проверки, выполняемые во время тестирования, делятся на две категории: на тестере и вне тестирования. Проверки вне тестера включают приостановку теста, извлечение образца и изучение его под микроскопом, прежде чем вернуть его тестеру.Проверки на тестере выполняются либо во время выполнения теста, либо после приостановки теста, когда устройства остаются в тестовой системе.

Если испытание приостановлено, визуальный осмотр может быть проведен с помощью подсветки, портативного микроскопа или эндоскопа. Однако иногда бывает трудно обнаружить отказы и небольшие трещины, когда устройство находится в неподвижном состоянии. Во время тестирования используются два популярных метода проверки: стробоскоп и высокоскоростное видео. В этой статье мы расскажем о преимуществах использования стробоскопа для высокочастотных проверок на тестере.

Как работает стробоскоп

Стробоскоп, также называемый стробоскопической лампой, стробоскопической лампой или стробоскопическим тахометром, представляет собой устройство, используемое для создания регулярных вспышек света. Вспышки света могут останавливать или регулировать внешний вид движения во время тестирования, что позволяет пользователям визуально проверять устройства, движущиеся на высоких частотах. Когда частота стробоскопической вспышки настроена так, чтобы совпадать по фазе с тестовой частотой, объект будет оставаться неподвижным. Чем больше частота стробоскопа не совпадает по фазе с тестовой частотой, тем быстрее будет появляться движение.

Если движение кажется слишком медленным или слишком быстрым, может быть трудно идентифицировать изменения в устройстве и обнаруживать сбои. Использование стробоскопа наиболее эффективно, когда частота настроена таким образом, чтобы вид движения приблизительно соответствовал физиологическим частотам, обычно между 1 и 2 Гц. Отключение освещения в помещении снижает световые помехи и может улучшить видимость. FDA опубликовало справочный документ, в котором описывается использование стробоскопов для визуального контроля.

Осмотр стентов, сердечных клапанов и электродов стимуляторов с помощью стробоскопа

Наша лаборатория тестирования сердечно-сосудистых устройств обычно выполняет визуальный осмотр с помощью стробоскопа следующих тестов и устройств:

  • S / N усталостные испытания стентов и купонов стентов
  • Испытания на динамический изгиб стентов и отведений
  • Испытание большого стента / трансплантата
  • Тестирование компонентов ремонта сердечного клапана

Многие из этих тестов проводятся на высоких частотах, часто в диапазоне от 40 до 70 Гц, и стробоскоп наиболее полезен для тестовых частот выше 30 Гц.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *