В чем измеряется динамическая вязкость: Кинематическая / динамическая вязкость — определение, примеры

Содержание

Кинематическая вязкость: что такое, в чем отличие от динамической вязкости

Вязкость – важная характеристика среды, которая присуща каждому телу, обладающему текучестью. Свойство имеет связь с сопротивлением вещества к его перемещению. Вязкость является одним из решающих показателей при выборе объемного насоса, игнорировать который недопустимо. На свойства вязкости влияют такие внешние факторы: температура, нагрузка, скорость сдвига, поэтому вместе с конкретным значением вязкости указывается, в каких условиях проводились испытания. Различают динамическую и кинематическую вязкость. Для измерения показателя используется вискозиметр.

В чем разница между динамической и кинематической вязкостью?

Динамическая вязкость (m) показывает отношение напряжения сдвига, которые возникает, когда слои жидкости перемещаются в отношении один к другому, и скорости, с которой происходит это движение (скорость деформации). Динамическая вязкость – это мера сопротивления течению жидкости или ее деформации. Для выражения динамической вязкости чаще всего используется Пуаз и сантипуаз, в международной системе единиц – Паскаль х с. Кроме этого, для измерения показателя могут использоваться такие единицы: дин·с/см2 и кгс·с/м2 и производных от них.

Соотношение единиц:

  • 1 Пуаз = 1 дин·с/см2 = 0.010197162 кгс·с/м2 = 0.0000010197162 кгс·с/см2 = 0.1 Па·с = 0.1 Н·с/м2
  • 1 Сантипуаз = 0.0001010197162 кгс·с/м2 = 0.01 П = 0.001 Па·с
  • 1 кгс·с/м2 = 98.0665 П = 9806.65 сП = 9.80665 Па·с.

Кинематической вязкостью (ν) называют отношение вязкости динамической к плотности жидкости. Для выражения показателя используется следующая формула: ν = μ / ρ, где μ – динамическая вязкость, ρ – плотность жидкости, кг/м3.

Для выражения показателя чаще всего используются стокс и производное от него сантистокс. В международной системе единиц для измерения кинематической вязкости применяется м2/с.

Соотношение единиц:

  • 1 Ст = 0.0001 м2/с = 1 см2
  • 1 сСт = 1 мм2/с = 0.000001 м2
  • 1 м2/с = 10000 Ст = 1000000 сСт.

Кинематическая вязкость показывает текучесть при нормальной и высокой температуре. Измеряется стеклянным вискозиметром. Для этого засекается время стекания смазки по капилляру при заданном температурном режиме.

Для измерения динамической вязкости используется ротационный вискозиметр, который воссоздает условия, наиболее приближенные к естественным.

Кинематическая вязкость – один из важнейших параметров при выборе промышленного теплоносителя. Чем выше этот показатель, тем большая нагрузка приходится на насосной оборудование инженерной системы. В сравнении с глицерином и иными традиционными антифризами гликолевые теплоносители обладает меньшей вязкостью. Это увеличивает эксплуатационный ресурс оборудования, снижая затраты на техническое обслуживание.

Вам могут быть интересны следующие товары

Вам могут быть интересны услуги

Сведения о вязкости

 

Физические величины. Вязкость жидкости

Вязкость – свойство жидкости, которое определяет сопротивление жидкости к внешнему воздействию. Вязкость можно представить как внутреннее трение между отдельными слоями жидкости при их смещении относительно друг друга.

Существуют два основных параметра для определения вязкости жидкости: динамическая (или абсолютная) вязкость и кинематическая вязкость. Динамическая вязкость представляется как отношение единицы силы, необходимой для смещения слоя жидкости на единицу расстояния, к единице площади слоя.

Определяющее уравнение для динамической вязкости

                                                                                                                            

В международной системе единиц СИ при выражении единицы давления сдвига  F/S в паскалях, градиента скорости

grad υ   (изменение скорости жидкости, отнесённого к расстоянию между слоями) в секундах в минус первой степени динамическая вязкость µ выразится в паскалях-секундах (П·с). В метрической системе единица вязкости представляется в грамм/сантиметр в секунду, называемой пуаз. Принятое обозначение пуаз – П

                                                                          1 П·с = 10 пуаз.

Единицы измерения динамической вязкости паскаль-секунда и пуаз значительны по своему размеру и применяют дольные единицы – миллипаскаль-секунда мПа и сантипуаз сП

                                                                           1 мПа·с = 1 сП.

Переводные множители для расчёта динамической вязкости приведены в таблице.

 

Величина обратная динамической вязкости жидкости определяется как текучесть жидкости и в международной системе единиц (СИ) выражается Па

-1·С-1.

Формула для определения кинематической вязкости при заданной динамической вязкости выглядит так:

 

                                     

Единица измерения кинематической вязкости в системе СИ – квадратный метр на секунду, в метрической системе – квадратный сантиметр на секунду называемый стокс. Принятое обозначение стокса – Ст.

1 м2/с = 104 Ст

Единица измерения кинематической вязкости квадратный метр на секунду и стокс значительна по своему размеру и для практических применений используют дольные единицы – квадратный миллиметр на секунду и сантистокс сСт

                                                                             1 мм2/с = 1 сСт.

Переводные множители для расчёта кинематической вязкости приведены в таблице:

    

 

  При необходимости пересчёта параметров вязкости можно воспользоваться соотношением  соблюдая размерности физических величин, например:

                                                                  

Вязкость и плотность жидкостей при 20°С:

 

 

 

 

 

 

 

 

 

 

кинематическая и условная вязкость нефтепродуктов

Вязкость, как характеристика качества нефти

Вязкость является одной из важнейших характеристик нефти, различных жидких топлив и других нефтепродуктов. Этот параметр вносится в паспорта качества и значительно влияет на эксплуатационные свойства вещества. Для определения вязкости нефтепродуктов используют специальные приборы – вискозиметры.

Какие свойства вещества описывает вязкость?

Через вязкость мы определяем величину внутреннего трения, то есть способность вещества сопротивляться перемещению при движении. Данная характеристика помогает сделать предположения о составе вещества, например, нефти: если проба слишком вязкая, то вещество содержит тяжелые углеводородные фракции. Также она влияет на прокачиваемость, важную для транспортировки, а также работы бензина, ДТ и другого топлива в топливных системах.

Исследования вязкости могут проводиться на местах добычи полезных ископаемых, на нефтеперерабатывающих заводах, нефтебазах и даже в мобильных лабораториях.

Как исследуется?

Условная вязкость нефтепродуктов (ее еще называют относительной) измеряется в градусах условной вязкости. Эта характеристика выражает отношение времени, за которое 200 мл исследуемого вещества при заданной температуре истечет через отверстие вискозиметра, ко времени истечения 200 мл дистиллированной воды при 20 °С.

Международной системой единиц физических величин различается динамическая и кинематическая вязкость нефтепродуктов.

  • Для того, чтобы получить кинематическую вязкость, необходим вискозиметр. Проба топлива под воздействием силы тяжести постепенно вытекает через специальное отверстие в этом приборе. Полученное время истечения нужно умножить на индивидуальную постоянную вискозиметра – так и проходит определение кинематической вязкости нефтепродуктов. Многие устройства проводят вычисления этой характеристики в автоматическом режиме, без участия человека.
  • Расчет вязкости нефтепродуктов необходим для получения динамической величины: плотность вещества × на полученную кинематическую вязкость.

Методы проведения исследований регулирует ГОСТ вязкости нефтепродуктов − 33-2000.

Где заказать нефтехимическое лабораторное оборудование?

ЗАО «БМЦ» предлагает купить устройство «Термостат А2М», которое выполняет измерение кинематической вязкости в соответствии с ГОСТ. Прибор сертифицирован и внесен в Государственный реестр средств измерения. Устройство подходит для лабораторий разных типов, в том числе и мобильных.

Наши специалисты доставят лабораторное оборудование на ваш объект, выполнят его наладку и пуск, расскажут о том, как пользоваться устройством! Точные результаты исследований, быстрый и комфортный процесс измерения – вместе с ЗАО «БМЦ». 

Вязкость динамическая, определение и единицы измерения

    Кинематическая вязкость равна отнощению динамической вязкости к плотности жидкости при температуре определения. Единица измерения кинематической вязкости — квадратный метр на секунду (м /с). [c.49]

    Вязкость является основной характеристикой масел. В СССР вязкость измеряют в единицах кинематической вязкости—стоксах и сантистоксах, и иногда, большей частью при определении вязкости при низких температурах, измерение проводят в единицах динамической вязкости пуазах и сантипуазах. Реже вязкость нефтепродуктов выражают в единицах условной вязкости (°ВУ) [41, 49]. 

[c.114]


    Этим отношением широко пользуются при определении вязкости жидкостей. Зная вязкость одной жидкости, можно вычислить вязкость другой, определив расход (время истечения определенного объема жидкости) обеих жидкостей, пропуская их через одну и ту же трубку, при постоянной разности давлений. Для этой цели применяются трубки малого диаметра, обеспечивающие ламинарное течение жидкостей. Такие трубки называются капиллярными вискозиметрами. Единица измерения динамической вязкости в международной системе (СИ) выражается в Па-с или Н-с/м .  [c.20]

    Динамическая вязкость г . Чтобы подойти к ближайшему определению динамической вязкости и единицы ее измерения, разделим мысленно некоторую однородную жидкость на параллельные слои (по оси X). Для относительного перемещения двух таких слоев ншдкости со скоростью V необходимо преодолеть силу внутреннего трения жидкости Р, которая, естественно, пропорциональна площади перемещающегося слоя жидкости, а также изменению скорости V на единицу длины перпендикулярно к поверхности слоя, т. е. 

[c.31]

    Единицей кинематической вязкости в системе СГС является стоке (ст), размерность которого см сек. Сотая часть стокса называется сантистоксом (сст). Динамическую и кинематическую вязкости определяют в капиллярных вискозиметрах. Способ измерения сводится к замеру времени истечения через калиброванный капилляр определенного объема жидкости. [c.124]

    Из определения следует, что в системе МКГСС единицей измерения динамической вязкости будет кГ сек . В системе СГС единицей измерения динамической вязкости является дин-сек см . Эту единицу измерения условились называть пуазом (пз). Таким образом, 1 дин-сек1с.н = 1 пуазу (пз) = 100 сантипуазам (спз). [c.372]

    Если течение жидкости ламинарное (т. е. жидкость перемещается слоями без перемещивания), то вязкость проявляется в том, что при сдвиге соседних слоев среды относительно друг друга возникает сила противодействия — напряжение сдвига, пропорциональное скорости относительного сдвига слоев. Коэффициент пропорциональности в этом случае и есть динамическая вязкость, единица измерения ее в системе СИ — паскаль-секунда (Па-с). В практике используется миллипаскаль-секунда (1 мПа-с=10 Па-с). Допускается применять сантипуаз (1 сП = 1 мПа-с). Определение этого показателя для жидких нефтепродуктов проводят в соответствии с ГОСТ 7163—84 на автоматических капиллярных вискозиметрах АКВ-2 и АКВ-4 или на ротационном вискозиметре типа Реотест по ГОСТ 1929—87. 

[c.199]


Справочник химика Издание 2 Том 1 1963 (1963) — [ c.982 ]

Справочник химика Том 1 Издание 2 1962 (1962) — [ c.

982 ]

Справочник химика Том 1 Издание 2 1966 (1966) — [ c.982 ]

Справочник химика Изд.2 Том 1 (1962) — [ c.982 ]


Вязкость: разновидности, предельные значения, таблицы.

Вязкость жидкости определяет способность жидкости сопротивляться сдвигу при ее движении, а точнее сдвигу слоев относительно друг друга. Для правильного подбора насосов ЦНС или насосов КМ и распространения на них гарантийных обязательств Вы должны четко знать значения вязкости вашей рабочей жидкости.

Вы, или ваши технические службы могут измерять и оперировать либо кинематической вязкостью с размерностями [мм2/с] и [сСт (сантистоксы)], либо динамической вязкостью с размерностями [сП сантипуазы] и [мПа*с]. Мы указываем предельно допустимые значения кинематической вязкости, так как она обычно идет в паспортах с характеристикой жидкости, но динамическая используется при расчетах оборудования и научных работах, поэтому для удобства рассмотрим оба варианта и связь между ними. Обращаем ваше внимание что вышеуказанные размерности равны между собой т.е.  [мм2/с] = [сСт] и [сП] = [мПа*с], для остальных величин смотрите переводные таблицы указанные ниже:

 

Таблица для кинематической вязкости ν

Таблица для динамической вязкости η

Если же Вам необходимо перевести одну вязкость в другую, то воспользуйтесь формулой:

 

Где:

v – кинематическая вязкость,

η – динамическая вязкость

р – плотность

 

В том случае, когда вы используете простой вискозиметр, и посчитали отношение времени истекании 200 мл вашей жидкости к 200 мл эталонной жидкости, то Вы получили число условной вязкости, она измеряется  в условных градусах (°ВУ) и имеет значение 1 ед. °ВУ = 3,78 мм2/с кинематической вязкости.

 

Если вы не знаете, какова вязкость вашей рабочей жидкости, и у вас нет приборов для ее измерения, или же Вы привыкли все делать «на глаз», то мы подготовили таблицы с данными по самым распространенным жидкостям.

 

Динамическая (абсолютная) вязкость жидкостей при атмосферном давлении:

 

Динамическая вязкость часто применяемых жидкостей при атмосферном давлении:

η, 10 -3 Па· с0°C20°C50°C70°C100°C
Ацетон=0.320.25==
Бензин0.730.520.370.260.22
Бензол=0.650.440.35=
Вода29221431010.550.410.28
Глицерин121001480180 5913
Керосин43133432210.950.750.54
Кислота уксусная=431320.620.500.38
Масло касторовое=98712949=
Пентан0.280.24===
Ртуть=1972514611=45292
Спирт метиловый0.820.580.40.30.2
Спирт этиловый (96%)43313431320.70.50.3
Толуол=0.610.450.370.29

Кинематическая вязкость распространенных жидкостей при атмосферном давлении и разных температурах

— индустриальных и пищевых масел, дизельного топлива, кислоты, нефти, мазута и др.

Кинематическая вязкость часто применяемых жидкостей при атмосферном давлении:

ЖидкостьТемператураКинематическая вязкость
(oF)(oC)сантиСтоксы (cSt)Универсальные секунды Сейболта (SSU)
Аммиак0-17. 80.30
Ангидрид уксусной кислоты (CH3COO)2O59150.88
Анилин68201360640
50104319646.4
Арахисовое масло10037.842200
13054.443213
Асфальт RC-0, MC-0, SC-07725159-324737-1.5M(1500)
10037.860-108280-500
Ацетальдегид (уксусный альдегид) CH3CHO61431160.30536
68200.295
Ацетон CH3COCH368200.41
Бензин a60432660.88
10037.80.71
Бензин b60432660.64
10037.8
Бензин c60432660.46
10037.80.40
Бензол C6H63201.031
68200.74
Бром68200.34
Бромид этила C2H5Br68200. 27
Бромид этилена68200.787
Бутан-50-1.10.52
300.35
Вазелиновое масло13054.443240100
16071.11577
Вода дистиллированная68201.003831
Вода свежая60432664127543251
13054.40.55
Вода морская4200543251
Газойль70431214335673
10037.84319750
Гексан0-17.80.683
10037.80.401
Гептан0-17.80.928
10037.80.511
Гидроксид натрия (каустик) раствор 20%65431774.039.4
Гидроксид натрия (каустик) раствор 30%654317710.058.1
Гидроксид натрия (каустик) раствор 40%6543177
Глицерин 100%68.6431796482950
10037. 8176813
Глицерин с водой ( 50% на 50% )68204723943
140601.85 (абс. в. сПуаз)
Глюкоза10037.87.7M-22M35000-100000
15065.6880-24204M-11M(4000-11000)
Декан0433291318134
10037.81.00131
Дизельное топливо 2D10037.84325332.6-45.5
13054.41.-3.97-39
Дизельное топливо 3D10037.82770445.5-65
13054.43.97-6.7839-48
Дизельное топливо 4D10037.829.8 макс.140 макс.
13054.413.1 макс.70 макс.
Дизельное топливо 5D1225086.6 макс.400 макс.
16071.135.2 макс.165 макс.
Дизельное топливо CH3COOC2H359150.4
68200.49
Диэтилгликоль704312132149.7
Диэтиловый эфир68200.32
Закалочное масло100-12045797
Карболовая кислота (фенол)65431773062165
194901. 26 cp
Касторовое масло10037.8259-3251200-1500
13054.498-130450-600
Керосин68202596535
Китовый жир10037.835-39.6163-184
13054.419.9-23.497-112
Кокосовое масло10037.829.8-31.6140-148
13054.414.7-15.776-80
Костяное масло (Жидкий костный жир)13054.447.5220
2121004326265
Ксилол68200.93
104400.623 (абс. в. сПуаз)
Кукурузное масло13054.443309135
2121004325954
Кукурузный крахмал раствор 22 Боме704312132.1150
10037.843247130
Кукурузный крахмал раствор 24 Боме7043121129.8600
10037.895.2440
Кукурузный крахмал раствор 25 (Baume)70431213031400
10037. 8173.2800
Лак6820313
10037.8143
Льняное масло10037.843250143
13054.418.9493
Мазут 170431212.39-4.2834-40
10037.8-2.6932-35
Мазут 270431213.0-7.436-50
10037.82.11-4.2833-40
Мазут 370431212.69-5.8435-45
10037.82.06-3.9732.8-39
Мазут 5A70431217.4-26.450-125
10037.84.91-13.742-72
Мазут 5B704312126.4-125-
10037.813.6-67.172-310
Мазут 61225097.4-660450-3000
16071.137.5-172175-780
Масло из семян кунжута, кунжутное масло10037.839.6184
13054.423110
Масляная кислота (бутановая кислота)68202228231.6
3202. 3 (абс. в. сПуаз)

 

Гангут — Вязкость

Вязкость.

Существует более 50 способов определения вязкости.

В настоящий момент больше не используется определение вязкости лакокрасочных материалов в сантипуазах (cps). Измеряется время (в секундах), за которое определенный объем лакокрасочного материала вытекает из чашки снабженной отверстием определенного калибра. Измерение вязкости таким способом называется измерением с помощью вискозиметра.

Перед измерением вязкости необходимо проделать некоторые операции. Вискозиметр, материал и разбавитель должны быть одинаковой температуры. Необходимо знать эту температуру и сделать необходимые корректировки (в случае необходимости).

Таблица 1. Сравнение различных способов измерения вязкости

AFNOR (CA4)

ISO 4

mPas.s

Centipoises (cps)

Ford 4 (CF4)

DIN 4 (D°)

LCH (Fr)

ZAHN (n°2)

12

20

20

10

11

6

18

14

17

25

25

12

12

7

19

16

23

30

30

14

14

20

20

34

40

40

18

16

8

22

25

51

50

50

22

20

9

24

29

60

60

60

25

23

10

27

32

68

70

70

28

25

30

34

74

80

80

30

26

11

34

37

82

90

90

33

28

12

37

40

93

100

100

35

30

13

41

45

120

120

40

34

14

49

50

140

140

44

38

15

58

56

160

160

50

42

16

66

61

180

180

54

45

17

74

66

200

200

58

49

18

82

70

220

220

62

52

19

Коэффициент вязкости

Когда говорят о вязкости, то число, которое обычно рассматривают, это коэффициент вязкости. Существует несколько различных коэффициентов вязкости, зависящих от действующих сил и природы жидкости.

  • Динамическая вязкость (или абсолютная вязкость) определяет поведение несжимаемой ньютоновской жидкости
  • Кинематическая вязкость — это динамическая вязкость, деленная на плотность, для ньютоновских жидкостей
  • Объемная вязкость определяет поведение сжимаемой ньютоновской жидкости. Объемная вязкость — коэффициент вязкости при сжатии (для неньютоновских жидкостей)
  • Сдвиговая вязкость (вязкость при сдвиге) — коэффициент вязкости при сдвиговых нагрузках (для неньютоновских жидкостей)

Динамическая вязкость и сдвиговая вязкость более известны.

Поэтому часто их называют просто — вязкость.

 

Вязкость различных материалов

Таблица 2. Вязкость жидкостей при +25°С

Название жидкости

Вязкость, [Pa•s]
(СИ, Паскаль в секунду)

Вязкость, [cP]
(СГС, сантиПуаз)

Ацетон

3.06 × 10−4

0.306

Бензин

6.04 × 10−4

0.604

Касторовое масло

0.985

985

Спирт

1.074 × 10−3

1.074

Этиленгликоль

1. 61 × 10−2

16.1

Глицерин

1.5

1500

Ртуть

1.526 × 10−3

1.526

Метанол

5.44 × 10−4

0.544

Нитробензол

1.863 × 10−3

1.863

Жидкий азот

1.58 × 10−4

0.158

Пропан

1.945 × 10−3

1.945

Оливковое масло

0.081

81

Деготь

2.3 × 108

2.3 × 1011

Вода 25°С

8.94 × 10−4

0.894

Мед

2-10

2,000-10,000

Шоколадный сироп

10-25

10,000–25,000

Расплавленный шоколад*

45-130

45,000–130,000

Изменения температуры жидкости могут привести к существенным изменениям вязкости жидкости. Например, допустим, что бутылку с охлаждённым сиропом для блинов перевернули вверх дном. Кажется, что сироп никогда не покажется из горлышка. С другой стороны представим себе действие разогретого сиропа. Он сразу же достаточно быстро начнёт вытекать. Различия в их поведении — благодаря способности вязкости изменяться как функции от температуры.

Таблица 3. Зависимость вязкости (в секунду) от температуры

Температура (°С)

10°

12°

14°

16°

18°

20°

22°

24°

26°

28°

30°

32°

34°

36°

38°

40°

27

26

24

23

22

21

21

20

19

18

18

17

17

16

15

15

14

14

14

14

33

31

29

27

26

25

23

22

21

20

19

18

18

17

16

16

15

15

14

14

39

36

34

32

30

28

26

24

23

22

21

20

19

18

17

17

16

15

15

14

46

42

39

36

34

31

29

27

26

24

23

22

21

19

18

17

17

16

15

15

54

49

45

41

38

35

32

30

28

26

24

23

21

20

19

18

17

17

16

15

58

51

47

43

40

36

33

31

29

27

25

23

21

20

20

19

18

17

16

16

61

55

50

46

42

38

35

32

30

28

26

24

22

21

20

19

18

17

16

16

69

63

56

52

46

42

39

35

32

30

28

25

24

23

21

20

19

18

17

16

77

69

62

55

50

46

41

38

35

32

29

27

25

24

22

21

19

18

17

16

84

74

67

61

54

50

44

40

36

34

30

28

26

25

23

22

20

18

17

16

95

84

75

66

60

54

48

44

40

36

33

30

28

26

24

22

20

19

18

17

104

92

81

73

65

58

52

46

42

38

35

31

29

27

24

23

21

20

19

18

112

100

88

76

69

62

54

49

44

40

36

32

30

27

25

23

21

20

19

18

122

108

90

85

75

66

59

53

47

42

38

35

31

28

26

24

22

21

19

18

132

120

102

90

80

70

63

55

50

44

40

36

33

30

27

25

23

22

20

18

142

124

108

95

84

74

65

58

52

46

41

37

34

31

27

25

23

22

20

18

152

132

119

101

90

80

69

61

54

48

43

38

35

31

28

26

24

23

21

18

164

140

123

106

94

83

73

64

56

50

45

40

36

32

29

27

24

23

21

19

Подобное качество свойственно жидкостям, которые применяются в аэрозольных генераторах. Конечно же, вязкость изменяется не всегда так существенно, как в примере с сиропом, но когда разговор идёт о частицах с размерами в микронах, то перепады в уплотнении даже до умеренной вязкости из-за изменения температуры могут быть критические.  

Масла | OKS Spezialschmierstoffe GmbH

Масла с высокоэффективными присадками для надежной смазки

Масла хорошо отводят тепло от места смазки. Кроме того, они характеризуются отличной способностью к расползанию и смачиванию. Поэтому масло часто используется в качестве жидкой смазки при высоких температурах или высоких частотах вращения. К стандартным областями их применения относят редукторы, цепи, подшипники скольжения, гидравлические узлы и компрессоры.

Параметры Норма Описание
Вязкость DIN 51561 Мера внутреннего трения жидкостей
ISO VG DIN 51519 Распределение масел по классам вязкости
Рабочие температуры   Температурный диапазон оптимальной эффективности
Точка воспламенения DIN ISO 2592 Минимальная температура, при которой паровоздушная смесь воспламеняется от принудительного зажигания
Точка застывания DIN ISO 3016 Минимальная температура, при которой масло еще остается текучим

Структура высокоэффективных масел

При создании формулы высокоэффективного масла, наряду с тщательным выбором основного масла (тип, вязкость), особую роль играют присадки, а также соотношение цены и качества. Современные смазочные масла имеют такую структуру, благодаря которой при повреждении масляной пленки активные вещества образуют защитную пленку, защищающую поверхность от износа.

Свойства основных масел

При выборе смазочного масла решающую роль играет основное масло. Минеральные масла, синтетические углеводороды (полиальфаолефины = PAO), сложные эфиры, полигликоли и силиконовые масла имеют очень разные физические свойства и химические характеристики.

Свойства Минеральные масла Синтетические углеводородные масла (PAO) Эфирные масла Полигликоли Силиконовые масла
Плотность 20°C [г/мл], примерно: 0,9 0,85 0,9 0,9 — 1,1 0,9 — 1,05
Точка застывания [°C], примерно: -40 -> -10 -50 -> -30 -70 -> -35 -55 -> -20 -80 -> -30
Точка воспламенения [°C], примерно: < 250 < 200 200 -> 270 150 -> 300 150 -> 350
Устойчивость к окислению + + + ++
Термостойкость + + + ++
Совместимость с пластмассами + + в зависимости от типа +

Совместимость масел

На смешиваемость различных смазочных масел существенно влияют основные масла,
поэтому при смене смазочного масла необходимо учитывать его вязкость.

  Минеральное масло Полиальфаолефины Эфирные масла Полигликоли Силиконовое масло
(метил)
Силиконовое масло
(фенил)
Полифенилэфир Перфторполиэфир
Минеральное масло        
Полиальфаолефины          
Эфирные масла    
Полигликоли            
Силиконовое масло (метил)            
Силиконовое масло (фенил)      
Полифенилэфир          
Перфторполиэфир              

■ поддающийся смешению □ условно поддающийся смешению

Вязкость – это внутреннее трение


жидких веществ

Выбор вязкости масла зависит от области применения смазочного материала. При этом действует правило: низкая вязкость подходит для низкого давления и высоких скоростей скольжения, а высокая вязкость – для высокого давления, низких скоростей скольжения и высоких температур. Вязкость можно определять различными методами измерения (см. Методы испытаний и измерения). Кинематическая вязкость измеряется в мм2 / с и используется для классификации. Динамическая вязкость измеряется в мПа. С учетом плотности оба вида вязкости можно пересчитать (конвертировать), используя уравнение: динам. вязкость = плотность x кинемат. вязкость.

Зависимость вязкости от температуры. Вязкость масла изменяется в зависимости от температуры, давления и напряжения сдвига, а также от времени, в течение которого это происходит. Важнейшим фактором является температура. По мере увеличения температуры вязкость уменьшается и наоборот, в зависимости от типа масла.

Разделение смазочных масел по классам вязкости осуществляется в соответствии с ISO (DIN 51 519) или SAE (Американская ассоциация автомобильных инженеров).

 

Кинематическая
ISO-VG
вязкость (40°C)
[мм2/с]
15 13,5 – 16,5
22 19,8 – 24,2
32 28,8 – 35,2
46 41,4 – 50,6
68 61,2 – 74,8
100 90 – 110
150 135 – 165
220 198 – 242
320 288 – 352
460 414 – 506
680 612 – 748
1.000 900 – 1.000
1.500 1.350 – 1.650

ISO Классы вязкости по DIN 51 519

Классы ISO-VG (классы вязкости) применяются только к промышленным смазочным маслам. Существует 18 кинематических классов VG от 2 мм2/с до 1.500 мм2/с. Вязкость определяют при 40°С.

Классы вязкости согласно SAE

Смазочные масла для трансмиссий и двигателей автомобилей классифицируются по классам вязкости SAE. Они варьируются от 0 до 60 для моторных масел и 70 – 250 для трансмиссионных масел. Значения вязкости измеряют при 100°С.

В чем разница между динамической и кинематической вязкостью?

На первый взгляд понятие вязкости кажется довольно простым. Он помогает описать толщину продукта и его растекаемость. Все в порядке?

На самом деле, есть несколько разных терминов, которые подпадают под понятие вязкости. Эти термины основаны на том, как измеряется вязкость. Когда люди говорят о вязкости, они имеют в виду одну из двух вещей: кинематическая вязкость или динамическая вязкость .

Найти много информации о различиях между динамической и кинематической вязкостью непросто. Это моя попытка внести ясность в эти две основные концепции.

Один из способов — измерить сопротивление жидкости потоку при приложении внешней силы. Это динамическая вязкость .

Другой способ — измерить сопротивление потока жидкости под действием силы тяжести. В результате получается кинематическая вязкость . Другими словами, кинематическая вязкость — это мера внутреннего сопротивления жидкости потоку, когда на нее не действует никакая внешняя сила, кроме силы тяжести.

Чтобы еще больше усложнить мою попытку упростить эти концепции, две жидкости с одинаковой динамической вязкостью могут иметь разную кинематическую вязкость. Это связано с тем, что кинематические результаты зависят от плотности жидкости. Плотность не является фактором динамической вязкости.

Нужно напомнить о плотности?

Плотность — это отношение массы (или веса) образца к его объему. Подумайте о кубике льда и кубе стали. Они могут быть одинакового размера, но стальной куб весит больше, чем кубик льда. Поэтому мы говорим, что сталь имеет большую плотность, чем кубик льда.

Масса (или вес) жидкости определяется силой тяжести. В кинематическом методе измерения сила тяжести — единственная сила, действующая на образец.

Измерение динамической вязкости

Ротационные вискозиметры — один из наиболее популярных типов приборов, используемых для измерения динамической вязкости. Эти инструменты вращают зонд в жидкой пробе.Вязкость определяется путем измерения силы или крутящего момента, необходимого для поворота зонда.

Ротационный вискозиметр особенно полезен при измерении неньютоновских жидкостей. Неньютоновские жидкости изменяют вязкость при воздействии различных условий. Например, некоторые из этих жидкостей показывают увеличение вязкости с увеличением приложенной силы, в то время как другие неньютоновские жидкости уменьшают вязкость с увеличением приложенной силы.

Ротационный вискозиметр может регулировать скорость вращения зонда при его движении в жидкости.Вискозиметр определяет изменение вязкости образца при изменении скорости, иногда называемой скоростью сдвига.

Единицей измерения динамической вязкости является сантипуаз (сП).

Измерение кинематической вязкости

Существует несколько способов определения кинематической вязкости жидкости, но наиболее распространенным методом является определение времени, которое требуется жидкости, чтобы пройти через капиллярную трубку. Время преобразуется непосредственно в кинематическую вязкость с использованием калибровочной константы, предусмотренной для конкретной трубки.

Единица измерения кинематической вязкости — сантистокс (сСт).

Основное различие между измерениями динамической и кинематической вязкости — это плотность. Фактически плотность обеспечивает способ преобразования между кинематическим и динамическим измерением вязкости. Формула преобразования:

  • Кинематическая (сСт) x Плотность = Динамическая (сП)
  • Динамический (сП) / Плотность = Кинематическая (сСт)

Для данного образца с плотностью больше единицы динамическая вязкость всегда будет более высоким числом.

Когда следует использовать измерения динамической вязкости?

Вы проверяете динамическую вязкость, когда хотите узнать внутреннее сопротивление жидкости или силу, необходимую для перемещения одной плоскости жидкости по другой.

Измерение динамической вязкости наиболее полезно для жидкостей, которые изменяют свои кажущиеся характеристики при приложении силы или давления. Эти жидкости известны как неньютоновские жидкости. Неньютоновские жидкости чувствительны к изменениям силы, действующей на них, и иногда могут даже навсегда изменить свою вязкость, если на них действует постоянная сила в течение определенного периода времени.

Примером важности измерения динамической вязкости является определение правильных характеристик текучести кетчупа. Этот продукт должен иметь более низкую вязкость при растекании, чтобы его можно было вытащить из бутылки, но он должен быть густым (или не иметь такой склонности к течению), когда он сидит на гамбургере. Проверка вязкости кетчупа на разных скоростях (при разном уровне силы) поможет убедиться, что кетчуп ведет себя должным образом.

Другое применение — проектирование насосных систем.Поскольку вязкость неньютоновских жидкостей изменяется в зависимости от скорости движения, давление и скорость насоса оказывают серьезное влияние на спецификацию надлежащих насосов, давления и размера трубопроводов. Тестирование продукта на разных скоростях поможет выработать рекомендации по проектированию насосной системы.

Когда следует использовать измерения кинематической вязкости?

Это измерение используется в основном для ньютоновских жидкостей — жидкостей, вязкость которых не изменяется при изменении приложенной силы (скорости сдвига).

Испытания смазочных масел — важная область применения. С помощью этого метода испытаний можно определить изменения вязкости при разных температурах и в разных условиях окружающей среды. С помощью этой информации можно оценить изменения в эффективности смазки.

Некоторые другие продукты, для которых подходит кинематический метод, — это масло, бензин, глицерин и спирт.

Измерение вязкости ньютоновских жидкостей может быть выполнено с помощью ротационных вискозиметров (с помощью формулы пересчета, указанной выше).Однако проще использовать капиллярные инструменты. В некоторых случаях капиллярные инструменты более точны для определения кинематической вязкости.

Когда вам нужно определить вязкостные характеристики жидкости, которая не подвержена внешним физическим силам (другими словами, когда сила тяжести является единственной силой, действующей на жидкость), следует выбирать кинематический метод.

Сводка

Ньютоновские жидкости имеют присущую вязкость, которая не меняется при изменении силы, приложенной к жидкости.Эту характеристическую вязкость можно легко и точно измерить с помощью прибора капиллярного типа, используя силу тяжести для перемещения жидкости.

С другой стороны, неньютоновские жидкости демонстрируют большие вариации вязкости в зависимости от приложенной силы. Для этих испытаний требуются такие инструменты, как ротационные вискозиметры, которые могут измерять изменения во времени и в диапазоне приложенных сил.

Чтобы провести различие между этими двумя типами жидкостей:

  • Динамическая вязкость: вязкость, связанная с внешней силой, приложенной к неньютоновским жидкостям.
  • Кинематическая вязкость: Собственная вязкость ньютоновских жидкостей, которая не изменяется при изменении приложенной силы.

Хотя это сравнение не является исчерпывающим, я надеюсь, что оно поможет вам лучше понять различия между динамической вязкостью и кинематической вязкостью. Пожалуйста, поделитесь им со всеми, кто может быть заинтересован.

До следующего раза,

Аманда

P.S. Ознакомьтесь с опциями для анализа текстуры.
П.П.S. Будьте первым, кто узнает, когда мы публикуем новую статью в блоге. Подпишитесь вверху страницы сегодня!

Измерение различных типов вязкости с помощью вискозиметров

Кинематический, динамический, относительный, кажущийся, абсолютный — при измерении вязкости с помощью вискозиметра вы, вероятно, встретите эти слова. Они относятся к различным типам (или значениям коэффициентов) вязкости, которые можно измерить в жидкости. Тип вязкости, полученный при измерениях вискозиметра, зависит от типа вискозиметра, который вы используете, но обычно он либо динамический, либо кинематический.

Демонстрация вязкости. Жидкость слева имеет более низкую вязкость, чем жидкость справа.
Изображение используется с разрешения (CC SA-BY 4.0; Synapticrelay).

Определим различные типы вязкости:

Динамическая (абсолютная) вязкость: Динамическая вязкость также известна как абсолютная вязкость и чаще всего относится к неньютоновским жидкостям. Это относится к внутреннему сопротивлению жидкости потоку при приложении силы.

Кинематическая вязкость: Кинематическая вязкость — это мера вязкости (обычно ньютоновской) жидкости в движении. Его можно определить как отношение динамической вязкости к плотности. Любой вискозиметр, в конструкции которого используется сила тяжести, измеряет кинематическую вязкость.

Кажущаяся вязкость (сдвиг): Кажущаяся или сдвиговая вязкость относится к соотношению между вязкостью и скоростью сдвига. В ньютоновских жидкостях это значение не меняется, но с неньютоновскими жидкостями кажущаяся вязкость напрямую зависит от скорости сдвига.Его можно рассчитать, разделив напряжение сдвига на скорость сдвига.

Относительная вязкость: Относительная вязкость важна для неньютоновских жидкостей, особенно полимеров. Это относится к соотношению между молярной массой (масса химического соединения, деленная на общее количество) и вязкостью — более высокая молярная масса означает более высокую вязкость в полимере. Он рассчитывается путем деления вязкости полимера на вязкость чистого растворителя.

Какой тип вязкости измеряют разные вискозиметры?

Не все вискозиметры одинаковы — тип измеряемой им вязкости зависит от его конструкции.Давайте рассмотрим наиболее распространенные типы:

Вискозиметры с диафрагмой: Вискозиметры с диафрагмой включают в себя различные разновидности вискозиметров с отверстиями. Поскольку они работают под действием силы тяжести, измеренная вязкость составляет , кинематическая вязкость .

Капиллярные вискозиметры: Капиллярные вискозиметры используют силу тяжести для измерения того, сколько времени требуется пробе жидкости, чтобы пройти по длине трубки. Они также измеряют кинематическую вязкость .

Вискозиметры с падающим поршнем: Вискозиметры с падающим поршнем используют силу, создаваемую падающим поршнем, для измерения вязкости.Они измеряют динамическую вязкость , потому что к жидкости прикладывается напряжение.

Ротационные вискозиметры: Ротационный вискозиметр измеряет, какой крутящий момент требуется для вращения шпинделя, погруженного в жидкость. Шпиндель прикладывает напряжение к жидкости, что приводит к измерению динамической вязкости .

Вискозиметр с падающим шариком: Вискозиметр с падающим шариком измеряет силу, необходимую для того, чтобы шарик провалился через жидкость. Шар прикладывает напряжение к жидкости, давая значение динамической вязкости .Вискозиметр с падающим шариком, запатентованный в 1932 году Фрицем Хепплером, был первым типом вискозиметра для измерения динамической вязкости.

Вибрационные вискозиметры: Вибрационные вискозиметры измеряют сопротивление жидкости вибрации. Поскольку вибрация представляет собой силу, прилагаемую к жидкости, эти вискозиметры измеряют динамическую вязкость .

Если вам нужна дополнительная информация о вязкости или о том, как ее измерить с помощью вискозиметров, свяжитесь с Saint Clair Systems .

Общие единицы измерения динамической и кинематической вязкости

Какие единицы измерения вязкости следует использовать?

Нас постоянно спрашивают об единицах вязкости. Иногда это может сбивать с толку, поскольку существует несколько типов вязкости, каждый со своими единицами измерения. Чтобы еще больше усложнить ситуацию, разные приложения могут использовать разные системы единиц, такие как СИ, СГС …. На этой странице мы кратко обсуждаем наиболее распространенные единицы для двух основных типов вязкости: динамической и кинематической.

Единицы динамической вязкости

Наиболее часто используемой единицей динамической вязкости является единица CGS сантипуаз (сП), что эквивалентно 0,01 Пуаз (P). Эта единица используется в честь французского физика Жана Леонара Мари Пуазейля (1797-1869), который работал с Готтильфом Хагеном над широко известным законом Хагена-Пуазейля, который применяется к ламинарному потоку в трубах. Не случайно, что вязкость дистиллированной воды при 20 ° C использовалась для определения 1 сП! Чтобы дать вам представление о вязкости некоторых обычных жидкостей, мы собрали их вязкости в Таблице 1 .Вы всегда можете проверить нашу библиотеку приложений, чтобы найти примеры различных жидкостей и их вязкости. Единица СИ для динамической вязкости η — это Паскаль-секунда (Па-с), что соответствует силе (Н) на единицу площади (м 2 ), деленной на скорость сдвига (с -1 ). . Прямо как в определении вязкости!

Однако, поскольку вязкость большинства жидкостей ниже 1 Па-с (см. , таблица 1 ), вместо этого часто используется миллипаскаль-секунда (мПа-с). Обратите внимание, что 1 мПа-с эквивалентно 1 сП.

Таблица 1. Вязкость обычных жидкостей

Единицы кинематической вязкости

Кинематическая вязкость часто измеряется в единицах CGS сантистоксов (сСт), что эквивалентно 0,01 стоксов (ст). Ты угадал! Он назван в честь ирландского математика сэра Джорджа Габриэля Стоукса (1819–1903), который, помимо других вкладов в механику жидкости, помог разработать уравнение Навье-Стокса для сохранения количества движения.Один сток эквивалентен одному пуазу, деленному на плотность жидкости в г / см 3 .

Единица СИ для кинематической вязкости: квадратных метров в секунду 2 / с). Однако из-за значений вязкости наиболее распространенных жидкостей чаще всего используется квадратных сантиметров в секунду ( 2 см / с). Обратите внимание, что 1 см 2 / с эквивалентно 100 сСт. В таблице , Таблица 2 , мы представляем наиболее распространенные единицы измерения вязкости и коэффициенты пересчета между ними.

Таблица 2. Преобразование между общепринятыми единицами вязкости.

Это самые основные единицы измерения вязкости, но существует большое количество единиц, специфичных для определенной системы измерения или приложения. Если у вас есть дополнительные вопросы о том, какие единицы измерения использовать для измерения вязкости, свяжитесь с нами!

Если вы хотите узнать больше о вязкости, ознакомьтесь с ДОПОЛНИТЕЛЬНЫМИ ОСНОВАМИ ВЯЗКОСТИ:

Динамическая вязкость — обзор

Динамическая вязкость указывается в Н · м −2 или Па · с.Во многих случаях динамическая вязкость выражается в пуазах (P), то есть дин см −2 или санти-пуазах (сП), где 1,0 дин = 10 −5 Н и 1,0 P = 10 −1 Па. с. Разделив динамическую вязкость на плотность раствора (кг · м −3 ), получим кинематическую вязкость:

, выраженную в м 2 с −1 или Стокса (см 2 с −1 , 1,0 Сток = 10 −4 м 2 с −1 ). В системах опреснения обычно применяется динамическая вязкость, которая для обычных операций может быть рассчитана с помощью следующих эмпирических уравнений для чистой воды и морской воды соответственно (Хан, 1986):

1.

Для чистой воды

(2,76) ln (ηpw) = — 3.79418 + 604.129139.18 + t68

где температура t 68 дана в ° C, а динамическая вязкость в сП. Уравнение имеет точность ± 1%.
2.

Для растворов морской воды Фабусс и Корози (1967) и Корози и Фабусс (1968)

Растворы морской воды (концентраты и разбавители) зависят от температуры и солености, таким образом, вязкость морской воды η sw , это:

(2.77) ηsw = ηr⋅ηpw

, где η r — относительная вязкость. Он представлен отношением вязкости солевого раствора к вязкости чистой воды η pw для той же температуры и рассчитывается по следующему эмпирическому уравнению (Isdale et al., 1972):

(2.78a) ηr = ηsw / ηpw = 1 + aSp + b⋅Sp2

, где параметры a и b являются функциями температуры раствора t 68 ° C. Они сформулированы с использованием вязкости чистой воды Fabuss и Korosi (1967) и Korosi and Fabuss (1968):

(2.78b) a = 0.001474 + 1.5 × 10−5⋅t68−0.003927 × 10−5⋅t682

(2.78c) b = 1.0734 × 10−5–8.5 × 10−8⋅t68 + 0.00223 × 10−7⋅t682

Используя нормализованные данные вязкости чистой воды (IAPWS-2008), параметры a и b уравнения. (2.78a) имеют следующие новые значения (Sharqawy et al., 2010):

(2.78d) a = 1.541 + 1.998 × 10−2⋅t − 9.52 × 10−5t2

(2.78e) b = 7.974 −7,561 × 10−2⋅t + 4,724 × 10−4⋅t2

, где нормализованная вязкость чистой воды определяется как:

(2,79) ηpw = 4,2844 × 10−5 + [0.157 (t + 64,993) 2−91,296] −1

Уравнение действительно для температур 0 ≤ t ≤ 180 ° C, точность составляет ± 0,05%. Данные в таблице 2. 16 основаны на значениях уравнений. (2.77) и (2.78d), (2.78e).

Таблица 2.16. Динамическая вязкость 10 3 кг · м 1 с −1 , растворов морской воды различной солености и температуры

797 0,8786 904 904 904 0,5533 904
Соленость (г кг −1 )
° C 0 a 10 30 50 70 90 110 120
0 1.791 1,820 1,887 2,925 2,055 2,156 2,268 2,328
10 1,306 1,33016 904 1,56 1,33016 904 904 1,51 1,714
20 1,002 1,021 1,065 1,114 1,168 1,227 1,259 1,326
30 0,814 0,851 0,891 0,936 0,984 1,037 1,064
40 0,653 0,667 0,653 0,667 0,699
50 0,547 0,560 0,587 0,617 0,649 0,684 0,721 0,740
60 60 0,478 0,502 0,528 0,556 0586 0,618 0,635
70 0,404 0,414 0,414
80 0,354 0,364 0,383 0,404 0,426 0,449 0,474 0,487
90 0,340 0,359 0,379 0,400 0,422 0,434
100 0,282 0,289 0,305 0,289 0,305 0,390 0,305
110 0,255 0,262 0,276 0,291 0,308 0,325 0,344 0,354
120 0. 232 0,238 0,251 0,261 0,288 0,297 0,314 0,323

По данным Isdale, J.D., Spencer, C.M., Tudhope, J. 1972. Физические свойства растворов морской воды. Desalination 10, 319–328; Джеймисон, Д.Т. 1986. Экспериментальные методы определения свойств соленой воды. Опреснение 59, 219–240.

Для кинематической вязкости Chen et al. (1973) представляют следующее выражение, основанное на солености:

(2.80) v = vpw + aS1 / 2 + bS + cS2

, где v pw — кинематическая вязкость чистой воды, а соленость S выражается в% массы соли. Параметры a, b и c имеют следующие значения для диапазона температур от 10 до 150 ° C:

a = -1,464, b = 205,4, c = 153,0

Простое измерение динамической вязкости

Poulten Selfe and Lee Ltd — британская компания, специализирующаяся на измерении вязкости новых и отработанных масел.Компания была основана в 1931 году и производит установленный ассортимент стеклянных капиллярных вискозиметров, эталонов вязкости масла и автоматических лабораторных вискозиметров. Стивен Гослинг, директор семейного бизнеса, активно участвует в международных реологических исследованиях, включая IP и ASTM. В настоящее время он разрабатывает свод правил по определению вязкости отработанных смазочных материалов для картера дизельных двигателей.

Poulten Selfe & Lee Ltd недавно выпустила новый вискозиметр, автоматический вискозиметр RHEOTEK ™ AV-1, который заменяет VMU 300.Как и его предшественник, автоматический вискозиметр RHEOTEK ™ AV-1 разработан специально для измерения вязкости отработанных масел. Кроме того, AV-1 может использоваться для измерения жидкого топлива и новых масел. Самая важная особенность прибора заключается в том, что он измеряет динамическую (абсолютную) вязкость (выражается в сантипуазах) напрямую, и, если требуется, плотность также может быть измерена одновременно, чтобы представить результаты в кинематических единицах вязкости (например, сантистоксах). . Динамическая вязкость измеряется для решения возможных проблем, связанных с кинематической вязкостью проб отработанного масла.Загрязняющие вещества, обычно обнаруживаемые в отработанном масле, могут изменять плотность образца и, как таковые, могут отрицательно повлиять на результат изменения вязкости.

Из теории фундаментальной физики уравнение Пуазейля утверждает, что вязкость жидкости может быть определена по скорости потока через данный капилляр при условии, что к жидкости приложена постоянная сила.

Для удобства в капиллярных вискозиметрах обычно используется сила тяжести. Однако это потенциально может внести ошибку в расчет вязкости.Если требуются точные измерения, необходимо сделать предположение о плотности жидкости. При анализе отработанного масла невозможно сделать предположения о плотности жидкости в течение срока ее службы. Было показано, что различные образцы жидкости с аналогичной вязкостью могут иметь широкий диапазон плотностей в зависимости от их химического состава и взвешенных загрязняющих веществ. Следовательно, эти образцы флюида с одинаковой вязкостью будут считаться имеющими разную вязкость, если их измерить с помощью обычного кинематического вискозиметра, использующего гравитационный поток.Однако с динамической вязкостью измерение покажет истинный результат, то есть их вязкости будут одинаковыми.

Ниже приводится краткое описание автоматического вискозиметра RHEOTEK ™ AV-1.

  • Фундаментальный принцип, лежащий в основе конструкции автоматического вискозиметра RHEOTEK ™ AV-1, заключается в использовании постоянной силы для перемещения исследуемой пробы отработанного масла. Это устраняет влияние плотности жидкости и силы тяжести. Результирующее измерение представляет собой результат динамической вязкости, который может быть преобразован в результат кинематической вязкости и записан как таковой пользователем.Для этой цели доступна ячейка для измерения плотности, которая устраняет неопределенности, связанные с предположениями о плотности жидкости.
  • Контроль температуры является ключом к точному измерению вязкости, и автоматический вискозиметр RHEOTEK ™ AV-1 использует две нагревательные плиты с независимым контролем температуры. Каждая тепловая печь состоит из прочного алюминиевого блока с миниатюрными нагревателями и датчиками температуры. Каждую печь можно настроить на разную температуру, что позволяет пользователю измерять один и тот же образец при двух разных температурах.В качестве альтернативы автоматический вискозиметр RHEOTEK ™ AV-1 можно настроить так, чтобы он измерял два образца при одинаковой температуре одновременно. Это позволяет обрабатывать до 45 проб отработанного масла при 100 ° C в час.
  • В нагреваемые блоки встроены два капилляра с оптоэлектронными датчиками для контроля скорости потока пробы и времени потока. Для прохождения образца через капилляр используется прецизионно регулируемое положительное давление. Кроме того, системы сжатого воздуха, растворителя и вакуума управляются серией электромеханических клапанов.Весь инструмент управляется ПК.
  • Вискозиметр калибруется с использованием эталонов вязкости масла, откалиброванных в соответствии с ASTM D445.
  • Сэмплы автоматически загружаются с помощью автосэмплера. Затем их нагревают до необходимой температуры и измеряют. Затем жидкость удаляется и система тщательно очищается. При желании можно добавить считыватель штрих-кода для идентификации, мониторинга и отслеживания образцов. Затем последовательные данные LIMS могут быть переданы в центральную систему мониторинга лаборатории.
  • Вискозиметр имеет производительность до 45 образцов в час.

Объяснение кинематической вязкости | Смазка для машин

Что такое кинематическая вязкость?

Кинематическая вязкость — это мера внутреннего сопротивления жидкости потоку под действием гравитационных сил. Он определяется путем измерения времени в секундах, необходимого для того, чтобы фиксированный объем жидкости прошел известное расстояние под действием силы тяжести через капилляр в откалиброванном вискозиметре при строго контролируемой температуре.

Это значение преобразуется в стандартные единицы, такие как сантистоксы (сСт) или квадратные миллиметры в секунду. Отчет о вязкости действителен только в том случае, если также указывается температура, при которой проводился тест — например, 23 сСт при 40 ° C.

Из всех тестов, используемых для анализа отработанного масла, ни один не обеспечивает лучшей повторяемости или стабильности теста, чем вязкость. Точно так же нет свойства более критичного для эффективной смазки компонентов, чем вязкость базового масла.Однако вязкость — это нечто большее, чем кажется на первый взгляд. Вязкость может быть измерена и представлена ​​как динамическая (абсолютная) вязкость или как кинематическая вязкость. Их легко спутать, но они существенно отличаются.

Большинство лабораторий по анализу используемых масел измеряют и сообщают кинематическую вязкость. Напротив, большинство локальных вискозиметров измеряют динамическую вязкость, но запрограммированы на оценку и отображение кинематической вязкости, так что сообщаемые измерения вязкости отражают кинематические числа, сообщаемые большинством лабораторий и поставщиков смазочного масла.

Учитывая важность анализа вязкости в сочетании с растущей популярностью приборов для анализа масла на месте, используемых для проверки и дополнения анализа масла в лаборатории за пределами объекта, важно, чтобы аналитики нефти понимали разницу между динамическими и кинематическими измерениями вязкости.

Вообще говоря, вязкость — это сопротивление жидкости течению (напряжение сдвига) при заданной температуре. Иногда вязкость ошибочно называют толщиной (или массой).Вязкость — это не измерение размеров, поэтому называть высоковязкое масло густым, а менее вязкое — тонким — ошибочно.

Точно так же бессмысленно сообщать о вязкости для определения тенденций без ссылки на температуру. Для интерпретации показаний вязкости необходимо определить температуру. Обычно вязкость указывается при 40 ° C и / или 100 ° C или при обоих значениях, если требуется индекс вязкости.

Уравнение кинематической вязкости

Несколько технических единиц используются для выражения вязкости, но наиболее распространенными являются сантисток (сСт) для кинематической вязкости и сантипуаз (сП) для динамической (абсолютной) вязкости.Кинематическая вязкость в сСт при 40 ° C является основой для системы классификации кинематической вязкости ISO 3448, что делает ее международным стандартом. Другие распространенные системы кинематической вязкости, такие как Saybolt Universal Seconds (SUS) и система классификации SAE, могут быть связаны с измерением вязкости в сСт при 40 ° C или 100 ° C.

Измерение кинематической вязкости

Кинематическая вязкость измеряется путем учета времени, за которое масло проходит через отверстие капилляра под действием силы тяжести (рис. 1).Отверстие трубки кинематического вискозиметра создает постоянное сопротивление потоку. Доступны капилляры разного размера для поддержки жидкостей различной вязкости.

Время, необходимое для прохождения жидкости через капиллярную трубку, можно преобразовать в кинематическую вязкость, используя простую калибровочную константу, предусмотренную для каждой трубки. Основной процедурой для выполнения измерений кинематической вязкости является ASTM D445, который часто изменяется в лаборатории анализа отработанного масла для экономии времени и повышения эффективности измерения.

Рис. 1. Капиллярный вискозиметр с U-образной трубкой

Измерение динамической вязкости (абсолютной вязкости)

Динамическая вязкость измеряется как сопротивление потоку, когда внешняя и контролируемая сила (насос, сжатый воздух и т. Д.) Заставляет масло проходить через капилляр (ASTM D4624) или тело проталкивается через жидкость под действием внешней контролируемой силы, такой как шпиндель с приводом от двигателя.В любом случае измеряется сопротивление потоку (или сдвигу) как функция входящей силы, которая отражает внутреннее сопротивление образца приложенной силе или его динамическую вязкость.

Существует несколько типов и исполнений абсолютных вискозиметров. Роторный метод Брукфилда, изображенный на рисунке 2, является наиболее распространенным. Измерение абсолютной вязкости используется для исследовательских целей, контроля качества и анализа пластичных смазок в области смазки оборудования.

Рис. 2. Ротационный вискозиметр ASTM D2983

Процедуры тестирования динамической вязкости в лаборатории традиционным методом Брукфилда определены ASTM D2983, D6080 и другими. Тем не менее, динамическая вязкость становится обычным явлением в области анализа отработанного масла, поскольку большинство продаваемых сегодня на рынке вискозиметров измеряют динамическую, а не кинематическую вязкость.Поставщиками локальных динамических вискозиметров являются Anton Paar, Kittiwake и Spectro Scientific.

Вообще говоря, кинематическая вязкость (сСт) относится к абсолютной вязкости (сП) как функции удельного веса жидкости (SG) в соответствии с уравнениями на рисунке 3.

Рис. 3. Уравнения вязкости

Какими бы простыми и элегантными ни казались эти уравнения, они верны только для так называемых ньютоновских жидкостей.Кроме того, удельный вес жидкости должен оставаться постоянным в течение периода тренда. Ни одно из этих условий не может считаться постоянным при анализе отработанного масла, поэтому аналитик должен знать условия, при которых могут возникать отклонения.

Кинематическая вязкость: ньютоновские и неньютоновские жидкости

Ньютоновская жидкость — это жидкость, которая поддерживает постоянную вязкость при всех скоростях сдвига (напряжение сдвига изменяется линейно со скоростью сдвига). Эти жидкости называются ньютоновскими, потому что они следуют исходной формуле, установленной сэром Исааком Ньютоном в его Законе механики жидкостей.Однако некоторые жидкости не ведут себя подобным образом. В общем, их называют неньютоновскими жидкостями. Ньютоновские жидкости включают газы, воду, масло, бензин и спирт.

Группа неньютоновских жидкостей, называемых тиксотропными, представляет особый интерес при анализе отработанных масел, поскольку вязкость тиксотропных жидкостей уменьшается с увеличением скорости сдвига. Вязкость тиксотропной жидкости увеличивается с уменьшением скорости сдвига. В случае тиксотропных жидкостей время схватывания может увеличить кажущуюся вязкость, как и в случае пластичной смазки.Примеры неньютоновских жидкостей включают:

  • Загустители при сдвиге: вязкость увеличивается с увеличением скорости сдвига. Например, кукурузный крахмал, помещенный в воду и перемешанный, со временем становится гуще.
  • Жидкости, разжижающие сдвиг: вязкость уменьшается с увеличением скорости сдвига. Краска для стен — хороший тому пример. По мере перемешивания краска становится более жидкой.
  • Тиксотропные жидкости: становятся менее вязкими при перемешивании.Типичные примеры этого — томатный кетчуп и йогурт. После встряхивания они становятся более жидкими. Оставленные в покое, они возвращаются в гелеобразное состояние.
  • Реопектические жидкости: становятся более вязкими при взбалтывании. Типичным примером этого являются чернила для принтера.
Кинематическая вязкость: ньютоновские и неньютоновские жидкости
Ньютоновские жидкости Неньютоновские жидкости
Газы Загустители при сдвиге (более высокая скорость сдвига, более высокая вязкость)
Вода Жидкости, разжижающие сдвиг (более высокая скорость сдвига, более низкая вязкость)
Масло Тиксотропные жидкости (становятся менее вязкими при перемешивании)
Бензин Реопектические жидкости (становятся более вязкими при взбалтывании)
Алкоголь

Кинематическая вязкость: практический пример

Представьте, что перед вами две банки: одна наполнена майонезом, другая — медом. Когда обе банки прикреплены к поверхности стола с помощью липучки, представьте, что вы погружаете одинаковые ножи для масла в каждую из жидкостей под одинаковым углом и на одинаковую глубину. Представьте, что вы перемешиваете две жидкости, вращая ножи с одинаковой частотой вращения, сохраняя при этом одинаковый угол атаки.

Какую из двух жидкостей было сложнее перемешать? Вашим ответом должен быть мед, который намного сложнее размешать, чем майонез. Теперь представьте, что вы снимаете банки с застежки-липучки на столе и переворачиваете банки на бок.Что быстрее вытекает из банки, мед или майонез? Ваш ответ должен быть мед; майонез совсем не потечет, если перевернуть банку на бок.

Какая жидкость более вязкая, мед или майонез? Если вы сказали майонез, вы правы … по крайней мере частично. Точно так же, если вы сказали мед, вы частично правы. Причина очевидной аномалии заключается в том, что при вращении ножа в обоих веществах скорость сдвига меняется, а при повороте каждой банки на бок просто измеряется статическое сопротивление потоку.

Поскольку мед — это ньютоновская жидкость, а майонез — неньютоновский, вязкость майонеза падает при увеличении скорости сдвига или при вращении ножа. При перемешивании майонез подвергается сильному сдвиговому напряжению, что приводит к его податливости. И наоборот, просто поставив банку на бок, майонез подвергнется низкому сдвиговому напряжению, в результате чего вязкость практически не изменится, поэтому он, как правило, остается в банке.

Невозможно условно измерить вязкость неньютоновской жидкости.Скорее, необходимо измерить кажущуюся вязкость, которая принимает во внимание скорость сдвига, при которой проводилось измерение вязкости. (См. Рис. 4). Подобно тому, как измерения вязкости не имеют смысла, если не указана температура испытания, измерения кажущейся вязкости не имеют смысла, если не указаны температура испытания и скорость сдвига.

Например, вязкость консистентной смазки никогда не указывается, скорее, кажущаяся вязкость консистентной смазки указывается в сантипуазах (сП). (Примечание: вязкость может указываться для базового масла, используемого для изготовления смазки, но не для готового продукта.)

Вообще говоря, жидкость является неньютоновской, если она состоит из одного вещества, взвешенного (но не растворенного химически) в жидкости хозяина. Для этого есть две основные категории: эмульсии и коллоидные суспензии. Эмульсия — это стабильное физическое сосуществование двух несмешивающихся жидкостей. Майонез — это обычная неньютоновская жидкость, состоящая из яиц, эмульгированных в масле, жидкости хозяина.Поскольку майонез не является ньютоновским, его вязкость уменьшается с приложенной силой, что облегчает его намазывание.

Коллоидная суспензия состоит из твердых частиц, стабильно взвешенных в жидкости хозяина. Многие краски представляют собой коллоидную суспензию. Если бы краска была ньютоновской, она либо легко растекалась бы, но растекалась при низкой вязкости, либо растекалась бы с большим трудом и оставляла следы кисти, но не растекалась бы при высокой вязкости.

Поскольку краска неньютоновская, ее вязкость уменьшается под действием силы кисти, но возвращается, когда кисть убирается.В результате краска растекается относительно легко, но не оставляет следов кисти и не растекается.

Динамическая вязкость и кинематическая: в чем разница

Динамическая вязкость определяет толщину пленки масла. Кинематическая вязкость — это просто удобная попытка оценить степень толщины пленки, которую может обеспечить масло, но имеет меньшее значение, если масло неньютоновское.

Многие смазочные составы и условия дают неньютоновскую жидкость, в том числе:

  • Присадки, улучшающие индекс вязкости (VI) — Всесезонные моторные масла на минеральной основе (кроме естественных базовых масел с высоким индексом вязкости) содержат упругую присадку, которая уплотняется при низких температурах и расширяется при высоких температурах в ответ на повышение растворимости жидкости. Поскольку эта добавочная молекула отличается от молекул масла-хозяина, она ведет себя неньютоновским образом.

  • Загрязнение воды — Нефть и свободная вода не смешиваются, во всяком случае химически. Но при определенных обстоятельствах они будут объединяться в эмульсию, как и майонез, о котором говорилось ранее. Это подтвердит любой, кто видел масло, похожее на кофе со сливками. Хотя это может показаться нелогичным, загрязнение воды при эмульгировании в масло на самом деле увеличивает кинематическую вязкость.

  • Побочные продукты термического и окислительного разложения — Многие побочные продукты термического и окислительного разложения нерастворимы, но переносятся маслом в стабильной суспензии. Эти приостановки создают неньютоновское поведение.

  • Сажа — Сажа, обычно встречающаяся в дизельных двигателях, представляет собой частицу, которая приводит к образованию коллоидной суспензии в масле. Диспергирующая добавка к маслу, предназначенная для предотвращения агломерации и роста частиц сажи, способствует образованию коллоидной суспензии.

Если бы нужно было измерить абсолютную вязкость одной из этих часто встречающихся эмульсий или коллоидов, описанных выше, с помощью абсолютного вискозиметра с переменной скоростью сдвига (например, ASTM D4741), измерение уменьшилось бы по мере увеличения скорости сдвига до точки стабилизации. .

Если бы эту стабилизированную абсолютную вязкость разделить на удельный вес жидкости для оценки кинематической вязкости, расчетное значение будет отличаться от измеренной кинематической вязкости.Опять же, уравнения на рисунке 3 применимы только к ньютоновским жидкостям, а не к неньютоновским жидкостям, описанным выше, поэтому возникает это несоответствие.

Влияние кинематической вязкости и удельного веса

Снова посмотрите на уравнения на рисунке 3. Абсолютная и кинематическая вязкости ньютоновской жидкости связаны как функция удельного веса жидкости. Рассмотрим устройство на Рисунке 1: колба, содержащая пробу масла, которая высвобождается, когда устраняется вакуум, а затем создает напор, который прогоняет масло через капиллярную трубку.

Можно ли предположить, что все жидкости будут создавать одинаковый напор? Нет, давление зависит от удельного веса жидкости или веса относительно веса идентичного объема воды. Большинство смазочных масел на углеводородной основе имеют удельный вес от 0,85 до 0,90. Однако это может измениться со временем, поскольку масло ухудшается или становится загрязненным (например, гликоль, вода и металлы износа), что приводит к разнице между измерениями абсолютной и кинематической вязкости.

Рассмотрим данные, представленные в таблице 2. Каждый из новых сценариев использования нефти идентичен, и в обоих случаях абсолютная вязкость увеличивается на 10 процентов, что обычно является критическим пределом для изменения вязкости. В сценарии А небольшое изменение удельного веса приводит к небольшой разнице между измеренной абсолютной вязкостью и кинематической вязкостью.

Этот дифференциал может немного задержать звучание сигнала о замене масла, но не вызовет большой ошибки.Однако в сценарии B разница намного больше. Здесь удельный вес значительно увеличивается, что приводит к измеренному увеличению кинематической вязкости на 1,5 процента по сравнению с увеличением на 10 процентов, измеренным с помощью абсолютного вискозиметра.

Это существенное различие, которое может привести к тому, что аналитик определит ситуацию как не подлежащую отчетности. Сделанная ошибка заключается в предположении в обоих сценариях, что флюиды остаются ньютоновскими.

Из-за множества возможностей образования неньютоновских жидкостей, истинным параметром, представляющим интерес для аналитика нефти и специалиста по смазочным материалам, должна быть абсолютная вязкость.Это то, что определяет толщину пленки жидкости и степень защиты поверхностей компонентов. В интересах экономии, простоты и того факта, что новые процедуры испытаний смазочных материалов обычно используются для анализа отработанного масла, кинематическая вязкость масла является измеряемым параметром, используемым для анализа тенденций и принятия решений по управлению смазочными материалами. Однако в некоторых случаях это может вносить ненужные ошибки в определение вязкости масла.

Проблема сводится к простой математике.Как показывают уравнения на Рисунке 3, абсолютная и кинематическая вязкость связаны как функция удельного веса масла. Если и вязкость, и удельный вес являются динамическими, но измеряется только одна, произойдет ошибка, и кинематическая вязкость не даст точной оценки изменения абсолютной вязкости жидкости, представляющего интерес параметра. Величина ошибки зависит от величины изменения неизмеряемого параметра, удельного веса.

Важные выводы относительно кинематической вязкости

Из этой дискуссии об измерении вязкости можно сделать следующие выводы:

  • Предполагая, что лаборатория измеряет вязкость кинематическими методами, добавление измерения удельного веса к стандартной программе лабораторного анализа масла поможет исключить его как переменную при оценке абсолютной вязкости по измеренной кинематической вязкости.

  • При использовании вискозиметра на объекте не ищите полного согласия между кинематическим вискозиметром лаборатории и приборами на месте. Большинство этих устройств измеряют абсолютную вязкость (сП) и применяют алгоритм для оценки кинематической вязкости (сСт), часто сохраняя постоянный удельный вес. Рассмотрите возможность анализа тенденций результатов местного вискозиметра в сП.

    Это измеряемый параметр, который помогает отличить тенденцию на месте от тенденции данных, полученных в лаборатории с помощью кинематического вискозиметра.Не пытайтесь достичь идеального согласия между измерениями вязкости на месте и в лаборатории. Это бесполезно и мало ценно. В лучшем случае ищите слабую корреляцию. Всегда устанавливайте базовый уровень нового масла с тем же вискозиметром, который вы используете с рабочим маслом.

  • Помните, что неньютоновские жидкости не обеспечивают такой же пленочной защиты для данной кинематической вязкости, как ньютоновские жидкости той же кинематической вязкости. Поскольку вязкость неньютоновской жидкости зависит от скорости сдвига, прочность пленки снижается под действием рабочей нагрузки и скорости.Это одна из причин, по которым эмульгированная вода увеличивает скорость износа таких компонентов, как подшипники качения, где прочность пленки жидкости имеет решающее значение (конечно, вода также вызывает другие механизмы износа, такие как паровая кавитация, ржавчина и водородное охрупчивание и образование пузырей).

Вязкость — критическое свойство жидкости, и мониторинг вязкости необходим для анализа масла. Методы измерения динамической и кинематической вязкости могут давать очень разные результаты при испытании отработанных масел.Убедитесь, что все тонкости измерения вязкости и поведения вязкой жидкости понятны, чтобы можно было принимать точные решения о смазке.

2.6: Вязкость — Химия LibreTexts

Вискозиметры используются для измерения вязкости. Существует семь различных классов вискозиметров:

Капиллярные вискозиметры

Капиллярные вискозиметры являются наиболее широко используемыми вискозиметрами при работе с ньютоновскими жидкостями и измеряют скорость потока через узкую, обычно стеклянную трубку.В некоторых капиллярных вискозиметрах требуется внешняя сила для перемещения жидкости через капилляр; в этом случае разность давлений по длине капилляра используется для получения коэффициента вязкости.

Капиллярные вискозиметры требуют наличия резервуара для жидкости, капилляра известных размеров, регулятора давления, расходомера и термостата. Эти вискозиметры включают в себя модифицированные вискозиметры Оствальда, вискозиметры с подвешенным уровнем и вискозиметры с обратным потоком и измеряют кинематическую вязкость .{4}} {8 \ eta l} \ label {5} \]

Здесь Q равно В / т; объем жидкости, измеренный в ходе эксперимента, деленный на время, необходимое для ее движения по капилляру, где V — объем, а t — время.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *