Состав электролита для аккумуляторов: состав и свойства — Информация

Содержание

состав и свойства — Информация

Пластиковый корпус и два контакта для подключения проводов. Именно так представляется автомобильный аккумулятор большинству из современных владельцев авто. Однако чтобы эксплуатировать его максимально эффективно, безопасно и без неожиданных сюрпризов, о батарее стоит знать немного больше.

 

Сегодня речь пойдет о столь важной составляющей конструкции авто и мото аккумуляторов, как электролит. Он представляет собой раствор серной кислоты, которая считается, пожалуй, одним из ключевых химических соединений в мире. Это обусловлено широким спектром ее применения. Раствор серной кислоты продается под различными наименованиями, которые зависят от степени крепости, а также уровня чистоты. Приведем несколько распространенных примеров:

 

  • Камерная кислота – раствор серной кислоты с водой в пропорции от 60:40 до 70:30.
  • Башенная кислота – раствор с соотношением от 75:25 до 82:18.
  • Купоросное масло с содержанием серной кислоты до 97%.
  • 100% серная кислота – моногидрат.

 

Если говорить о максимальной крепости, получаемой способом выпаривания, то этот параметр может достигать 98,5%. Однако для заправки аккумуляторных батарей ключевое значение приобретает чистота растворов купоросного масла с химической точки зрения.

 

Отметим также, что концентрированной серной кислотой называется совершенно прозрачная жидкость, не имеющая ни цвета, ни запаха. Она обладает консистенцию легкого масла. Ее удельный вес составляет 1б84 при температуре 15°С. В ней содержится примерно 95% серной кислоты. Концентрат может смешиваться с водой в любой пропорции. Изготавливая электролит в бытовых условиях, следует помнить, что смешивание воды и кислоты вызывает выделение значительного количества тепла. Температура кипения концентрированной серной кислоты составляет 338 градусов Цельсия.

 

Интересным фактом из курса химии является сокращение объема раствора. Примечательно то, что при смешении двух объемов серной кислоты и воды, соответственно, их итоговый объем будет меньше, чем суммарный.

 

Также обратите внимание на то, что удельный вес или плотность электролита авто или мото аккумулятора имеет непосредственную зависимость от тех температур, при которых работают аккумуляторы. Так, при эксплуатации в условиях низких температур нужен более плотный электролит. А в жарких странах – напротив – плотность электролита сознательно снижается. Это объясняется тем, что при таких температурах существенно повышается химическая активность раствора.

 

В заключение отметим, что плотность электролита также зависит от того, в каких режимах эксплуатируется батарея. Так, данный параметр для тяговых аккумуляторов обычно составляет 1.26 кг\с м³ , пусковые и осветительные источники питания имеют плотность до 1.3 кг\с м³ и т.д. Для автомобильных аккумуляторных батарей эта характеристика читается нормой, когда составляет 1.28 кг\с м³ .

23.08.2013, 69405 просмотров.

Кислотный электролит: состав и метод изготовления

Электролит – это токопроводящая жидкость, которая представляет собой смесь дистиллированной воды и кислоты или щелочи. Подробнее о свойствах и видах электролита можно почитать в нашей прошлой статье.

Сейчас мы хотим уделить внимание первому виду этого раствора – кислотному электролиту

Состав и изготовление

Важно понимать, что при нарушении технологии изготовления раствора щелочи или серной кислоты ваш аккумулятор может выйти из строя. Поэтому многие предпочитают покупать кислотную или щелочную смесь в специализированных магазинах.

Если вы решились приготовить токопроводящую жидкость самостоятельно, то для кислотного электролита вам понадобятся дистиллированная вода и серная кислота.

Преимущества серной кислоты заключаются в том, что она почти не имеет запаха и не испаряется при нормальной комнатной температуре от 15 до 25 градусов тепла. Также по другим химическим характеристикам это вещество лучшим образом подходит для заливки в АКБ со свинцовыми пластинами.

Правила безопасности и свойства:

Плотность является главным свойством электролита, ее значение может колебаться в зависимости от уровня заряда АКБ, но при нормальных условиях всегда должно оставаться внутри интервала от 1,26 до 1,30 г/мм^3

Нельзя забывать о том, что серная кислота – это едкое вещество. Поэтому работа с ней предполагает применение защитных средств. Как минимум, перчаток и защитных очков.

Как найти хороший автомобильный аккумулятор?

В Нижнем Новгороде вы можете купить аккумулятор недорого и быстро, просто зайдя в наш интернет магазин «Центр-АКБ». В каталоге магазина представлены различные модели с подробными техническими характеристиками. Поэтому, если вы решились купить аккумулятор Bosch или батареи других брендов, смело заполняйте заявку на сайте или звоните по телефону горячей линии:+7 (831) 416-13-13

Нас можно найти в Нижнем Новгороде по адресам:

  • ул. Березовская, д. 96А
  • ул. Деловая, д. 7к5
  • проспект Кирова, 12
  • ул. Русская улица, 5

Делаем электролит для АКБ собственноручно | Описания, разъяснения | Статьи

Без электролита не возможен процесс накопления энергии. На данный момент технологии стремятся вверх и источники питания уже с завода заправляются электрохимической жидкостью и заряжаются, по сути вам нет нужды что-либо делать, данный аккумуляторные батареи именуют как необслуживаемыми, у них в пластинах имеются части «кальция» и «серебра».

Однако, так было не во а все времен, еще в Советском Союзе огромная популярность была у сурьмянистых аккумуляторных батареях, а вот они в свою очередь, как правило шли сухозаряженные («залить» и «зарядить» необходимо было вам самим). Всем владельцам АКБ необходимо знать, что такое этот электролит? Это токопроводящая жидкость, какая под влиянием своего состава на свинцовые пластины может помогать при накапливанию или отдаче электрического тока.

Как раз, почти все жидкости на Земле могут быть электролитом, в той или другой мерой. В частности, обыкновенная вода! К тому же, в человеческой крови, тоже иметься понятие электролита, наши с вами нервные клетки передают импульсы как раз через нее.

СОСТАВ ЭЛЕКТРОЛИТА

Именно, тут нет ничего трудного. Вам необходимо смешать серную кислоту и дистиллированную воду в необходимой пропорции. Стандартная «водопроводная» вода не подойдет, ибо в ней иметься огромное количество различных примесей солей, примесей хлора и другого, все это пагубно влияет на пластины источника питания! Электролит автомобиля имеет необходимую концентрацию, ее отзеркаливает плотность готового состава, как правило она колеблется от 1,23 до 1,29 г/см3. Различные значения контролирует температурные зоны Украины. Так плотность в 1,23 г/см3 применяется в теплых регионах, а 1,29 (и даже больше) в холодных. Не стоит забывать, что если значения плотность мало, то аккумулятор автомобиля элементарно может замерзнуть при кране сильном холоде.

КАК ПРОИЗВЕСТИ СОБСТВЕННОРУЧНО РУКАМИ

Перед тем как начать это, вам необходимо знать, что всякие операции по изготовлению электролита своими руками очень опасны для вашего здоровья! Ибо нам необходимо будет трудиться с серной кислотой в огромных концентрациях. НА вас непременно должны быть одеты защитные средства, для рук, тела, дыхательных путей.

ЧТО БУДЕТ НЕОБХОДИМО:

  • Серная кислота плотностью более чем 1,83 г/см3
  • Дистиллированная вода
  • Фарфоровая посудина

Процесс производства крайне легок, нам необходимо смешать наши ингредиенты в необходимой пропорции. В частности, в процессе изготовления выделяется обильное количество тепла, вследствие этого не стоит применять стеклянные емкости, они элементарно могут лопнуть. Безупречно для этого вам подойдет фарфор, далее, когда температура состава уменьшиться, можно перелить в стеклянную или пластиковую тару.

Далее, смешиваем ингредиенты и меряем плотность одержанного состава ареометром, после того как дошли до необходимого показателя — электролит готов.

Как бы там ни было, ареометр есть ни у каждого в гараже! Оттого, тут стоит немного помочь, какое количество и что добавлять. Для плотности электролита:

1,23г/см3 – необходимо в литр дистиллированной воды, долить 280грамм серной кислоты

1,25г/см3 – на 1л. воды 310грамм кислоты

1,27г/см3 – на 1л. – 345грамм

1,29г/см3 – на 1л. – 385гр.

Вот так вот, можно собственноручно приготовить электролит, больше ничего не требуется!

ЭЛЕКТРОЛИТ В ЗАРЯЖЕННЫЙ АВТОМОБИЛЬНЫЙ ИСТОЧНИК ПИТАНИЯ

При разрядах плотность электролита может уменьшаться. Это случается, ибо кислота, объединяясь со свинцом, обосновывается в виде сульфатов на пластинах. Необходимо совершить процесс подзарядки аккумуляторной батареи и сульфаты приниматься распадаться, концентрация возобновляется.

Как бы там ни было, при глубоких разрядах, сульфаты создадут крупные кристаллы, какие тривиально запаковывают пластины, да и плотность критически падает.

ЧИТАЙТЕ ТАКЖЕ

советы по подготовке, правила эксплуатации

Электрическая батарея автомобиля представляет собой перезаряжаемый аккумулятор, который обеспечивает электрической энергией двигатель при его запуске и позволяет функционировать всем системам транспортного средства. Работоспособность батареи определяется его выходным напряжением, которое в большей степени зависит от состава электролита для аккумуляторов.

Общая информация

Аккумуляторная батарея получила такое название потому, что она состоит из нескольких ячеек, которые располагаются одна за другой в ряд. Такое устройство является последовательным соединением электрических элементов в цепи, что позволяет увеличить выходное напряжение. Каждая ячейка батареи представляет собой закрытый сосуд, в котором расположены два электрода, погруженные в специальную жидкость — электролит, представляющий собой смесь серной кислоты и дистиллированной воды. Он выступает в качестве среды, обеспечивающей ионный обмен между электродами.

Положительные электроды — пластины, которые состоят из пентоксида свинца, а отрицательные электроды — пластины из активного свинца. Они объединяются и группируются с помощью контактных прослоек горизонтального и вертикального типа. Такая структура обеспечивает равномерное распределение электрического тока. Объединение положительных и отрицательных свинцовых пластин называется элементом. Как правило, отрицательные пластины имеют большую толщину.

Каждый элемент батареи отделяется тонкой прослойкой из пластика. Эта прослойка предотвращает возникновение короткого замыкания между рядом находящимися плюсом и минусом соседних элементов.

Между электродами и электролитом происходят электрохимические реакции, в результате которых поглощаются или выделяются электроны. Такие реакции создают разницу напряжений между электродами элемента.

На внешнюю часть корпуса аккумулятора выводятся две клеммы, с помощью которых он подсоединяется к электрической цепи. Эти клеммы расположены на верху корпуса, однако в некоторых батареях они делаются сбоку. В последнем случае возникает множество проблем, связанных с их расположением, в частности, боковые клеммы облегчают скопление паров электролита внутри батареи, что приводит к быстрому выходу из строя его рабочих элементов.

Клемма аккумулятора является либо положительной, либо отрицательной. Положительная клемма имеет больший размер, поэтому выполнить правильную установку батареи не составит никакого труда даже новичку. Если подсоединить неправильно аккумулятор, то есть перепутать плюс и минус, тогда можно повредить всю электрическую цепь.

Происходящие электрохимические реакции приводят к медленному износу активных элементов батареи, в частности, отрицательные электроды окисляются и становятся толще, а положительные электроды восстанавливаются и утончаются. По этой причине при покупке аккумулятора для автомобиля всегда следует обращать внимание на гарантийный срок службы устройства.

Аккумулятор может работать в ограниченном температурном диапазоне и плохо переносит низкие температуры, поэтому уход за ним состоит в периодических проверках напряжения на его клеммах и его механической целостности. Важно следить за наличием в батареи электролита для кислотных аккумуляторов и составом его.

Концентрация кислоты

Основным компонентом электролита автомобильной аккумуляторной батареи (АКБ) является концентрированная серная кислота. Но на чистой серной кислоте устройство работать не может, поэтому в составе автомобильного электролита также присутствует дистиллированная вода. Государственный стандарт ГОСТ 667–73 регулирует качество серной кислоты, поставляемой для АКБ. Важность соблюдения этого ГОСТа связаны с резким снижением срока службы устройства в случае использования грязной серной кислоты.

Плотность серной кислоты равна 1,84 г/мл, рабочее же значение плотности электролита составляет 1,3 г/мл. Следует знать, что при приготовлении электролита выделяется большое количество теплоты, поэтому не нужно забывать правило, что следует всегда лить кислоту в воду, и ни в коем случае наоборот.

Электролит, плотность которого лежит в пределе 1,07 — 1,30 г/мл, считается пригодным для работы. Этому пределу плотности соответствует концентрация h3SO4 27−40%.

Правила эксплуатации

Свойства электролита достаточно чувствительны к смене температурного режима окружающей среды, поэтому в зонах с умеренным климатом рекомендуется проверять его состояние два раза в год: в конце осени и в конце весны.

Измерение плотности

Плотность является важной характеристикой кислотного электролита, состав которого определяет ее величину. Прибор, которым измеряется плотность электролита, называется ареометром, который можно купить в любом автомагазине. При его использовании следует учитывать температуру окружающей среды и связанный с ней поправочный коэффициент.

Следующая таблица демонстрирует поправочные коэффициенты к полученным показаниям ареометра в зависимости от температуры (градусы Цельсия):

  • от -40 до -26: -0,04;
  • от -25 до -11: -0,03;
  • от -10 до +4: -0,02;
  • от +5 до +19: -0,01;
  • от +20 до +30: 0,00;
  • от +31 до +45: +0,01.

Помимо ареометра, для записи измеренных результатов рекомендуется заранее приготовить чистый лист бумаги и карандаш. Проверку необходимо проводить в каждом элементе батареи отдельно. Следующие шаги объясняют порядок действий:

  1. Первым делом следует открыть каждую емкость в батарее, плотность электролита в которой должна быть измерена.
  2. Предназначенную для измерения часть ареометра нужно поместить в электролит.
  3. Грушей прибора следует забрать некоторую порцию электролита так, чтобы поплавок ареометра начал плавать.
  4. В месте соприкосновения специального стержня и жидкости следует смотреть настоящие показания измеряемой величины.
  5. Полученный результат записать, а затем провести аналогичные действия для оставшихся емкостей батареи.

Плотность является физической величиной, размерность которой определяется как г/см3. В случае электролита после проведенных измерений следует удостовериться, что ее колебания во всех элементах АКБ не превышают 0,2−0,3 г/см3. Если средняя величина плотности по всем емкостям АКБ лежит ниже установленного значения в паспорте, тогда необходимо зарядить аккумулятор.

При уходе за аккумулятором и контроле плотности электролита необходимо иметь в виду температурный режим. Так, в холодное время года следует поддерживать более высокие значения этой величины (1,30 г/см3), так как она обеспечивает более низкую температуру замерзания жидкости. Например, если значение плотности лежит ниже 1,1 г/см3, то в электролите могут появляться кристаллики льда уже при температуре -6 °C. Летом же лучше снижать плотность заряженной батареи до уровня 1,23 г/см3, поскольку чем она ниже, тем дольше прослужит устройство.

Зимой при низких температурах воздуха рекомендуется снимать аккумулятор с автомобиля и заносить его в помещение, в котором следует проводить все контролирующие замеры электролитических параметров. Кроме того, для эксплуатации электроприбора в северных районах страны следует приобрести специальный контейнер-рубашку, который позволяет сохранять тепло корпуса АКБ.

Уровень жидкости

Еще одной ключевой характеристикой аккумуляторной батареи, за которой необходимо следить регулярно, является уровень электролита в каждом элементе. Согласно общим рекомендациям, он не должен быть ниже 1−1,5 см верхнего края пластин.

Перед измерением уровня электролита в каждой секции батареи следует поставить электроприбор на горизонтальную поверхность. После этого рекомендуется взять стеклянную трубку длиной 25−30 см и диаметром 5−6 мм, опустить ее на дно измеряемой банки, закрыть свободный конец трубочки большим пальцем, чтобы предотвратить спад жидкости в ней при вытягивании из банки, а затем вытянуть ее из электролита и любой линейкой измерить уровень.

Эту операцию можно провести с помощью обычного листа бумаги, который следует свернуть в трубочку и опустить на дно измеряемой емкости. При последующем измерении линейкой мокрого отпечатка на листе следует учесть величину погрешности, возникающую из-за капиллярного эффекта.

Если при измерениях обнаружен недостаток жидкости в какой-либо емкости батареи, тогда следует в нее добавить нужное количество дистиллированной воды.

Делать это следует осторожно, небольшими порциями, поскольку вода, попадая в кислоту, вызывает большое выделение теплоты и вскипание. Добавлять следует именно воду, а не электролит, в противном случае можно серьезно повредить электроприбор.

Подготовка электролита и батареи

Если старый аккумулятор вышел из строя и пришло время купить новый, то можно поступить двумя способами: во-первых, можно купить уже готовый залитый в АКБ электролит, во-вторых, можно приобрести сухозаправленную батарею и самостоятельно выполнить ее заливку. Первый способ рекомендуется для новичков, ко второму же методу следует прибегать, если прибор будет эксплуатироваться в каких-либо экстремальных условиях.

При подготовке раствора самостоятельно необходимо следующее:

  1. Канистра с дистиллятом, которая продается в каждом автомагазине, приобрести эту воду можно и в аптеке.
  2. Серная кислота h3SO4. Рекомендуется приобретать ее в разбавленном виде, то есть с плотностью 1,40 г/см3. Реже используется концентрированная кислота с плотностью 1,84 г/см3.
  3. Градуированная емкость, которую можно использовать, чтобы отмерять нужные порции жидкости.
  4. При приготовлении электролита его нужно будет мешать, поэтому следует запастись трубкой из химически инертного материала, например, из стекла или керамики.
  5. Резиновые перчатки, прозрачные очки, защитный фартук, старая одежда — основные средства индивидуальной защиты.

Во время приготовления раствора следует соблюдать элементарные правила химической безопасности, которые заключаются в добавлении воды в электролит не большими порциями, что может привести к вскипанию и разбрызгиванию во все стороны жидкости, а тонкой струей. При этом трубкой рекомендуется плавно перемешивать раствор.

Аккумуляторный электролит нужного состава готовится согласно инструкции на упаковке путем смешивания кислоты и дистиллята. В ряде случаев их объемы смешиваются в равных количествах. После завершения процедуры надо будет замерить плотность ареометром.

В различных моделях автомобилей используют АКБ разного объема, вариации которого составляют от 2,6 до 3,7 л. В любом случае электролит можно приготовить с запасом, а оставшийся раствор необходимо нейтрализовать, бросив в него несколько ложек пищевой соды.

Как только рабочий раствор подготовлен, его нужно залить во все емкости батареи. Использовать для этого нужно либо стеклянную воронку, либо стеклянную кружку с удобным носиком. Процесс заполнения банок прибора следует проводить аккуратно и не спеша.

Заполнение производят до уровня, когда свинцовые пластины поднимаются над поверхностью электролита на 1−1,5 см. Затем прибор оставляют на 3−4 часа, при этом плотность раствора может незначительно уменьшиться.

Через несколько часов после заправки АКБ заряжают. Выполняется это так: на корпусе батареи проверяется значение емкости в Ампер-часах, это число делится на 10, и полученную величину уже используют для установления тока зарядки. Например, если емкость батареи составляет 80 А*ч, тогда ток для ее зарядки равен 8 А. Заряжать следует в течение 4 часов, после чего замеряются значения плотности и уровня электролита, и если они соответствуют рабочим величинам, тогда аккумуляторная батарея готова к использованию.

Приготовление электролита | Аккумуляторные батареи

Страница 14 из 26

4.3. Приготовление электролита для свинцовых аккумуляторов

Электролит для свинцовых аккумуляторов приготовляется путем разбавления чистой серной кислоты чистой водой. Кислота продается обычно концентрированной, удельного веса от 1,835 до 1,840. При разбавлении концентрированной кислоты раствор сильно нагревается. Во избежание опасности для лица, производящего смешивание, всегда необходимо наливать кислоту в воду, но не наоборот.
Хотя количество теплоты, развиваемой в обоих случаях, одно и то же, однако удельные теплоты воды и концентрированной кислоты совершенно различны. Струя воды, попадая в концентрированную кислоту, освобождает большое количество теплоты, которая благодаря низкой удельной теплоте кислоты вызывает сильное местное повышение температуры. Кислота, приливаемая к воде, не может вызвать столь же большого повышения температуры в силу того, что удельная теплота воды очень высока. Необходимо непрерывно перемешивать раствор все время, пока кислота подливается в воду, для того, чтобы помешать более тяжелой кислоте опуститься на дно сосуда, не смешавшись с водой.
Для смешивания и хранения небольших количеств электролита наиболее подходят сосуды фарфоровые, гончарные или стеклянные; но так как они легко дают трещины, то им следует предпочесть чаны, выложенные свинцом, особенно для более значительных количеств.
Никакие другие металлические сосуды, кроме свинцовых, непригодны.
После разбавления кислоты, до заливки ее в батарею, необходимо подождать, пока она остынет, для того чтобы избежать повреждений пластин и сепараторов.
Охлаждение можно ускорить, пользуясь струей сжатого воздуха, но воздух при этом должен быть чистым.
Избежать сильного повышения температуры при смешивании кислоты с водой можно, применяя вместо воды лед, приготовленный из дистиллированной воды. Понижение температуры происходит вследствие того, что скрытая теплота плавления льда приблизительно равна количеству теплоты, освобождающемуся при растворении серной кислоты. Лед, свободный от воды, можно прибавлять к кислоте непосредственно. Избыток поглощенной теплоты показывает, что раствор должен получить температуру ниже нуля, что и наблюдалось в действительности.
Чтобы облегчить приготовление электролитов любой требуемой концентрации, на рис. 4.1 приведены необходимые пропорции кислоты и воды. Аккумуляторные заводы обычно сообщают сведения о том, какой крепости  кислоту следует применять для каждой данной батареи.

Рис. 4.1. Приготовление электролита любого удельного веса из концентрированной кислоты удельного веса 1,835.
1- содержание серной кислоты, %; 2 – требующаяся добавка воды по объему; 3 – то же по весу.

4.4. Приготовление электролита для кадмиевоникелевых и железоникелевых аккумуляторов

Для кадмиевоникелевых и железоникелевых аккумуляторов в качестве электролита служит раствор в дистиллированной воде едкого калия (КОН) или едкого натрия (NaOH).
В зависимости от температуры окружающего воздуха в аккумуляторах (табл. 4.1) применяется раствор соответствующей плотности (концентрации) основного компонента электролита в чистом виде или с добавкой едкого лития (LiOH).
Кадмиевоникелевые аккумуляторы рассчитаны на работу на холоде при температуре до – 40°С, причем при температурах +35...–   19°С с составным электролитом, а при более низких температурах, например, – 20...– 40°С с электролитом без добавки едкого лития.
При температурах – 20...– 40°С при отсутствии чистого едкого калия допускается как исключение применять составной электролит из едкого калия и едкого лития повышенной плотности, при этом емкость аккумулятора снижается на 10 – 15%. При отсутствии составного электролита из едкого калия и едкого лития при температуре – 19...+35°С можно воспользоваться составным электролитом из едкого натрия повышенной плотности 1,17 – 1,19 г/см3 с добавкой на 1 л раствора 20 г едкого лития, но при этом следует учесть, не гарантируется.

Таблица 4.1.
Рекомендуемые состав и плотность электролита для кадмиевоникелевых и железоникелевых аккумуляторов при различной температуре окружающего воздуха

Температура воздуха, °С

Рекомендуемый состав электролита

Плотность, г/см3

– 19... +35

Составной раствор едкого калия с добавкой на  1 л   раствора   20 г едкого  лития  аккумуляторного    (моногидрата лития)

1,19 – 1,21

– 20... – 40

Раствор едкого калия

1,25 – 1,27

+10...+50
(в том числе тропики)

Раствор едкого  натрия с добавкой на 1  л раствора  15 – 20 г едкого  лития (моногидрата лития)

1,1 – 1,12

 

Не гарантируется также долговечность аккумуляторов при работе их с электролитом из раствора чистого едкого калия плотностью 1,19 – 1,21 г/см3, т. е. без добавки едкого лития при температуре –19... + 10°С. При работе при температуре + 10...+50°С с рекомендуемым составным электролитом плотностью 1,1–1,12 г/см3 (табл. 5.1) емкость аккумуляторов также снижается по сравнению с номинальной, а долговечность не гарантируется.
Железоникелевые аккумуляторы рассчитаны на работу в тех же условиях и с тем же электролитом, что и кадмиевоникелевые, но они более чувствительны к низким температурам, поэтому могут применяться при температурах не ниже –20° С.
В процессе эксплуатации температурные условия в зависимости от времени года резко изменяются, поэтому для более эффективного использования емкости аккумуляторов их следует заливать электролитом, по составу и плотности соответствующим этим условиям.
Кроме того, необходимо систематически контролировать количество электролита, т. е. следить за уровнем последнего и поддерживать его в установленных пределах.
В аккумуляторах, находящихся в эксплуатации, уровень электролита постепенно снижается вследствие испарения, поэтому его необходимо периодически измерять и при необходимости дополнять до нормы дистиллированной водой. Не реже чем через 10 циклов нужно проверять плотность электролита и также доводить ее до нормы добавлением раствора плотностью 1,41 г/см3 или дистиллированной воды.
Уровень электролита в аккумуляторах должен постоянно находиться выше края пластин не менее чем на 5 мм и не более чем на 12 мм.
Снижение уровня электролита ниже верхнего края пластин или сетки, а также повышение плотности электролита при положительных температурах окружающего воздуха снижают емкость и долговечность последних. Уровень электролита необходимо проверять и доводить до указанной нормы перед каждым зарядом. Он проверяется с помощью стеклянной трубки диаметром 5 – 6 мм с метками на высоте 5 и 12 мм от конца. Для установления уровня электролита в аккумуляторе надо конец трубки с метками ввести через заливное отверстие до упора в пластины или сетку, после чего другой конец трубки закрыть пальцем. Вынув трубку из аккумулятора по высоте столбика электролита в ней, определим уровень электролита над верхним краем пластин или сетки в аккумуляторе. Для снижения уровня электролита в аккумуляторе можно пользоваться пипеткой или резиновой грушей со стеклянным или пластмассовым наконечником длиной около 100 мм. Доливку электролита или дистиллированной воды в аккумуляторы можно производить с помощью пипетки, резиновой груши или кружки через стеклянную воронку, размеры которых подбирают в зависимости от вместимости аккумуляторов. Проверка плотности электролита производится при помощи сифонного ареометра.
Проверку плотности электролита необходимо производить по возможности перед каждым зарядом, в каждом аккумуляторе, хотя и допускается выборочный контроль в 2  – 3 аккумуляторах батареи. В крайнем случае проверка должна проводиться не реже чем через 10 циклов во всех аккумуляторах батареи.
Таким образом, электролит необходим не только для первой заливки аккумуляторов при формировке, но и для замены, поддержания плотности и уровня электролита в действующих аккумуляторах, поэтому его требуется приготовлять и всегда иметь запас.
Для приготовления электролита поставляются следующие исходные материалы:
а)         едкий калий аккумуляторный марки А (твердый) или марки В (жидкий) и едкий литий аккумуляторный;
б)         составная щелочь сорта А – готовая смесь едкого калия и едкого лития в  отношении едкий литий/едкий калий = 0,04...0,045;
в)         едкий натрий аккумуляторный (сода каустическая) сорта А и едкий литий аккумуляторный;
г)         составная щелочь сорта Б – готовая смесь едкого натрия и едкого лития в соотношении едкий литий/едкий натрий = 0,028...0,032.
Перед приготовлением электролита необходимо удостовериться, что имеющиеся в наличии химические 'компоненты соответствуют приведенным выше требованиям и ГОСТам. Хранить эти материалы необходимо в герметически закрытой таре. Данные материалы могут поставляться как в жидком, так и в твердом состоянии в виде гранул, чешуек, кусков или слитка.
Приготовление электролита следует начинать с определения потребности в нем согласно норме расхода на один аккумулятор при первой заливке, указанной в табл. 4.2.
Определив требуемое количество электролита, приготовим примерно 3/4 этого объема свежей дистиллированной воды. При отсутствии последней допускается применение дождевой воды, собранной с чистой поверхности, или воды, полученной при таянии снега, а также конденсата.

Таблица 4.2
Ориентировочная норма расхода электролита на один аккумулятор при первой заливке


Тип

Норма расхода электролита при первой заливке, л

Тип

Норма расхода электролита при первой заливке, л

АКН-2,25
КН-10
КН-22
ЖН-22
КН-45
ЖН-45

0,04
0,12
0,27
0,27
0,45
0,45

КН-60
ЖН-60
КН-100
ЖН-100
2КН-24
2ФКН-9-I
2ФКН-9-II

0,75
0,75
1,2
1,2
0,47
0,26

Примечание. При приготовлении электролита желательно норму увеличить на 10 – 15 % для создания резерва на отход и другие непредвиденные случаи.
В крайнем случае можно использовать любую сырую чистую питьевую воду  (кроме минеральной).
Затем, пользуясь данными табл. 5.3, определяем необходимое количество химических компонентов: едкого калия или едкого натрия, а также едкого лития для добавки. Расход дистиллированной воды на 1 кг твердой и на 1 л жидкой щелочи для приготовления электролита необходимой плотности приведен в табл. 4.3.

 

Таблица 4.3
Расход дистиллированной воды, необходимой для приготовления электролита для кадмиевоникелевых и железоникелевых аккумуляторов

Щелочь

Плотность, г/смз3

Количество воды, л

на 1 кг     твердой щелочи

на 1 кг     жидкой щелочи плотностью 1,41 г/см3

Калиевая или готовая  составная, т. е. с добавкой едкого лития

Калиево-литиевая

Натриевая   или    готовая составная натриево-литиевая

 

1,19 – 1,21

1,25 –  1,27

 

1,17– 1,19

 

3

2

 

5

 

1

0,55

 

1,5

 

Для определения массы твердых щелочей, необходимой по норме, приведенной в табл. 19, достаточно разделить:
на три требуемое количество воды, если необходимо приготовить калиевый или составной калиево-литиевый раствор плотностью 1,19 – 1,21 г/см3;
на два, если необходимо приготовить калиевый электролит для работы при температуре
– 20...– 40° С или составной калиево-литиевый плотностью 1,25 –1,27 г/см3;
на пять, если необходимо приготовить натриевый или составной натриево-литиевый электролит плотностью 1,17 – 1,19 г/см3.
Если составная калиево-литиевая или натриево-литиевая щелочь отсутствуют, а имеется едкий калий, едкий натрий и едкий литий, то расчет потребности в твердых щелочах производится по тому же принципу, как указано выше. Следует иметь в виду, что в частном, полученном в результате деления, учитывается и масса едкого лития.

Электролит для автомобильных аккумуляторов

Что такое электролит, его функции

Электролит в аккумуляторе автомобиля — это особая жидкость, обеспечивающая необходимое накопление энергии. От состава и качества такого проводника во многом зависит производительность и срок службы баратеи. Этот показатель измеряется циклами зарядка-разрядка и может отличаться для различных типов аккумулятора. Непосредственно в самом электролите происходит сохранение энергии после подзарядки. Большинство современных аккумуляторов работают с использованием электролитных растворов.

Отличия электролитов для разных типов аккумуляторов

Автомобильные аккумуляторные батареи можно классифицировать по типу используемых веществ. В основном они представлены двумя типами АКБ: щелочными и кислотными. Уже по названию становится понятно, что у них совершенно разная среда электролитного раствора. При покупке или замене жидкости необходимо учитывать этот момент, иначе батарея придет в негодность.

Состав электролитных растворов:

  • Для щелочных АКБ используется смесь дистиллированной воды с растворенными в ней солями металлов.
  • Кислотные аккумуляторы в качестве проводника используют раствор серной кислоты. Его плотность должна быть в пределах 1,1-1,3 гр/см³. Для самостоятельного приготовления раствора необходимо смешать кислоту и дистиллированную воду.

Недостатком подобных устройств можно считать необходимость регулярного осмотра и доливки в емкость дистиллированной воды. Батарея может выйти из строя при использовании обычной воды или другой подобной жидкости. Дело в том, что дистиллированная вода очищена от подавляющего большинства минеральных примесей. При использовании обычной жидкости, эти элементы вступают в реакцию с кислотой, что приводит к выпадению осадка и появлению налета на пластинах АКБ. Применение дистиллированной воды хорошего качества позволит избежать таких ситуаций и продлит срок полезной эксплуатации батареи.

Процесс изготовления электролита

Для дозаливки АКБ используется только дистиллированная вода, но этот момент относится к приобретенной батарее с уже набранным электролитным раствором. Если же аккумулятор продавался «сухим», приготовить раствор и осуществить его заливку придется самостоятельно. С этим справится любой человек, главное — соблюдать меры безопасности и пропорции разведения веществ.

Для приготовления такого раствора используется серная кислота именно для АКБ. Она подвергается более высокой степени очистки, а ее плотность обычно составляет 1,84 гр/см³. Применение других типов веществ не может обеспечить необходимую чистоту и концентрацию раствора. Если самостоятельное приготовление вызывает затруднения, можно также использовать готовую купленную жидкость для дозаливки АКБ.

Приготовление электролита с кислой средой:

  1. Емкость для разведения используется исключительно керамическая или из эбонита. Стекло быстро приходит в негодность вследствие агрессивного воздействия кислоты. Объем емкости также имеет значение и должен составлять не менее четырех литров.
  2. Подходящий инструмент для размешивания раствора. Он также должен обладать стойкостью к кислой среде.
  3. Ареометр — специальный прибор, измеряющий плотность жидкости. Для конкретного случая он должен определять плотность раствора кислоты (продается в автомагазинах).
  4. Защитное снаряжение, включающее не только плотную одежду (рабочий фартук), но и перчатки, а также очки для защиты органов зрения.
  5. В первую очередь необходимо промыть все элементы, с которыми будет впоследствии контактировать химикаты, дистиллированной водой. Это позволит избежать попадания в раствор посторонних примесей.
  6. Важный момент: в емкость сначала наливают воду, а уже затем добавляют кислоту. Обратная последовательность вызовет бурную химическую реакцию с сильным повышением температуры. При такой ситуации трудно будет избежать ожогов и порчи окружающей обстановки, поэтому это правило следует запомнить обязательно.
  7. При добавлении кислоты в жидкость, необходимо тщательно медленными движениями перемешать раствор, добиваясь однородного состояния.
  8. Плотность электролитного раствора зависит от марки АКБ, поэтому этот момент обязательно стоит посмотреть в инструкции оборудования.
  9. Для приготовления одного литра раствора следует взять 0,35 л серной кислоты и 0,7 — воды. При смешении, объем жидкости немного уменьшается. Кроме того, следует учитывать и температуру раствора, которая также влияет на его плотность. Желательно проводить замеры несколько раз, а использовать готовый раствор только после того, как окончательно убедитесь в его пригодности.

Заливка раствора в АКБ осуществляется при помощи воронки и все того же инструмента для помешивания. Делать это необходимо очень аккуратно, чтобы не вызвать нежелательных химических реакций в батарее. Остатки раствора не стоит утилизировать. Они пригодятся для дозаправки АКБ, поэтому их переливают в стеклянную емкость, плотно закрывают и обязательно маркируют с указанием даты приготовления. Это необходимо, чтобы исключить риск использования негодного уже раствора, а также не перепутать емкость с другими техническими веществами.

Срок службы электролита

Непосредственно сам раствор может храниться длительный срок без потери основных характеристик. Для того, чтобы предупредить выпадение осадка, следует прятать емкость от прямых солнечных лучей и сильных температурных перепадов. Что касается электролита, уже залитого в батарею, его пригодность определить будет сложней, ведь на это влияют многие факторы.

На срок полезной эксплуатации АКБ влияют следующие факторы:

  • Регулярная зарядка батареи.
  • Поддержание комфортного температурного режима.
  • Осмотр и дозаправка электролитом.
  • Использование исключительно качественных химических веществ для приготовления раствора.

Точный период использования аккумулятора определить достаточно сложно. На это также влияет марка машины, оснащение дополнительными функциями и интенсивность эксплуатации авто. Кроме того, не так уж редко встречается и заводской брак, при котором из строя выходит вроде бы недавно приобретенная батарея. Обычно производители рекомендуют заменять аккумулятор каждые три-пять лет, но в современных реалиях многие автолюбители не расстаются с ним на протяжении пяти-семи лет.

Как контролировать электролит

Электролит для кислотных аккумуляторов, впрочем, как и для его щелочных аналогов, не имеет фактического срока годности. Обычно сухозаряженная батарея заправляется только раз, после чего осуществляется доливка раствора при необходимости до нужного уровня. Полная замена раствора понадобится нечасто, обычно в случае его помутнения вследствие использования обычной или некачественной дистиллированной воды.

Плотность электролита летом и зимой

В зависимости от температурных режимов эксплуатации авто, необходимо контролировать и плотность используемого электролитного раствора. Для этого необходимо уяснить несколько правил, а также внимательно изучить инструкцию по эксплуатации именно вашего типа батареи.

Что важно знать:

  • В северных регионах с суровыми зимами плотность электролита должна быть в пределах 1,27-1,29 гр/см³.
  • Для Средней полосы с умеренным климатом предпочтительная плотность электролита от 1,25-1,27 гр/см³.
  • В южной части страны плотность электролитного раствора варьируется в пределах 1,23-1,25 гр/см³.

Для продолжительной работы аккумулятора рекомендуется снимать устройство при длительном простое (например, на ночь). Считается, что окружающая температура ниже 30 градусов мороза отбирает у батареи более 50% заряда, что негативно влияет на ее дальнейшую эксплуатацию. Также необходимо знать, какой электролит заливать в аккумулятор летом. Он должен иметь меньшую плотность, нежели «зимний» вариант. Это облегчит прохождение и накопление разряда, а также положительно скажется на продолжительности эксплуатации батареи.

Как добиться нужной плотности в аккумуляторе

При самостоятельном изготовлении раствора, необходимо не только знать, из чего состоит электролит. Главное требование — обеспечение нужной плотности жидкости, чтобы заряд хорошо сохранялся в такой среде. Для контроля и проверки этого показателя применяется простой и доступный прибор — ареометр. Он работает по принципу закона Архимеда и показывает плотность жидкости. При недостаточном ее уровне, раствор разбавляется кислотой, а если необходимо понизить плотность — добавляется дистиллированная вода.

Электролитный раствор обеспечивает работу аккумуляторной батареи, а также определяет ее производительность. При правильном подходе, эта жидкость в обязательном порядке периодически тестируется, доливается, либо заменяется полностью. На работу АКБ в большей мере влияет и температура окружающего воздуха, поэтому в особо суровые морозы стоит заносить аккумулятор в тепло. Какой электролит заливать в аккумулятор зимой, а также другие нюансы приготовления и применения этого проводника рассмотрены в нашей информации.

Устройство аккумуляторов

Аккумуляторы, а в быту мы их называем «батареи», используются сейчас повсеместно в виду появления все большего числа различной электроники (например, смартфоны, ноутбуки, планшеты, фотокамеры и др.). Вообще, аккумуляторы в электротехнике в широком смысле понимаются как специальные приборы, которые способны как накапливать заряд, так и расходовать его в зависимости от ситуации. С момента появления данные устройства существенно модернизировались и теперь облегчают жизнь человека в различных сферах. Но несмотря на большую распространенность аккумуляторов мало кто из потребителей полноценно знаком со спецификой их функционирования и, соответственно, с правилами их использования. 

Главное предназначение любого типа аккумулятора – это накапливание электроэнергии для последующего ее использования в совершении каких-либо масштабных работ.

Помимо выше указанных аккумуляторов, используемых в современной цифровой технике, существуют более серьезные устройства. Одним из таких является гидравлический аккумулятор, который применяется, как правило, в шлюзах. Такие аккумуляторы способны поднимать судна на более высокие уровни русла рек.

Электрический аккумулятор функционирует по аналогичному принципу, что и гидравлическое устройство. То есть, первоначально электричество аккумулируется в устройстве от внешнего источника. После оно передается потребителям и используется для совершения тех или иных работ. Данные аккумуляторы являются химическими и отличаются возможностью неоднократного заряда/разряда.

В процессе заряда в аккумуляторе в непрерывном режиме совершаются те или иные химические реакции между электродными пластинами и тем химическим веществом, что заполняет пространство между ними. Последнее вещество именуется электролитом.
  
Примитивным образом схему устройства аккумулятора можно изобразить так: внутри корпуса размещается пара металлических пластин, оснащенных специальными выводами для контактов, а промежуток между ними заполняется электролитом. 

Функционирование аккумулятора в процессе разряда и заряда

Разряд

Через замкнутую электрическую цепь протекает ток разряда. Например, при подключении к электродам нагрузки. Данный ток сформирован двигающимися в металлических элементах электронами, а также анионами и катионами, что находятся в электролите.

Данный процесс схематично отображен на рисунке с никель-кадмиевыми электродами. Материалом положительного электрода является окись никеля с добавлением графита, за счет чего возрастает электропроводимость. Основа отрицательно заряженного электрода – губчатый кадмий. При разряде из окиси никеля выделяются микрочастицы активного кислорода в электролит, после чего передаются на отрицательно заряженные пластины. Здесь происходит окисление кадмия.

Заряд

Во время отсутствия нагрузки на клеммы пластин из однородного металла происходит подача постоянного (реже пульсирующего) напряжения. Показатель данного напряжения несколько превышает то, которое присуще заряжаемому аккумулятору.

Все зарядные устройства имеют гораздо большую мощность, способную подавить энергию, неизрасходованную аккумулятором. В следствие чего возникает электрический ток, направление которого противоположно направлению разряда. При этом химические процессы претерпевают изменения. 

Важно отметить, что процессы разряда и заряда изменяют химический состав электродов. Электролит же при этом не испытывает никаких изменений.

Каким образом могут соединяться аккумуляторы?

Аккумуляторы могут соединяться между собой двумя способами: параллельным соединением и последовательным.

Параллельный способ

То, какой показатель тока разряда может выдержать корпус аккумулятора, напрямую зависит от различных факторов. Например, очень важным моментом являются конструктивные особенности, используемые материалы, а также размеры. Таким образом, чем больше площадь имеющихся пластин, тем выше способность выдержать большие токи.

На данном принципе основано параллельное подключение аккумуляторов одного типа с существующей необходимостью увеличения показателя тока нагрузки. В данной ситуации необходимо будет увеличить мощность источника питания.

Данный метод крайне редко применяется в готовых конструкциях, поскольку сегодня гораздо удобнее купить полноценный аккумулятор. В основном параллельный способ применим в производстве кислотных автомобильных аккумуляторах для соединения пластин в единый блок.

Последовательный способ

В популярных в бытовом применении аккумуляторах напряжение между пластинами достигает 1,5 В или 2 В (на данный показатель также влияет используемый материал). Большая часть используемого электрооборудования требует более высокого напряжения. Для этого аккумуляторы одного типа соединяют последовательным образом, помещая их под единый корпус. Самый яркий пример – автомобильный аккумулятор, в основе которого серная кислота и электродные пластины из свинца.

Отметим важный и интересный факт: сегодня автолюбители привыкли называть аккумулятором любой источник питания, что не совсем верно. Например, правильное наименование напрямую зависит от числа составных элементов. Так, если несколько так называемых «банок» соединены единой схемой, то это уже батарея, а сокращенно АКБ – автомобильная аккумуляторная батарея.

Каждая «банка» имеет в своем составе два блока с пластинами, часть которых предназначена для отрицательных электродов, а часть – для положительных. Данные блоки не имеют металлического контакта между собой, а имеют крепкую гальваническую связь посредством электролита.

Между контактными пластинами установлен сепаратор – разделитель в виде дополнительной решетки с целью увеличения расстояния. Таким образом, соединенные в блоки пластины увеличивают показатель мощности подаваемых нагрузок.

Корпус данных АКБ изготовлен из прочной пластмассы и плотно закрывается крышкой. Сверху имеются две клеммы, используемые в подключении к электросхеме автомобиля. Обязательно каждая клемма маркирована знаками полярности, а именно знаки "+" и "-". также во избежание ошибочного подключения положительная клемма имеет больший диаметр, чем отрицательная.

Над каждой банкой также располагается специальная горловина, которая предназначена для отслеживания уровня электролита, а также для доливания воды при возникновении таковой необходимости вовремя эксплуатации. Горловина закрывается пробкой, дабы избежать попадания внутрь банки посторонних частиц и предотвратить выливание электролита при движении аккумуляторной батареи.

Пробки имеют отверстия, которые служат отводами возникающих при быстрой езде газов в электролите. Тем самым предотвращается возникновение давления внутри банок. То есть, через отверстия пробок выходят кислород и водород, а также образующиеся электролитом пары. Безусловно, лучше избегать ситуации, которые возникают из-за высоких токов заряда.

Свинцово-кислотные АКБ основаны на принципе двойной сульфатации. В таких устройства при заряде или разряде происходят электрохимические процессы, которые изменяют химический состав основной доли активных электродов, при этом либо выделяя в серную кислоту воду, либо поглощая ее из электролита.

Именно данные нюансы объясняют рост показателя плотности электролита во время заряда, а также его снижение во время разряда. Таким образом, степень плотности является показателем оценки состояния батареи. С целью измерения используется специально предназначенный для этого прибор – ареометр.

Как было сказано выше, в состав электролита кислотных АКБ входит вода. Известно, что при низких температурах она замерзает. Следовательно, для предотвращения замерзания АКБ с наступлением холодов необходимо следовать всем правилам эксплуатации. 

Сегодня производители выпускают свыше 30 аккумуляторов. Различаются изделия между собой составом электродов и самого электролита. Например, в основу 12 популярных типов входит литий.

Электроды могут изготавливаться из свинца, железа, лития, титана, кобальта, кадмия, никеля, цинка, ванадия, серебра, алюминия и др. От того, какие вещества использованы в электродах, зависят свойства и характеристики аккумулятора и, соответственно, сфера использования.

Например, свинцово-кислотные АКБ используются в ИБП, автотранспорте, системах электроснабжения за счет высокой способности выдерживать колоссальные кратковременные нагрузки.

Гальванические стандартные батареи сегодня вытесняются никель-кадмиевыми, никель-цинковыми, никель-металлгидридными аккумуляторами.

В мобильных устройствах и другой цифровой технике, а также в электроинструментах, используются литий-ионные и литий-полимерные типы аккумуляторов.

Аккумуляторы различаются между собой также типом используемого электролита. Таким образом, устройства бывают щелочными и кислотными.

Также классифицируются устройства и по назначению. Например, сегодня особенно популярными внешние аккумуляторы, которые спасают владельцев современных смартфонов в ситуации отсутствия возможности подзарядки от электросети.

Важные характеристики аккумулятора – это емкость, плотность энергии, самозаряд и температура эксплуатации.

Торговая сеть "Планета Электрика" имеет в своем ассортименте аккумуляторы. 


Электролит для аккумуляторов - обзор

Введение

Разработка новых материалов для хранения энергии играет решающую роль в переходе к чистой и возобновляемой энергии. Однако улучшение характеристик и долговечности батарей происходило постепенно из-за отсутствия понимания как материалов, так и сложности химической динамики, происходящей в рабочих условиях [1]. Как правило, для проверки химического или физического свойства проводятся экспериментальные испытания с обширным набором параметров.К сожалению, эти повторяющиеся экспериментальные и теоретические исследования характеристик часто отнимают много времени и неэффективны, потому что значительный прогресс обычно требует сочетания химической интуиции и интуитивной прозорливости. Таким образом, эти подходы не могут охарактеризовать миллионы материалов, необходимых для определения даже небольшого подкласса идеальных кристаллических материалов, не говоря уже о более сложных структурах, обнаруженных в электрохимических ячейках [2]. Эта так называемая методология разработки с «разомкнутым циклом» приводит к долгим временным рамкам для открытия новых материалов для аккумуляторов, часто более десяти лет, чтобы вывести на рынок новую формулировку.

В последнее десятилетие расчеты из первых принципов, особенно те, которые основаны на более экономичных приближениях, таких как теория функционала плотности (DFT) [3,4], теперь надежно автоматизированы [5–7] для высокопроизводительного прогнозирования свойств. через огромное количество материалов. Эти методы использовались в успешных разработках материалов, таких как щелочно-ионные батареи [8–10], для определения перспективных твердотельных литий-ионных проводников для аккумуляторных электролитов [11], а также в других областях применения материалов [12–15]. ].Ожидается, что на основе этих усилий дизайн материалов, управляемый вычислениями, приведет к открытию новых материалов и значительно сократит время и стоимость разработки материалов [16] за счет расширения и развития методов машинного обучения (ML).

ML - это отрасль искусственного интеллекта, которая демонстрирует хорошую применимость для классификации, регрессии и других задач, связанных с многомерными данными. Направленный на извлечение знаний и понимание из больших баз данных, ML учится на предыдущих вычислениях для получения надежных, повторяемых решений и результатов [17,18].Благодаря быстрому развитию подходов, основанных на данных, которые сочетают мудрость экспертов с мощными моделями машинного обучения, ученые начинают использовать человеческую интуицию при проведении научных исследований. Ученые и инженеры теперь могут реалистично моделировать свойства и поведение материалов в конкретных энергетических приложениях.

Модели

ML уже продемонстрировали свою замечательную способность в разработке новых кристаллических твердых материалов с быстрой монокристаллической литий-ионной проводимостью при комнатной температуре [19].Моделирование DFT с помощью методов на основе ML показало, что поиск с помощью ML в 2,7 раза более вероятно обнаружил быстрые литий-ионные проводники, при этом, по крайней мере, в 44 раза улучшилось логарифмическое значение литий-ионной проводимости при комнатной температуре и 1000-кратное увеличение скорости обнаружения кандидатов методом проб и ошибок (рис. 1). Подобные методы впервые позволяют перейти от традиционных методов исследования с «разомкнутым контуром» к гораздо более эффективному методу «замкнутого цикла», который прокладывает путь к инверсному дизайну материалов (Таблица 1).

Рисунок 1. Сравнение времени вычислений и точности для алгоритма машинного обучения, людей-экспертов и случайных предположений. Алгоритм работает так же хорошо, как и лучшие люди, но с более высокой скоростью, что позволяет быстро проверять миллионы материалов-кандидатов [2].

Таблица 1. Сводка методов машинного обучения, применяемых к материалам для хранения энергии.

Материалы Прогноз Метод Основные выводы Ссылки
NaNi 1/3 Mn 1/3 Co 1/3 O 2 катодный материал для Na-ion аккумуляторы Для моделирования и оптимизации процесса производства материала положительного электрода для натрий-ионных аккумуляторов Поддержка векторной регрессии, синхронизированный кросс-валидационный кластер симплексного алгоритма Полученное оптимизированное значение емкости составляет 176 мАч −1 для 99 циклов, что лучше, чем у обычных батарей, используемых для коммерческого хранения. [55]
Катодные материалы с высоким содержанием никеля: LiNi x Co 1-xy Mn 1-xyz O 2 (NCM) для электромобилей. 1 . Построить прогнозную модель, чтобы предложить оптимизированные экспериментальные параметры, которые удовлетворяют целевым спецификациям. 2 . Поиск идеального процесса синтеза катодных материалов с высоким содержанием никеля, ведущего к ускоренной разработке литий-ионных аккумуляторов с большей емкостью и более длительным сроком службы для электромобилей. 3 . Разработка, прогнозирование и улучшение электрохимических характеристик катодных материалов с высоким содержанием никеля: LiNixCo1-x-yMn1-x-y-zO2 (NCM) для электромобилей 1.Модели регрессии ML: вспомогательная векторная машина (SVM), дерево решений (DT), гребенчатая регрессия (RR), случайный лес (RF), чрезвычайно рандомизированное дерево (ERT) и нейронная сеть (NN) с многослойным персептроном. Модель ML (ERT + AdaBoost). 2. Пакет машинного обучения на основе Python scikit-learn 1. Оптимизированные синтетические параметры для катодных материалов с высоким содержанием никеля, LiNi x Co 1-xy Mn 1-xyz O 2 (NCM), с x & gt; 0,85 для улучшения электрохимических характеристик.2. Показано, что температура прокаливания и размер частиц являются определяющими факторами для достижения длительного срока службы. 3. Подтверждено, что структуры с более высокими температурами прокаливания, более высоким содержанием Ni и большим размером первичных частиц приводят к ухудшению показателей жизненного цикла. 4. Модель машинного обучения (ERT + AdaBoost) показала лучшую производительность для прогнозирования начальной емкости, остаточного Li и срока службы. 5. Схема обратного проектирования была успешно использована, чтобы предложить идеальные экспериментальные параметры для выполнения целевых спецификаций. [56]
Li 5 B 7 S 13 , Li 2 B 2 S 5 , Li 3 ErCl 6 , LiSO 3 F, Li 3 InCl 6 , Li 2 HIO, LiMgB 3 (H 9 N) 2 и CsLi 2 BS 3 · Li 5 B 7 S 13 Разработать модель на основе машинного обучения (ML) для прогнозирования суперионной литий-ионной проводимости. Модель прогнозирования на основе машинного обучения (ML) для выбора материала и моделирования молекулярной динамики теории функционала плотности (DFT-MD) для расчета ионных проводимость 1.Обнаружено много новых твердых материалов с предсказанной суперионной литий-ионной проводимостью (≥10 -4 См / см) при комнатной температуре: Li 5 B 7 S 13 , Li 2 B 2 S 5 , Li 3 ErCl 6 , LiSO 3 F, Li 3 InCl 6 , Li 2 HIO, LiMgB 3 (H 9 N) 2 и CsLi 2 BS 3 . 2. Li 5 B 7 S 13 , имеет предсказанную DFT-MD проводимость RT Li (74 мСм · см -1 ), во много раз большую, чем самые быстрые из известных литий-ионных проводников [19]
LiPF 6 электролит для литий-ионных батарей Для определения неизвестных концентраций основных компонентов в электролитах типичных литий-ионных аккумуляторов. Инфракрасная спектроскопия с преобразованием Фурье и машинное обучение Подтверждено, что концентрация LiPF 6 снизилась на 10–20%, когда клетки прошли 200 циклов при 55 ° C. Отказ ячейки из-за потери большого количества солей [57]
Материалы молекулярных электродов на основе углерода Для определения перспективных материалов положительных электродов с высокими характеристиками Структура машинного обучения DFT 1. Спроектирована углеродная- на основе молекулярных электродных материалов.2. Обнаружено, что сродство к электрону имеет наибольший вклад в окислительно-восстановительный потенциал, за которым следуют количество атомов кислорода, ВЗМО – НСМО, количество атомов лития, НСМО и ВЗМО в порядке, соответственно [58]
Катодные материалы со слоистой структурой для литий-ионных аккумуляторов Для прогнозирования электрохимических свойств: плотность энергии разряда и затухание емкости Алгоритм искусственной нейронной сети Предлагаемая модель 3D-QANN: модель количественной взаимосвязи структуры и свойств для прогнозирования физических свойств неорганических кристаллических твердых тел и новых материалов для дизайна [59]
LiFePO 4 Срок службы литий-ионных батарей Байесовский LS-SVR и нейронная сеть вейвлетов Предсказал срок службы батареи аккумулятор за очень короткое время прогноза (в пределах 1.41 с), при этом средняя ошибка составляет лишь около одной трети от ошибки традиционного алгоритма [60]
Литий-ионные батареи Емкость батареи Гауссовская регрессия Оценка емкости на месте более короткие периоды гальваностатического режима [61]

HOMO, самая высокая занятая молекулярная орбиталь; НСМО, низшая незанятая молекулярная орбиталь; QANN, квантовая искусственная нейронная сеть.

Дизайн с обратным материалом эффективно инвертирует текущий процесс проектирования, позволяя желаемым целевым показателям определять состав и структуру, которые лучше всего соответствуют этим целям, без предварительного определения исходного материала или структуры [20–26].Крайне важно, что машинное обучение будет играть ключевую роль в разработке батарей, помогая инверсному проектированию, поскольку их вычислительные стратегии будут продолжать автоматически улучшаться с учетом опыта [27]. Методы кластерного расширения [28] в настоящее время широко используются для изучения беспорядка в материалах электродов, в нейронных сетях, которые систематически повышают надежность моделирования молекулярной динамики [29]. Вероятностные модели, основанные на данных, теперь могут сузить круг вероятных кандидатов, разработанных для конкретных приложений, из химического пространства, содержащего более 10 60 возможных молекул.Генеративные модели производят большое количество молекул-кандидатов, которые потребуют лабораторного синтеза для подтверждения результатов моделирования, требующих автоматизации синтеза, также на основе машинного обучения и робототехники. Эти формы автоматизации позволят ученым-исследователям сократить время, затрачиваемое на выполнение дорогостоящих, интуитивно понятных и повторяющихся синтезов. Даже с текущими базами данных, полученными в результате предыдущих лабораторных экспериментов, у ученых уже есть достаточно данных, чтобы производить целевые молекулы по сравнению с неуправляемым подходом «разомкнутого цикла».

Онлайн-состояние заряда и состояния аккумулятора теперь можно прогнозировать с помощью моделей ML каждый раз, когда аккумулятор подвергается циклам зарядки / разрядки, что имеет решающее значение для долговечных и безопасных электромобилей. Раннее обнаружение неадекватной работы также способствует своевременному обслуживанию аккумуляторных систем [30–33]. Модели глубокого генеративного обучения способны отображать лежащее в основе распределение вероятностей как структуры, так и свойств и связывать их нелинейным образом, позволяя этим моделям фильтровать характерные особенности, присущие определенным молекулам [34,35].Методы машинного обучения недавно были применены для описания архитектуры, свойств и производительности литий-ионных аккумуляторов [36].

Эти результаты частично обусловлены постоянно растущими базами данных атомных структурных данных, необходимых для вычислений DFT, а также значительными улучшениями в вычислительных ресурсах, которые открывают путь к поэтапному изменению методов исследования [38]. Meredig et al. [38] показали, что их подход к скринингу материалов, основанный на данных ML, позволил изучить правила химии из DFT, сделать точные энергетические прогнозы для новых составов при меньших на шесть порядков вычислительных затратах и, кроме того, не требовать знания кристаллической структуры.Эти методы сейчас применяются для прогнозирования емкости Li в аккумуляторах. Wang et al. [37] показали, как вычислительный анализ может предложить новые материалы, такие как новый катодный материал, содержащий ванадий, который, по прогнозам, превосходит емкость накопления энергии обычных литий-железо-фосфатных катодов примерно на 10% (рис. 2). Материал был синтезирован и вел себя так, как предсказывали модели ML.

Рис. 2. Смоделированный кристаллический каркас ванадийсодержащего катодного материала для усовершенствованных аккумуляторов [37].Атомы лития, показанные зеленым цветом, расположены в каркасе. С тех пор состав был синтезирован и выполнен в соответствии с предсказаниями моделей.

Моделирование структур и свойств конкретных электродных материалов, понимание механизмов заряда / разряда в атомном масштабе и разработка рациональных, «замкнутых» стратегий проектирования материалов электродов, а также электролитов, находятся в стадии разработки. Всесторонний обзор моделирования и теоретических расчетов по серным катодам, кислородным катодам, анодам из металлического лития и твердотельным электролитам литий-металлических батарей можно найти в исследовании Fan et al.[39].

Эра больших данных уже наступила с экспериментами на крупномасштабных объектах, таких как синхротроны, генерирующие огромные скорости передачи данных. Объединение больших данных с машинным обучением уже является важнейшим приоритетом исследований. Вопросы, связанные с хранением, управлением и анализом больших объемов данных, представляют собой сложные проблемы, которые необходимо решить. Платформы управления данными жизненно важны, потому что контролируемые модели машинного обучения обычно требуют больших объемов надежных обучающих данных для построения надежных моделей [40,41], поскольку существующие экспериментальные данные и данные будущих экспериментальных усилий по-прежнему охватывают только часть стабильных химических комбинаций, которые могут быть обнаружены в природе. .

Требуется разработка общих платформ для управления и обмена данными, чтобы дать импульс для ускорения обнаружения и проектирования материалов. Передовые методы определения характеристик материалов с их постоянно растущими возможностями сбора и хранения данных представляют собой проблему в современном материаловедении, и необходимы новые процедуры для быстрой оценки и анализа собранных данных, чтобы вывести на рынок новые энергетические решения за меньшее время [ 42]. В настоящее время большие высококачественные открытые базы данных вычисленных свойств материалов, такие как Materials Project [15], Open Quantum Materials Database [43] и репозиторий AFLOW, быстро растут и помогают отображать обширные области химического пространства.Также создаются базы данных и библиотеки для аккумуляторных электролитов [44], которые будут использоваться в будущем для быстрого создания электролитов следующего поколения. Европейское крупномасштабное исследование «Battery 2030+» недавно определило создание «генома интерфейса батареи» и «платформы ускорения материалов» в качестве важных вех на пути к ускоренному открытию сверхвысокопроизводительных батарей [45]. В одном из крупнейших собраний молекул химический космический проект [46] нанес на карту 166.4 миллиарда молекул, содержащих не более 17 тяжелых атомов.

В ближайшем будущем мы можем ожидать значительного роста этих новых баз данных и библиотек, что, в свою очередь, увеличит предсказательную силу машинного обучения. Следует отметить важное событие - это совместная работа Стэнфорда и Google Brain, в которой исследователи демонстрируют новый подход к переносу физических данных на более общие дескрипторы, полученные из физических уравнений, что позволяет им проверять миллиарды неизвестных составов на предмет литий-ионной проводимости с использованием точной обученной модели. с физическим пониманием для создания большой базы данных из небольших данных [47].Центральное место в методологиях машинного обучения, применяемых в химических науках, занимает представление молекул. Эти представления, которые кодируют соответствующую физику и химию, будут иметь тенденцию к лучшему обобщению по мере продвижения исследований, что позволяет еще быстрее проверять материалы. Несмотря на значительный прогресс, предстоит еще много работы. Графические и иерархические представления молекул - это область, требующая дальнейшего изучения [48].

Наконец, необходим доступ к вычислительной инфраструктуре для проведения этих симуляций.Во всем мире новые центры искусственного интеллекта находятся в стадии разработки или уже действуют, чтобы оказывать всестороннюю помощь ученым и учреждениям, стремящимся объединить методы машинного обучения в своих исследованиях. Сочетание крупных исследовательских институтов и мощной инфраструктуры машинного обучения значительно ускорит разработку материалов в ближайшие годы и позволит ведущим технологическим компаниям принять участие в развитии фундаментальных научных исследований, а также будет способствовать новому экономическому развитию.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Работа свинцово-кислотных аккумуляторов

Свинцово-кислотные аккумуляторы состоят из отрицательного электрода, сделанного из губчатого или пористого свинца. Свинец пористый, что способствует образованию и растворению свинца. Положительный электрод состоит из оксида свинца. Оба электрода погружены в электролитический раствор серной кислоты и воды. В случае, если электроды входят в контакт друг с другом в результате физического движения батареи или изменения толщины электродов, два электрода разделяет электрически изолирующая, но химически проницаемая мембрана.Эта мембрана также предотвращает короткое замыкание через электролит. Свинцово-кислотные батареи накапливают энергию за счет обратимой химической реакции, показанной ниже.

Общая химическая реакция:

PbO2 + Pb + 2h3SO4⇔заряженный разряд2PbSO4 + 2h3O

На отрицательной клемме реакции заряда и разряда:

Pb + SO42-заряженныйразрядPbSO4 + 2e-

На положительном выводе реакции заряда и разряда:

PbO2 + SO42- + 4H ++ 2e-Заряженный разрядPbSO4 + 2h3O

Как показывают приведенные выше уравнения, разрядка батареи вызывает образование кристаллов сульфата свинца как на отрицательной, так и на положительной клеммах, а также высвобождение электронов из-за изменения валентного заряда свинца.При образовании этого сульфата свинца используется сульфат сернокислотного электролита, окружающего аккумулятор. В результате электролит становится менее концентрированным. Полный разряд приведет к тому, что оба электрода будут покрыты сульфатом свинца и водой, а не серной кислотой, окружающей электроды. При полном разряде два электрода выполнены из одного материала, и между двумя электродами отсутствует химический потенциал или напряжение. На практике, однако, разряд останавливается при напряжении отсечки, задолго до этого момента.Следовательно, аккумулятор не должен разряжаться ниже этого напряжения.

Между полностью разряженным и заряженным состояниями свинцово-кислотная батарея будет испытывать постепенное снижение напряжения. Уровень напряжения обычно используется для обозначения степени заряда аккумулятора. Зависимость аккумулятора от уровня заряда показана на рисунке ниже. Если аккумулятор остается на низком уровне заряда в течение длительного периода времени, могут вырасти крупные кристаллы сульфата свинца, что необратимо снижает емкость аккумулятора.Эти более крупные кристаллы не похожи на типичную пористую структуру свинцового электрода, и их трудно превратить обратно в свинец.

Напряжение свинцово-кислотного аккумулятора при зарядке.

В результате реакции зарядки сульфат свинца на отрицательном электроде превращается в свинец. На положительном конце реакция превращает свинец в оксид свинца. В качестве побочного продукта этой реакции выделяется водород. Во время первой части цикла зарядки преобладающей реакцией является превращение сульфата свинца в свинец и оксид свинца.Однако по мере того, как происходит зарядка и большая часть сульфата свинца превращается либо в свинец, либо в диоксид свинца, зарядный ток электролизует воду из электролита, и выделяются водород и газообразный кислород, процесс, известный как «выделение газа» из батареи. Если ток подается в батарею быстрее, чем может быть преобразован сульфат свинца, то выделение газа начинается до того, как весь сульфат свинца будет преобразован, то есть до того, как батарея будет полностью заряжена. Газообразование создает несколько проблем в свинцово-кислотной батарее.Газовыделение батареи не только вызывает проблемы безопасности из-за взрывоопасной природы производимого водорода, но также снижает количество воды в батарее, которую необходимо заменять вручную, вводя в систему компонент для обслуживания. Кроме того, выделение газа может вызвать отделение активного материала от электролита, что приведет к необратимому снижению емкости аккумулятора. По этим причинам аккумулятор не следует регулярно заряжать выше напряжения, которое вызывает газообразование. Напряжение газовыделения изменяется в зависимости от скорости заряда.

Сульфат свинца является изолятором, и поэтому способ образования сульфата свинца на электродах определяет, насколько легко можно разрядить аккумулятор.

типов батарей | Ассоциация аккумуляторных батарей

НИКЕЛЕВЫЕ КАДМИЕВЫЕ БАТАРЕИ

Активные компоненты перезаряжаемой NiCd батареи в заряженном состоянии состоят из гидроксида никеля (NiOOH) в положительном электроде и кадмия (Cd) в отрицательном электроде. В качестве электролита обычно используется гидроксид калия (КОН).Благодаря низкому внутреннему сопротивлению и очень хорошим токопроводящим свойствам никель-кадмиевые батареи могут обеспечивать чрезвычайно высокие токи и быстро заряжаться. Эти элементы способны выдерживать температуры до -20 ° C. Выбор сепаратора (нейлон или полипропилен) и электролита (KOH, LiOH, NaOH) влияет на условия напряжения в случае сильноточного разряда, срок службы и способность к перезарядке. В случае неправильного использования может быстро возникнуть очень высокое давление.По этой причине для элементов требуется предохранительный клапан. NiCd элементы обычно имеют длительный срок службы, что обеспечивает высокую степень экономии.

НИКЕЛЬ-МЕТАЛЛИЧЕСКИЕ ГИДРИДНЫЕ БАТАРЕИ

Активные компоненты никель-металлгидридной аккумуляторной батареи в заряженном состоянии состоят из гидроксида никеля (NiOOH) в положительном электроде и металлического сплава, накапливающего водород (MH) в отрицательном электроде, а также из электролита гидроксида калия (КОН). По сравнению с перезаряжаемыми никель-кадмиевыми батареями, никель-металл-гидридные батареи имеют более высокую удельную энергию на единицу объема и веса.

ЛИТИЕВО-ИОННЫЕ БАТАРЕИ

Термин ионно-литиевый аккумулятор относится к перезаряжаемой батарее, в которой материалы отрицательного электрода (анода) и положительного электрода (катода) служат в качестве хозяина для литий-ионных аккумуляторов (Li +). Ионы лития перемещаются от анода к катоду во время разряда и внедряются (вставляются в пустоты в кристаллографической структуре) катода. Ионы меняют направление во время зарядки. Поскольку ионы лития внедряются в материалы-хозяева во время заряда или разряда, в литий-ионном элементе нет свободного металлического лития.В литий-ионном элементе чередующиеся слои анода и катода разделены пористой пленкой (разделителем). Электролит, состоящий из органического растворителя и растворенной соли лития, обеспечивает среду для переноса ионов лития. Для большинства коммерческих литий-ионных ячеек диапазон напряжений составляет приблизительно от 3,0 В (разряженный, или состояние заряда 0%, SOC) до 4,2 В (полностью заряженный, или 100% SOC).

СВИНЦОВО-КИСЛОТНЫЕ АККУМУЛЯТОРЫ МАЛЫЙ ЗАПЕЧАТАННЫЙ

Перезаряжаемые небольшие герметичные свинцово-кислотные батареи (SSLA), которые представляют собой свинцово-кислотные батареи с регулируемым клапаном (батареи VRLA), не требуют регулярного добавления воды в элементы и выделяют меньше газа, чем залитые (влажные) свинцово-кислотные батареи.Батареи SSLA иногда называют «необслуживаемыми» батареями. Уменьшение вентиляции является преимуществом, поскольку они могут использоваться в ограниченных или плохо вентилируемых помещениях.

Есть два типа батарей VRLA,

  • Аккумулятор из абсорбированного стекломата (AGM)
  • Гелевый аккумулятор («гелевый элемент»)

В батарее из абсорбированного стекломата электролит абсорбируется в сепараторе из стекловолокна. В гелевой ячейке электролит смешан с кремнеземной пылью с образованием иммобилизованного геля.

Батареи

SSLA включают предохранительный клапан сброса давления. В отличие от залитых батарей, батарея SSLA сконструирована так, чтобы не проливать электролит при перевернутом положении.

Когда аккумуляторной батарее нужен электролит

Добавление электролита в автомобильный аккумулятор - сложная задача, поэтому важно понимать, что такое электролит в аккумуляторе, для чего он нужен и почему он разряжается, прежде чем пытаться отремонтировать собственный аккумулятор.

Когда вы слышите об электролите в отношении автомобильных аккумуляторов, люди говорят о растворе воды и серной кислоты.Этот раствор заполняет элементы традиционных свинцово-кислотных автомобильных аккумуляторов, а взаимодействие между электролитом и свинцовыми пластинами позволяет аккумулятору накапливать и выделять энергию.

Вот почему вы, возможно, видели, как люди добавляли воду в батарею, когда уровень жидкости внутри казался низким. Сама вода - это не электролит, а жидкий раствор серной кислоты и воды внутри батареи.

субчеловек / E + / Getty

Химический состав электролита свинцово-кислотной батареи

Когда свинцово-кислотный аккумулятор полностью заряжен, электролит представляет собой раствор, содержащий до 40 процентов серной кислоты, а остальное - обычная вода.

По мере разряда батареи положительная и отрицательная пластины постепенно превращаются в сульфат свинца. Электролит теряет большую часть своей серной кислоты во время этого процесса, и в конечном итоге он становится очень слабым раствором серной кислоты и воды.

Поскольку это обратимый химический процесс, зарядка автомобильного аккумулятора заставляет положительные пластины снова превращаться в оксид свинца, в то время как отрицательные пластины снова превращаются в чистый губчатый свинец, а электролит становится более сильным раствором серной кислоты и воды.

Этот процесс может происходить много тысяч раз в течение срока службы автомобильного аккумулятора, хотя срок службы аккумулятора можно значительно сократить, если разрядить его ниже определенного порогового значения.

Добавление воды в электролит батареи

В нормальных условиях содержание серной кислоты в электролите аккумулятора не меняется. Он либо присутствует в водном растворе в виде электролита, либо абсорбируется свинцовыми пластинами.

В незапечатанные батареи необходимо время от времени добавлять воду.Некоторое количество воды теряется при нормальном использовании в результате процесса электролиза, а вода, содержащаяся в электролите, также имеет тенденцию к естественному испарению, особенно в жаркую погоду. Когда это произойдет, его необходимо заменить.

С другой стороны, серная кислота никуда не денется. Фактически, испарение - это фактически один из способов получения серной кислоты из электролита аккумулятора. Если вы возьмете раствор серной кислоты и воды и дадите ему испариться, у вас останется серная кислота.

Если вы добавите воду к электролиту в батарее до того, как произойдет повреждение, существующая серная кислота, либо в растворе, либо в виде сульфата свинца, будет гарантировать, что электролит по-прежнему будет состоять из примерно 25-40 процентов серной кислоты.

Добавление кислоты в электролит батареи

Обычно нет причин добавлять в аккумулятор дополнительную серную кислоту, но есть некоторые исключения. Например, батареи иногда доставляются сухими, и в этом случае серная кислота должна быть добавлена ​​в элементы перед использованием батареи.

Если аккумулятор когда-либо опрокидывается или электролит выливается по какой-либо другой причине, серную кислоту придется добавить обратно в систему, чтобы восполнить потерю. В этом случае вы можете использовать ареометр или рефрактометр для проверки прочности электролита.

Если аккумуляторная кислота попала вам в глаза или на кожу, промойте это место теплой водой в течение не менее 30 минут и обратитесь за медицинской помощью. Если вы пролили на одежду, осторожно снимите и утилизируйте одежду, стараясь не допустить, чтобы кислота коснулась вашей кожи.Небольшие разливы, не попадающие в глаза, кожу или одежду, можно нейтрализовать пищевой содой и смыть.

Использование водопроводной воды для заполнения электролита батареи

Последний кусок головоломки и, возможно, самый важный - это тип воды, используемой для доливки электролита в батарее. Хотя в некоторых случаях можно использовать водопроводную воду, большинство производителей аккумуляторов рекомендуют вместо нее дистиллированную или деионизированную воду. Причина в том, что водопроводная вода обычно содержит растворенные твердые вещества, которые могут повлиять на работу аккумулятора, особенно при работе с жесткой водой.

Если доступная водопроводная вода имеет особенно высокий уровень растворенных твердых веществ или вода жесткая, может потребоваться дистиллированная вода. Однако обработки доступной водопроводной воды с помощью подходящего фильтра часто бывает достаточно, чтобы сделать воду пригодной для использования в электролите батареи.

Спасибо, что сообщили нам!

Расскажите, почему!

Другой Недостаточно подробностей Сложно понять

Новая конструкция электролита может улучшить аккумуляторы для электромобилей

Новый электролит на основе лития, изобретенный учеными Стэнфордского университета, может проложить путь для следующего поколения электромобилей с батарейным питанием.

Стандартный (прозрачный) электролит слева и новый электролит Стэнфордского стандарта справа. (Изображение предоставлено: Чжиао Юй)

В исследовании, опубликованном 22 июня в журнале Nature Energy , исследователи из Стэнфорда демонстрируют, как их новая конструкция электролита повышает производительность литий-металлических батарей - многообещающей технологии для питания электромобилей, ноутбуков и других устройств.

«Большинство электромобилей работают на литий-ионных батареях, которые быстро приближаются к своему теоретическому пределу по плотности энергии», - сказал соавтор исследования И Цуй, профессор материаловедения, инженерии и фотоники в Национальной ускорительной лаборатории SLAC.«Наше исследование было сосредоточено на литий-металлических батареях, которые легче, чем литий-ионные, и потенциально могут обеспечивать больше энергии на единицу веса и объема».

Литий-ионный против металлического лития

Литий-ионные батареи

, используемые во всем, от смартфонов до электромобилей, имеют два электрода - положительно заряженный катод, содержащий литий, и отрицательно заряженный анод, обычно сделанный из графита. Раствор электролита позволяет ионам лития перемещаться между анодом и катодом, когда батарея используется и когда она заряжается.

кандидатов наук и ведущих авторов Хансен Ван (слева) и Чжиао Ю (справа) тестируют экспериментальную ячейку в своей лаборатории. (Изображение предоставлено: Hongxia Wang.)

Литий-металлический аккумулятор может содержать примерно вдвое больше электроэнергии на килограмм, чем современные литий-ионные аккумуляторы. Литий-металлические батареи делают это путем замены графитового анода металлическим литием, который может хранить значительно больше энергии.

«Литий-металлические батареи очень перспективны для электромобилей, где вес и объем имеют большое значение», - сказал соавтор исследования Женан Бао, специалист K.К. Ли Профессор инженерной школы. «Но во время работы анод из металлического лития вступает в реакцию с жидким электролитом. Это вызывает рост микроструктур лития, называемых дендритами, на поверхности анода, что может привести к возгоранию батареи и ее выходу из строя ».

Исследователи потратили десятилетия, пытаясь решить проблему дендритов.

«Электролит был ахиллесовой пятой литий-металлических батарей», - сказал соавтор книги Чжао Ю, аспирант по химии.«В нашем исследовании мы используем органическую химию для рационального проектирования и создания новых стабильных электролитов для этих батарей».

Электролит новый

Для исследования Ю и его коллеги выяснили, могут ли они решить проблемы стабильности с помощью обычного, коммерчески доступного жидкого электролита.

«Мы предположили, что добавление атомов фтора к молекуле электролита сделает жидкость более стабильной», - сказал Ю. «Фтор - широко используемый элемент в электролитах литиевых батарей.Мы использовали его способность притягивать электроны, чтобы создать новую молекулу, которая позволяет аноду из металлического лития хорошо функционировать в электролите ».

Результатом стало новое синтетическое соединение, сокращенно FDMB, которое можно легко производить в больших объемах.

«Конструкции электролитов становятся очень экзотичными, - сказал Бао. «Некоторые из них оказались многообещающими, но их производство очень дорогое. Молекула FDMB, которую придумал Чжиао, легко производить в больших количествах и довольно дешево ».

«Невероятная производительность»

Команда Стэнфорда провела испытания нового электролита в литий-металлической батарее.

Результаты были впечатляющими. Экспериментальная батарея сохранила 90 процентов своего первоначального заряда после 420 циклов зарядки и разрядки. В лабораториях типичные литий-металлические батареи перестают работать примерно через 30 циклов.

Исследователи также измерили, насколько эффективно ионы лития переносятся между анодом и катодом во время зарядки и разрядки, это свойство известно как «кулоновская эффективность».

«Если вы зарядите 1000 ионов лития, сколько вы получите обратно после разрядки?» - сказал Цуй.«В идеале вы хотите 1000 из 1000 для 100-процентного кулоновского КПД. Чтобы быть коммерчески жизнеспособным, элемент батареи должен иметь кулоновскую эффективность не менее 99,9 процента. В нашем исследовании мы получили 99,52 процента в половинных ячейках и 99,98 процентов в полных ячейках; невероятная производительность ».

Батарея безанодная

Для потенциального использования в бытовой электронике команда Стэнфордского университета также провела испытания электролита FDMB в безанодных литий-металлических ячейках - коммерчески доступных батареях с катодами, которые поставляют литий на анод.

«Идея состоит в том, чтобы использовать литий только на катодной стороне, чтобы уменьшить вес», - сказал со-ведущий автор исследования Хансен Ван, аспирант в области материаловедения и инженерии. «Безанодная батарея проработала 100 циклов, прежде чем ее емкость упала до 80 процентов - не так хорошо, как эквивалентная литий-ионная батарея, которая может выдерживать от 500 до 1000 циклов, но все же одна из самых эффективных безанодных ячеек».

«Эти результаты показывают многообещающие результаты для широкого диапазона устройств», - добавил Бао. «Легкие безанодные батареи станут привлекательным элементом для дронов и многих других видов бытовой электроники.”

Аккумулятор 500

Министерство энергетики США (DOE) финансирует большой исследовательский консорциум под названием Battery500, чтобы сделать литий-металлические батареи жизнеспособными, что позволит производителям автомобилей создавать более легкие электромобили, которые могут преодолевать гораздо большие расстояния между зарядками. Это исследование было частично поддержано грантом консорциума, в который входят Стэнфорд и SLAC.

За счет улучшения анодов, электролитов и других компонентов Battery500 стремится почти в три раза увеличить количество электроэнергии, которое может обеспечить литий-металлический аккумулятор, с примерно 180 ватт-часов на килограмм, когда программа стартовала в 2016 году, до 500 ватт-часов на килограмм.Более высокое отношение энергии к весу, или «удельная энергия», является ключом к решению проблемы запаса хода, которую часто испытывают потенциальные покупатели электромобилей.

Перейдите на веб-сайт для просмотра видео.

Чжиао Юй

Испытание на воспламеняемость обычного карбонатного электролита (слева) и нового электролита FDMB (справа), разработанных в Стэнфорде. Обычный карбонатный электролит воспламеняется сразу после прикосновения к пламени, но электролит FDMB может выдерживать прямое пламя в течение как минимум трех секунд.

«Батарея без анода в нашей лаборатории обеспечивает около 325 ватт-часов на килограмм удельной энергии, приличное число», - сказал Цуй. «Нашим следующим шагом могла бы стать совместная работа с другими исследователями Battery500 над созданием ячеек, которые приблизятся к цели консорциума - 500 ватт-часов на килограмм».

Помимо более длительного срока службы и лучшей стабильности, электролит FDMB также гораздо менее воспламеняем, чем обычные электролиты, как исследователи продемонстрировали в этом встроенном видео.

«Наше исследование в основном обеспечивает принцип конструкции, который люди могут применять для создания более качественных электролитов», - добавил Бао. «Мы только что показали один пример, но есть много других возможностей».

Среди других соавторов Стэнфордского университета Цзянь Цинь, доцент кафедры химического машиностроения; докторанты Сиань Конг, Кеченг Ван, Вэньсяо Хуанг, Снехашис Чоудхури и Чибуезе Аманчукву; аспиранты Уильям Хуанг, Ючи Цао, Дэвид Маканич, Ю Чжэн и Саманта Хунг; и студенты Ютинг Ма и Эдер Ломели.Синьчан Ван из Университета Сямэнь также является соавтором. Чжэнань Бао и И Цуй - старшие научные сотрудники Стэнфордского института энергетики прекурс. Цуй также является ведущим исследователем в Стэнфордском институте материаловедения и энергетики, совместной исследовательской программе SLAC / Стэнфорд.

Эта работа также была поддержана Программой исследования материалов для аккумуляторов в Департаменте автомобильных технологий Министерства энергетики США. Средство, используемое в Стэнфорде, поддерживается Национальным научным фондом.

Чтобы читать все статьи о Стэнфордской науке, подпишитесь на еженедельный выпуск Stanford Science Digest .

Статьи о

BatteryStuff | Объяснение свинцово-кислотной батареи

Стю Олтман, технический редактор журнала Wing World Magazine
Отредактировано и перепечатано с разрешения

Аккумулятор для мотоциклов на 12 В состоит из пластикового корпуса, содержащего шесть ячеек. Каждая ячейка состоит из набора положительных и отрицательных пластин, погруженных в разбавленный раствор серной кислоты, известный как электролит, и каждая ячейка имеет напряжение около 2,1 В при полной зарядке.Шесть элементов соединены вместе, чтобы получить полностью заряженную батарею примерно на 12,6 вольт.

Это здорово, но как вливание свинцовых пластин в серную кислоту производит электричество? Батарея использует электрохимическую реакцию для преобразования химической энергии в электрическую. Давайте посмотрим. Каждая ячейка содержит пластины, напоминающие крошечные квадратные теннисные ракетки, сделанные либо из свинцовой сурьмы, либо из свинцово-кальциевого сплава. Затем к пластинам приклеивается паста из так называемого «активного материала»; губчатый свинец для отрицательных пластин и диоксид свинца для положительных.В этом активном материале происходит химическая реакция с серной кислотой, когда на клеммы батареи подается электрическая нагрузка.

Как это работает

Позвольте мне сначала дать вам общую картину для тех, кто не очень ориентирован на детали. В основном, когда батарея разряжается, серная кислота в электролите истощается, так что электролит больше напоминает воду. В то же время сульфат кислоты покрывает пластины и уменьшает площадь поверхности, на которой может происходить химическая реакция.Зарядка меняет процесс, возвращая сульфат обратно в кислоту. Это вкратце, но читайте дальше, чтобы лучше понять. Если вы уже убежали из комнаты, крича и волоча за волосы, не волнуйтесь.

Электролит (серная кислота и вода) содержит заряженные ионы сульфата и водорода. Ионы сульфата заряжены отрицательно, а ионы водорода - положительно. Вот что происходит при включении нагрузки (фары, стартера и т. Д.). Ионы сульфата перемещаются к отрицательным пластинам и теряют свой отрицательный заряд.Оставшийся сульфат соединяется с активным материалом на пластинах с образованием сульфата свинца. Это снижает прочность электролита, а сульфат на пластинах действует как электрический изолятор. Избыточные электроны уходят с отрицательной стороны батареи через электрическое устройство и обратно к положительной стороне батареи. На положительном полюсе батареи электроны устремляются обратно и принимаются положительными пластинами. Кислород в активном материале (диоксид свинца) реагирует с ионами водорода с образованием воды, а свинец реагирует с серной кислотой с образованием сульфата свинца.

Ионы, движущиеся в электролите, создают ток, но по мере того, как элемент разряжается, количество ионов в электролите уменьшается, и площадь активного материала, доступного для их приема, также уменьшается, поскольку он покрывается сульфатом. Помните, что химическая реакция происходит в порах активного материала, прикрепленного к пластинам.

Многие из вас, возможно, заметили, что аккумулятор, используемый для запуска велосипеда, который просто не заводится, быстро достигает точки, в которой он даже не переворачивает двигатель.Однако, если эту батарею оставить на некоторое время, она, кажется, оживает. С другой стороны, если вы оставите переключатель в положении «парк» на ночь (горят только пара маленьких лампочек), аккумулятор будет совершенно бесполезен утром, и никакие перерывы не приведут к его восстановлению. Почему это? Поскольку ток возникает в результате химической реакции на поверхности пластин, сильный ток быстро восстанавливает электролит на поверхности пластин до воды. Напряжение и ток будут снижены до уровня, недостаточного для работы стартера.Требуется время, чтобы большее количество кислоты диффундировало через электролит и достигло поверхности пластин. Это достигается за счет короткого периода отдыха. Кислота не расходуется так быстро, когда ток небольшой (например, для питания лампы заднего фонаря), а скорость диффузии достаточна для поддержания напряжения и тока. Это хорошо, но когда напряжение в конечном итоге падает, кислота больше не прячется за пределами ячейки, чтобы мигрировать к пластинам. Электролит в основном состоит из воды, а пластины покрыты изолирующим слоем из сульфата свинца.Теперь требуется зарядка.

Саморазряд

Одна не самая приятная особенность свинцово-кислотных аккумуляторов заключается в том, что они разряжаются сами по себе, даже если не используются. Общее практическое правило - норма саморазряда один процент в день. Эта скорость увеличивается при высоких температурах и уменьшается при низких температурах. Не забывайте, что ваше Gold Wing с часами, стереосистемой и радио CB никогда не выключается полностью. Каждое из этих устройств имеет "поддерживающую память", чтобы сохранить предварительные настройки радио и время, и эти воспоминания потребляют около 20 миллиампер или.020 ампер. Это будет высасывать из вашей батареи около получаса в день при температуре 80 градусов по Фаренгейту. Эта тяга, в сочетании со скоростью саморазряда, разряжает вашу батарею на 50 процентов за две недели, если велосипед оставить без присмотра и без седла.

Когда аккумулятор заряжается

Зарядка - это процесс, обращающий электрохимическую реакцию в обратном направлении. Он преобразует электрическую энергию зарядного устройства в химическую энергию. Помните, батарея не накапливает электричество; в нем хранится химическая энергия, необходимая для производства электроэнергии.

Зарядное устройство для аккумулятора меняет направление тока на противоположное, при условии, что зарядное устройство имеет большее напряжение, чем аккумулятор. Зарядное устройство создает избыток электронов на отрицательных пластинах, и положительные ионы водорода притягиваются к ним. Водород реагирует с сульфатом свинца с образованием серной кислоты и свинца, и когда большая часть сульфата уходит, водород поднимается с отрицательных пластин. Кислород в воде реагирует с сульфатом свинца на положительных пластинах, снова превращая их в диоксид свинца, и пузырьки кислорода поднимаются от положительных пластин, когда реакция почти завершается.

Многие люди думают, что внутреннее сопротивление аккумулятора велико, когда аккумулятор полностью заряжен, но это не так. Если вы задумаетесь, то вспомните, что сульфат свинца действует как изолятор. Чем больше сульфата на пластинах, тем выше внутреннее сопротивление аккумулятора. Более высокое сопротивление разряженной батареи позволяет ей принимать более высокую скорость заряда без выделения газов или перегрева, чем когда батарея почти полностью заряжена. При почти полной зарядке остается не так много сульфата, чтобы поддерживать обратную химическую реакцию.Уровень зарядного тока, который может быть применен без перегрева батареи или разрушения электролита на водород и кислород, известен как «естественная скорость поглощения батареи». Когда зарядный ток превышает эту естественную скорость поглощения, происходит перезаряд. Аккумулятор может перегреться, и электролит начнет пузыриться. Фактически, часть зарядного тока тратится впустую в виде тепла даже при правильных уровнях зарядки, и эта неэффективность создает необходимость возвращать в батарею больше ампер-часов, чем было вытащено.Подробнее об этом позже.

Как долго прослужит моя батарея?

Существует множество факторов, которые могут привести к выходу аккумулятора из строя или значительно сократить срок его службы. Одна из этих вещей позволяет батарее оставаться в частично разряженном состоянии . Мы говорили о сульфате, образующемся на поверхности пластин аккумулятора при разряде, и сульфат также образуется в результате саморазряда. Сульфат также образуется быстро, если уровень электролита упадет до точки, при которой пластины будут обнажены.Если позволить этому сульфату оставаться на пластинах, кристаллы станут больше и затвердеют до тех пор, пока их невозможно будет удалить загрузкой. Следовательно, количество доступной площади поверхности для химической реакции будет постоянно уменьшаться. Это состояние известно как «сульфатирование», и оно необратимо снижает емкость аккумулятора. Батарея на 20 ампер-час может начать работать как батарея на 16 ампер-час (или меньше), быстро теряя напряжение под нагрузкой и не в состоянии поддерживать достаточное напряжение во время проворачивания коленчатого вала для работы системы зажигания велосипеда.Это последнее условие очевидно, когда двигатель отказывается запускаться, пока вы не уберете палец с кнопки запуска. Когда вы отпускаете стартер, напряжение аккумулятора мгновенно поднимается до достаточного уровня. Поскольку двигатель все еще кратковременно вращается, при включенном зажигании зажигаются свечи зажигания. В следующей статье мы увидим, почему повышенное внутреннее сопротивление из-за сульфатирования приводит к снижению мощности, подаваемой на стартер.

Глубокая разрядка - еще один убийца батареи.Каждый раз, когда батарея глубоко разряжается, часть активного материала падает с пластин и падает на дно батарейного отсека. Естественно, остается меньше материала для проведения химической реакции. Если на дне корпуса скапливается достаточно этого материала, пластины могут закоротиться и батарея выйдет из строя.

Перезарядка - коварный убийца; его эффекты часто не очевидны для невиновного покупателя постоянного зарядного устройства за десять долларов, который оставляет его подключенным к батарее на длительные периоды времени.Https://www.batterystuff.com/battery-chargers/#mce_temp_url# заряжается с постоянной скоростью независимо от уровня заряда аккумулятора. Если эта скорость больше, чем естественная скорость поглощения батареи при полной зарядке, электролит начнет разрушаться и выкипать. Многие гонщики всю зиму хранят велосипед на зарядном устройстве, а весной обнаруживают, что аккумулятор практически разряжен. Кроме того, поскольку зарядка имеет тенденцию окислять положительные пластины, продолжающаяся перезарядка может привести к коррозии пластин или разъемов, пока они не ослабнут и не сломаются.

Недостаточная зарядка - это состояние, которое встречается на многих мотоциклах. Ваш регулятор напряжения настроен на поддержание напряжения вашей системы на уровне от 14 до 14,4 вольт. Если вы один из тех, кто ездит по автомагистралям между штатами, а ваш вольтметр показывает только 13,5 вольт, потому что вы сжигаете больше огней, чем рождественский дисплей Macy, вы должны знать, что этого напряжения достаточно для поддержания заряженной батареи, но недостаточно для полного заряда. перезарядить разряженный.

Помните, мы говорили, что газовыделение происходит, когда весь или большая часть сульфата свинца превращается обратно в свинец и диоксид свинца.Напряжение, при котором это обычно происходит, известное как напряжение газовыделения, обычно чуть выше 14 вольт. Если напряжение в вашей системе никогда не станет таким высоким, и если вы никогда не компенсируете это путем подключения к зарядному устройству дома, сульфат начнет накапливаться и затвердевать, как налет во рту. Рассматривайте периодическую тщательную зарядку как обычную чистку зубов нитью и зубной нитью. Если вы плохо соблюдаете гигиену полости рта, вы можете пойти к дантисту и попросить его взорвать и поскрести всю эту мерзость.Когда ваша батарея достигает этой стадии, это занавески!

Какой тип зарядного устройства и почему

Ваш генератор переменного тока и стандартное автомобильное зарядное устройство имеют много общего; они стремятся поддерживать постоянное напряжение. Вот проблема с попыткой быстро зарядить сильно разряженный аккумулятор любым из них. Помните, мы обсуждали, как при сильном потреблении тока батарея выглядит разряженной. Затем, когда кислота диффундирует через элементы, концентрация на поверхности пластин увеличится, и батарея вернется к жизни.

Аналогичным образом напряжение аккумулятора во время заряда увеличивается из-за концентрации кислоты, которая возникает на поверхности пластин. Если скорость заряда значительная, напряжение будет быстро расти. Конусное зарядное устройство или автомобильный регулятор напряжения резко снизят скорость заряда, когда напряжение поднимется выше 13,5, но соизмеримо ли состояние заряда аккумулятора с напряжением? Нет! Опять же, требуется время, чтобы кислота распространилась по клеткам.

Несмотря на то, что напряжение может быть высоким, электролит на внешней стороне элементов все еще слаб, и батарея может быть на гораздо более низком уровне заряда, чем может указывать напряжение.Только после продолжительной зарядки при пониженном токе будет достигнута полная емкость. По этой причине вы не должны судить о состоянии заряда аккумулятора, измеряя напряжение во время зарядки. Проверяйте его только после того, как дайте батарее посидеть хотя бы час. Напряжение будет снижаться и стабилизироваться по мере того, как кислота распространяется по клеткам.

В течение последних нескольких лет несколько компаний разработали зарядные устройства, которые могут быстро заряжать разряженную батарею, а затем удерживать батарею под напряжением, которое не вызывает ее газообразования и не допускает саморазряда.Их иногда называют «умными зарядными устройствами» или многоступенчатыми зарядными устройствами. Вот как они работают.

Мы сказали, что аккумулятор может принимать гораздо более высокую скорость заряда, когда он частично разряжен, чем когда он почти полностью заряжен. Эти многоступенчатые зарядные устройства используют этот факт, начиная заряд с постоянным током или в режиме «объемной зарядки». Обычно они обеспечивают заряд от 650 мА до 1,5 А, в зависимости от марки и модели. Этот объемный заряд остается постоянным (или должен быть) до тех пор, пока напряжение аккумулятора не достигнет 13.5 вольт, что позволяет аккумулятору поглотить большее количество заряда за короткое время и без повреждений. Затем зарядное устройство переключается на постоянное напряжение или «абсорбционный» заряд.

Идея состоит в том, чтобы позволить батарее поглотить последние 15 процентов своего заряда с естественной скоростью поглощения, чтобы предотвратить чрезмерное выделение газа или нагрев. Наконец, эти зарядные устройства переключаются в «плавающий» режим, в котором напряжение аккумулятора поддерживается на уровне, достаточном для предотвращения разрядки, но недостаточном для возникновения перезарядки.Различные компании в целом расходятся во мнениях относительно того, каким должно быть это напряжение холостого хода, но обычно оно составляет от 13,2 до 13,4 вольт. Фактически, плавающее напряжение должно иметь температурную компенсацию от 13,1 вольт при 90 градусах по Фаренгейту до 13,9 вольт при 50 градусах. Большинство очень дорогих многоступенчатых зарядных устройств высокой мощности для использования с более крупными батареями для жилых автофургонов имеют температурную компенсацию, но, насколько мне известно, ни одно из мотоциклетных устройств не работает; они используют компромиссную настройку с плавающей запятой.

Итак, я могу просто установить его и забыть, верно? Не совсем так.Во-первых, вам нужно время от времени проверять уровень жидкости в аккумуляторе (если только у вас нет герметичного аккумулятора). Еще одна проблема - это проба батареи. Даже если его удерживать на уровне 13 вольт, постоянное напряжение позволит аккумулятору со временем начать сульфатироваться. Для большинства этих устройств я рекомендую отключать зарядное устройство от сети не реже одного раза в 60 дней во время сезонного хранения. Дайте батарее отдохнуть пару дней, а затем снова подключите зарядное устройство.

Все еще здесь?

Если вы все еще читаете это, значит, вы настоящий солдат.Я понимаю, что эта тема может сбивать с толку или даже скучать, но наберись духа; Я легкомысленно относился к тебе. Остается гораздо больше невысказанного, чем то, что здесь показано. Это были «Лучшие хиты Battery». Я надеюсь, что этого было достаточно, чтобы заинтересовать вас, не отправляя вас в информационную перегрузку, и, возможно, теперь, когда вы знаете, сколько способов сократить срок службы батареи, вы знаете, почему никто не может предсказать, как долго прослужит батарея. Многие райдеры, которые считают, что отлично заботятся о своих батареях, на самом деле убивают их добротой.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *