Принцип работы датчика давления – Датчики давления. Виды и работа. Как выбрать и применение

Содержание

Датчики давления. Виды и работа. Как выбрать и применение

Датчики давления являются устройством, выдающим сигналы на выходе, зависящие от давления измеряемой среды. Сегодня не обходятся без точных датчиков определения давления. Они применяются в автоматизированных системах всех отраслей промышленности.

Многие датчики давления функционируют на преобразовании давления в движение механической части. Кроме механических элементов (трубчатые пружины, мембраны) для замеров используются тепловые и электрические системы. Электронные элементы дают возможность осуществить производство датчиков давления на электронных элементах.

Датчик давления состоит из:
  • Первоначальный преобразователь вместе с чувствительным элементом.
  • Корпус датчика, имеющий разные конструкции.
  • Электрическая схема.
Классификация и принцип работы
Волоконно-оптические

Этот тип датчиков считается самым точным в работе, которая не имеет большой зависимости от изменений температуры. Элементом точной чувствительности действует оптический волновод. Давление в волоконно-оптических приборах определяется путем поляризации света, прошедшего по элементу чувствительности, и колебаниям амплитуды.

Оптоэлектронные датчики давления

Датчики давления состоит из нескольких слоев, через которые проходит свет. Один слой меняет свойства от величины давления среды. Меняются 2 параметра: величина преломления и размер слоя. Методы изображены на рисунках.

При изменении свойств будет изменяться характеристика света, проходящего через слои. Фотоэлемент производит регистрацию изменений. Преимуществом оптоэлектронных приборов стала высокая точность.

Датчики легко определяют давление, имеют повышенное разрешение, чувствительность, стабильны к действию температуры. Перспективность оптоэлектронных приборов обуславливается работой на интерференции света, использованием интерферометра для замера малых перемещений. Основные составляющие элементы датчика – кристалл оптического анализатора с диафрагмой, фотодиод и детектор. Детектор составляют три светодиода.

К 2-м фотодиодам прикреплены оптические фильтры, которые имеют отличия по толщине. Фильтры состоят из кремниевых зеркал, имеющих отражение от лицевой части поверхности, которые имеют слой оксида кремния. Поверхность напылена слоем алюминия малой толщины.

Световой преобразователь подобен емкостному датчику. Его диафрагма смоделирована способом травления, которая покрыта металлическим тонким слоем. Стеклянная пластина снизу покрыта металлическим слоем. Между подложкой и стеклом есть промежуток, образованный двумя прокладками.

Два металлических слоя образуют интерферометр с изменяемым воздушным промежутком. В его состав вошли: зеркало на стекле стационарного вида и меняющее положение зеркало на мембране.

На подобной основе изготавливают чувствительные датчики размером 0,55 мм. Они легко проходят через ушко иглы.

Оптическое волокно взаимосвязано с сенсором. В нем с помощью управления микропроцессора подключается монохроматический свет, который вводится в волокно. Делается замер интенсивности обратного света, по калибровке рассчитывается наружное давление и результат показывается на экране. Сенсоры используют в медицине для проверки давления внутри черепа, измерения кровяного давления в артериях легких. Другими методами в легкие добраться невозможно.

Магнитные

Магнитные датчики давления еще называют индуктивными. Элементом чувствительности служит Е-пластина, в центре расположена катушка, и проводящая мембрана. Она расположена на малом расстоянии от конца пластины. При подсоединении обмотки образуется магнитный поток, он идет через пластину, промежуток воздуха и мембрану.

Магнитная проницаемость воздуха в зазоре в 1000 раз слабее мембраны и пластины. Малое изменение параметра зазора приводит к значительному изменению индуктивности.

При воздействии давления мембрана изгибается, сопротивление катушки меняется. Преобразователь переводит изменение в сигнал тока. Измерительный рабочий элемент преобразователя сделан по схеме моста, обмотка включена в плечо. АЦП подает сигнал от элемента измерения в виде сигнала от давления.

Емкостные

Датчики давления самой простой конструкции, состоящий из плоских электродов (2 шт.) с зазором. Электрод сделан мембраной, на нее давит измеряемое давление. Меняется размер зазора. Такой вид датчика образует конденсатор с меняющимся зазором. Величина емкости конденсатора меняется при изменении промежутка от пластин или от электродов в данном случае.

Для определения очень небольших изменений давления приборы наиболее применимы и эффективны. Они дают возможность произвести замеры избыточного давления в различной среде. На предприятиях при выполнении технологических процессов, в которых задействованы системы воздушного и гидравлического оборудования, в насосах, компрессорах, на станках емкостные датчики нашли широкое применение. Датчик емкостного вида имеет конструкцию, которая имеет стойкость к вибрациям, скачкам температуры, защищена от химической и электромагнитной среды.

Ртутные

Также простая конструкция прибора. Действует по закону о сообщающихся сосудах. На одну емкость давит давление, которое нужно измерить. По величине другого сосуда – определяется давление.

Пьезоэлектрические

Элементом чувствительности в этом датчике служит пьезоэлемент. Это вещество, создающее электрический сигнал во время деформации. Такое свойство называется прямым пьезоэффектом. В измеряемой области находится пьезоэлемент, который образует ток, прямо зависящий от значения давления. Сигнал в датчике из пьезоматериала образуется только при деформации. При неизменном давлении нет деформации, поэтому датчик годен только для проведения замеров среды с быстро изменяемым давлением.

Если давление не будет изменяться, то не будет деформации, пьезоэлектрик не сгенерирует сигнал.

Пьезоэлектрики нашли использование в первичных преобразователях потока водяных вихревых счетчиков, и других сред. Их устанавливают парами в трубу с проходом в несколько сотен мм за предметом обтекания. Фиксируют вихри. Количество и частота вихрей прямо зависят от скорости потока и расхода по объему.

Пьезорезонансные датчики давления

В отличие от вышеописанного вида датчика здесь применяется обратный пьезоэффект, то есть, форма материала пьезоэлемента изменяется от тока подачи. Применяется резонатор в виде пластины из пьезоматериала. На пластину с двух сторон нанесены электроды. На них подключается по очереди напряжение питания с разным знаком, пластина производит изгиб в обе стороны в зависимости от полярности поданного напряжения и частоты.

Если воздействовать на пластину силой, чувствительной мембраной к давлению, то резонатор изменит частоту колебаний. Частота резонатора укажет значение давления на мембрану, которая оказывает давление на резонатор.

На рисунке изображен пьезорезонансный датчик с абсолютным давлением, который сделан герметичной камерой 1. Она достигается корпусом 2, основанием 6, мембраной 10. Мембрана крепится на электронную сварку к корпусу. Держатели закреплены на основании перемычками. Силочувствительный резонатор удерживает держатель.

Мембрана 10 давит на втулку 13 и шарик 6, который закреплен в держателе. Шарик давит на чувствительный резонатор 5. Проводка закреплена на основании 6, необходима для слияния резонаторов с генераторами. Сигнал на выходе абсолютного давления образуется по схеме путем разности генераторных частот. Датчик находится в активном термостате 18 с неизменной температурой 40 градусов. Давления для измерения поступает через штуцер 12.

Резистивные датчики давления

Другим названием этот датчик называется тензорезистор. Это элемент, который меняет собственное сопротивление при деформации. Такие тензорезисторы монтируют на мембрану, которая чувствительна к изменяющемуся давлению. В результате при приложении силы на мембрану происходит ее изгиб, из-за этого изгибаются тензорезисторы, которые на ней закреплены. На тензорезисторах меняется сопротивление и значение тока цепи.

Растяжение элементов из проводников на каждом тензорезисторе ведет к увеличению длины и снижению сечения. В итоге сопротивление повышается. При сжатии процесс происходит наоборот. Изменения сопротивления незначительные, поэтому для обработки сигнала применяются усилители. Деформация переделывается в изменение сопротивления проводника или полупроводника, а затем в сигнал тока.

Тензорезисторы выполнены в виде проводящего зигзагообразного элемента, или из полупроводника, который расположен на гибкой подложке, приклеенной к мембране. Подложка сделана из слюды, полимерной пленки или бумаги. Элемент проводника – из полупроводника, тонкой проволоки или фольги, напыленных на металл в вакуумном состоянии. Чувствительный элемент соединяют с цепью измерения выводами из проволоки или площадками контактов. Тензорезисторы чаще имеют размер площади до 10 мм2. Они более подходят для замера давления, веса, силы нажатия.

Советы по выбору и приобретению датчиков давления
  • Тип давления. Важно определить, что вы будете измерять. Есть несколько типов давления: барометрическое, избыточное, вакуумное, относительное, абсолютное.
  • Интервал разбега давления.
  • Класс защиты датчика. Для разных условий работы определены свои степени защиты от пыли и влаги.
  • Термокомпенсация. Эффекты температуры: например, расширение предметов, создают значительные помехи на результат измерения датчика. Если температура всегда изменяется в среде, то нужна термокомпенсация. Про границы температур тоже нельзя забывать.
  • Вид материала. Свойства материала играют значительную роль для агрессивных условий.
  • Тип сигнала выхода. Бывают цифровой вид и аналоговый. Нужно также учесть интервалы выхода сигнала, количество проводов.
Похожие темы:

electrosam.ru

Принцип работы датчика давления воды

Датчик давления — это устройство, у которого физические параметры изменяются в зависимости от давления измеряемой среды, это могут быть газы, жидкости, пар. При изменении измеряемой среды, в которой находиться датчик давления, меняется и его выходные унифицированный пневматический, электрический сигналы или цифровой код.

Принципы использования датчика давления

Устройство состоит из первичного преобразователя давления, в составе которого чувствительный элемент и приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей и устройства вывода.

Основным отличием каждого датчика давления является точность регистрации давления (Диапазоны измерения от 0 … 6 бар до 0 … 60 бар), которая зависит от принципа преобразования давления в электрический сигнал: пьезорезистивный, тензометрический, емкостной, индуктивный, резонансный, ионизационный.

Методы преобразования давления в электрический сигнал

  • тензометрический

Чувствительные элементы датчиков базируются на принципе измерения деформации тензорезисторов, припаянных к титановой мембране, которая деформируется под действием давления.

  • пьезорезистивный

Основаны на интегральных чувствительных элементах из монокристаллического кремния. Кремниевые преобразователи имеют высокую временную и температурную стабильности. Для измерения давления чистых неагрессивных сред применяются, так называемые, Low cost — решения, основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем. Для измерения агрессивных сред и большинства промышленных применений используется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды посредством кремнийорганической жидкости.

Ёмкостные преобразователи используют метод изменения ёмкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые ёмкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью. Недостаток — нелинейная зависимость емкости от приложенного давления.

Резонансный метод — это волновые процессы: акустические или электромагнитные. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора. К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, невозможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.

  • ионизационный

Ионизационный метод — регистрации потока ионизированных частиц. Аналогом являются ламповые диоды. Лампа оснащена двумя электродами: катодом и анодом, — а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов. Преимуществом таких ламп является возможность регистрировать низкое давление — вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками давления, например, емкостными. Зависимость сигнала от давления является логарифмической.

Регистрация сигналов датчиков давления

Сигналы с датчиков давления являются медленноменяющимися. Это значит, что их спектр лежит в области сверхнизких частот. Для того чтобы с высокой точностью оцифровать такой сигнал необходимо подавить высокочастотную часть спектра, полностью состоящую из помех. Это особенно актуально в промышленных условиях. Специально для ввода медленноменяющихся сигналов используются интегрирующие АЦП. Они проводят измерение не мгновенного значения сигнала (которое изменяется под действием помех), а интегрируют сигнальную функцию за заданный промежуток времени, который заведомо меньше постоянной времени процессов, происходящих в контролируемой среде, но заведомо больше периода самой низкочастотной помехи

Какие отличия датчика давления от манометра?

Манометр — прибор, предназначенный для измерения (а не преобразования) давления. В манометре от давления зависят показания прибора, которые могут быть считаны с его шкалы, дисплея или аналогичного устройства.

Нужен датчик давления?

Для подбора необходимого датчика давления для работы с частотным преобразователем или другим устройством обратитесь по телефону электротехнической компании ЭНЕРГОПУСК: (495) 775-24-55.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

epusk.ru

Принцип работы датчиков давления

Принцип работы датчиков давления

Единицы измерения давления

  • Паскаль

    1 Па = 1 Н/м2
  • Бар
    1 бар = 105 Па
  • Физическая Атмосфера – атмосферное давление на уровне моря 1 атм = 101325 Па = 1,01325 бар = 10,33 м вод. ст.
  • Метр водяного столба — гидростатическое давление столба воды высотой в 1 метр 1 м вод. ст. = 9806,65 Па = 9,80665×10-2 бар = 0,096784 атм (напор в водопроводе удобно измерять в метрах водяного столба).

Классификация датчиков по типу измеряемого давления

  • Датчики абсолютного давления
    (Absolute Pressure Sensor)
    Эти датчики измеряют давление относительно абсолютного вакуума.
    Применение: пищевые и химические производства.

  • Датчики избыточного (относительного) давления, манометры
    (Gauge Pressure Sensor)
    Эти датчики измеряют давление относительно атмосферного давления в этом месте.
    Барометры измеряют атмосферное давление.
    Применение: водоснабжение и водоотведение.

  • Датчики дифференциального (перепада) давления
    (Differential Pressure Sensor)
    Эти датчики измеряют перепад (разность) давления в двух точках.
    Применение: контроль загрязнения фильтров, измерение расхода и уровня жидкости (гидростатический метод).

  • Вакуумные датчики, датчики разряжения
    (Vacuum Pressure Sensor)
    Измеряют давление, которое ниже атмосферного (вакуум).

Классификация датчиков давления по принципу действия

  • Пьезорезистивные (Piezoresistive Strain Gage)
    Используется эффект изменения электрического сопротивления полупроводников под действием механической нагрузки.

  • Пьезоэлектрические (Piezoelectric)
    Используется пьезоэлектрический эффект – способность некоторых кристаллов (кварца) и керамики генерировать электрическое поле или разность потенциалов пропорционально силе давления (сжатия).

  • Тензометрические
    (Strain Gauge)
    Используется тензоэффект – изменение электрического сопротивления тензорезисторов при их деформации под воздействием нагрузки.

  • Емкостные (Capacitive)
    Используется эффект зависимости ёмкости конденсатора от расстояния между обкладками.

  • Резонансные (Resonant)
    Используется эффект зависимости частоты собственных колебаний (кварцевого резонатора) от давления.

  • Индуктивные (Electromagnetic)
    Принцип действия основан на регистрации токов Фуко, возникающих в металлическом экране, расположенном между двумя катушками, одна из которых связана с измерительной мембраной — при её приближении или удалении от экрана изменяется индуктивность системы.

  • Ионизационные (Ionization)
    Используется эффект зависимости плотности потока ионов от разряжения в катодно-анодной лампе.

Вентильные блоки

Позволяют отключать датчик от процесса, проводить профилактические работы, промывку и калибровку.

Разделители давления

Разделители давления служат для разнесения в пространстве преобразователя и среды измерения. Измеряемое давление передается с разделительной мембраны на наполнительную жидкость и дальше по капиллярной трубке или напрямую в измерительную камеру преобразователя.

Применение:

  • При использовании в пищевой и фармацевтической промышленности быстросъёмные мембранные разделители можно легко промывать
  • Измеряемое вещество может закупорить или разъесть импульсные трубки
  • Нестандартный температурный диапазон.

www.maxplant.ru

виды, устройство, принцип действия датчиков давления

 О чем эта статья

Из чего состоят датчики давления? Классификация по принципу действия, принцип работы каждого типа датчиков, преимущества и недостатки каждого. Также вы узнаете, на что нужно обращать внимание при выборе датчиков давления. Производители и дилеры датчиков давления.

Вы также можете посмотреть другие статьи. Например, «Датчики температуры» или «Абсолютная влажность воздуха».

Перейти к выбору и покупке датчиков давления

Датчик давления — это устройство, в котором выходные параметры зависят от давления исследуемой среды, будь то жидкость, газ или пар. Современные системы не могут обойтись без точных приборов этого типа, они используются в системах автоматизации различных отраслей: энергетика, пищевая промышленность, нефтяная и газовая отрасль и многие-многие другие. У нас в каталоге, есть раздел датчики давления с помощью которого, вы сможете выбрать и купить нужный вам датчик.

В состав любого датчика давления входит:

  • первичный преобразователь давления с чувствительным элементом;
  • различные по конструкции корпусные детали;
  • схемы для повторной обработки сигнала.

 

Классификация датчиков давления по принципу действия

Оптические

Оптические датчики давления могут быть построены на двух принципах измерения: волоконно-оптическом и оптоэлектронном.

Волоконно-оптические

Волоконно-оптические датчики давления являются наиболее точными и их работа не сильно зависит от колебания температуры. Чувствительным элементом является оптический волновод. Об измеряемой величине давления в таких приборах обычно судят по изменению амплитуды и поляризации проходящего через чувствительный элемент света. Более подробно об волоконно-оптических датчиках давления можно почитать в этом PDF документе.

Оптоэлектронные

Датчики этого типа состоят из многослойных прозрачных структур. Через эту структуру пропускают свет. Один из прозрачных слоев может изменять свои параметры в зависимости от давления среды. Есть 2 параметра, которые могут изменяться: первый это показатель преломления, второй это толщина слоя. На иллюстрации показаны оба метода, изменение показателя преломления — рисунок а, изменение толщины слоя — рисунок б.

Понятно, что при изменении этих параметров будут меняться характеристики проходящего через слои света, это изменение будет регистрироваться фотоэлементом. Более подробно об оптоэлектронных датчиках давления можно почитать в этом PDF документе. К достоинствам датчика этого типа можно отнести очень высокую точность.

Магнитные

Другое название таких датчиков — индуктивные. Чувствительная часть таких датчиков состоит их Е-образной пластины, в центре которой находится катушка, и проводящей мембраны чувствительной к давлению. Мембрана располагается на небольшом расстоянии от края пластины. При подключении катушки, создается магнитный поток, который проходит через пластину, воздушный зазор и мембрану. Магнитная проницаемость зазора примерно в тысячу раз меньше магнитной проницаемости пластины и мембраны. Поэтому, даже небольшое изменение величины зазора влечет за собой заметное изменение индуктивности.

Емкостные

Имеет одну из наиболее простых конструкций. Состоит из двух плоских электродов и зазора между ними. Один из этих электродов представляет собой мембрану на которую давит измеряемое давление, вследствие, чего изменяется величина зазора. То есть, по сути, этот тип датчиков представляет собой конденсатор с изменяющейся величиной зазора. А как известно емкость конденсатора зависит от величины зазора. Емкостные датчики способны фиксировать очень маленькие изменения давления.

Ртутные

Тоже очень простой измерительный прибор. Работает по принципу сообщающихся сосудов. На один из этих сосудов давить измеряемое давление. Давление определяется по величине ртутного столба.

Пьезоэлектрические

Чувствительным элементом датчиков этого типа является пьезоэлемент — материал, выделяющий эклектический сигнал при деформации (прямой пьезоэффект). Пьезоэлемент находится в измеряемой среде, он будет выделять ток пропорциональный величине изменения давления. Так как электрический сигнал в пьезоматериале выделяется только при деформировании, а при постоянном давлении деформирование не происходит, то этот датчик пригоден только для измерения быстро меняющегося давления.

Пьезорезонансные

Этот тип тоже использует пьезоэффект, только в отличие от прошлого типа тут используется обратный пьезоэффект — изменение формы пьезоматериала в зависимости от подаваемого тока. В датчиках данного типа используется резонатор (например пластина) из пьезоматериала, на которую нанесены с двух сторон электроды. На электроды по переменно подается напряжение разного знака, таким образом пластина изгибается то в одну то в другую сторону с частотой подаваемого напряжения. Но если на эту пластину подать силу, например мембраной чувствительной к давлению, то частота колебания резонатора изменится. Частота резонатора и будет показывать величину, с которой давление давит на мембрану, а она в свою очередь давит на резонатор.

В качестве примера, на рисунке приведен пьезорезонансный датчика абсолютного давления. Он выполнен в виде герметичной камеры 1. Герметичность достигается соединением корпуса 2, основания 6 и мембраны 10, которая крепится к корпусу с помощью электронно-лучевой сварки. На основании 6 закреплены два держателя: 4 и 9. Держатель 4 крепится к основанию с помощью специально перемычки 3 и он держит силочувствительный резонатор 5. Держатель 9, установлен для крепления опорного пьезорезонатора 8.

Мембрана 10 передает усилие через втулку 13 на шарик 6, закрепленный в держателе 4. Шарик 4 передает силу давления на силочувствительный резонатор 5.

Провода 7 крепятся на основании 6 и служат для соединения резонаторов 5 и 8 с генераторами 17 и 16 Выходной сигнал абсолютного давления формируется схемой 15 из разности частот генераторов. Датчик давления помещен в активный термостат 18 с постоянной температурой 40 градусов Цельсия. Измеряемое давление подается через штуцер 12.

Резистивные

По-другому этот тип датчиков называет тензорезистивный. Тензорезистор — это элемент, изменяющий свое сопротивление в зависимости от деформирования. Эти тензоризисторы устанавливают на мембрану чувствительную к изменению давления. В итоге, при давлении на мембрану она изгибается и изгибает тензоризисторы, закрепленные на ней. Вследствие чего, сопротивление на них меняется и меняется величина тока в цепи.

На какие параметры нужно обращать внимание при покупке датчиков давления

  1. Вид давления. Очень важно понимать какой вид давления необходимо измерять. Существует 5 типов: абсолютное, дифференциальное(относительное), вакуум, избыточное, барометрическое. Для лучшего понимания разницы между ними, рекомендуем прочитать статью «виды давления».
  2. Диапазон измеряемого давления.
  3. Степенью защиты прибора. В разных отраслях использования датчиков будут разные условия эксплуатации, для которых необходимы разные степени защиты от проникновения воды и пыли. Определитесь, какую степень защиты электроприбора нужно выбрать именно вам.
  4. Наличие термокомпенсации. Температурные эффекты, такие как расширение материалов, могут наложить достаточно сильные помехи на выходные показания датчика. Если у вас происходят постоянное изменение температуры измеряемой среды, то термокомпенсация необходима. Обратите также внимание на границы температур. Например, у датчика ST250PG2BPCF есть термокомпенсация в пределах от -40 до 100 градусов Цельсия.
  5. Материал. Материал может оказать решающую роль при использовании датчика в агрессивных средах, в таком случае необходим выбор материала с высокой коррозийной стойкостью.
  6. Вид выходного сигнала. Важно определиться какой вид нужен вам. Аналоговый или цифровой? Если аналоговый, то какие диапазоны выходных сигналов и сколько проводов? Например, диапазоны могут быть 4…20 мА.

Производители и дилеры

В нашем каталоге представлены датчики давления, которые можно приобрести у следующих производителей и дилеров: Honeywell International, Компэл, Freescale Semiconductor, Inc, Omron Electronics LLC, ST Microelectronics, BD Sensors RUS.

Опубликована 26-10-11.


Если вам понравилась статья нажмите на одну из кнопок ниже

www.devicesearch.ru.com

описание и устройство, принцип работы, классификация

В современной промышленности различной направленности широко применяются датчики измерения давления. Служат они для максимально точного измерения показаний в разных средах и дальнейшего получения данных в электрической или цифровой форме. Основные датчики делятся на оптические, резистивные, магнитные, пьезоэлектрические, ёмкостные, ртутные пьезорезонансные

.

Устройство датчика

У этого прибора параметры могут изменяться в зависимости от изменения параметров в измеряемой среде, например, жидкости, газа, или пара. В датчике, характеристики измеряемой среды преобразуется в унифицированный код для вывода показателей на указательный прибор.

Датчик состоит из первичного преобразователя, который включает в себя чувствительный элемент — получатель давления, схемы второстепенной обработки сигнала, и различные части корпуса. В некоторых случаях оборудуется деталями герметизации для условий работы во влажных и агрессивных средах.

Классификация приборов по принципу действия

От принципа действия или метода, используемого при преобразовании входного сигнала в электрический выходной, датчики измерения классифицируют:

  • Тензометрический метод. Чувствительные детали производят измерение сопротивления при воздействии на тензорезистор, прикреплённый к упругому элементу, который при воздействии давления деформируется.
  • Пьезорезистивный метод. Работает на основе интегральных чувствительных деталей из кремния. Преобразователи из кремния обладают высокой чувствительностью благодаря возможности изменения сопротивления полупроводника. Для измерения характеристик в неагрессивных средах используется Low cost — метод исполнения оборудования, когда чувствительный элемент не оборудован какими-либо степенями защиты. В случае работы в среде где, возможно, оказания на датчик агрессивного вещества, чувствительный элемент оборудуется герметичным корпусом с разделяющей диафрагмой из стали, которая передаёт давление посредством кремниевой жидкости.
  • Ёмкостный метод. Главной частью датчика, работающего по такому методу является ёмкостная ячейка. Её работа заключается в изменении электрической ёмкости между укладкой конденсатора и измерительной мембраны в зависимости. Главным плюсом можно отметить защиту от деформации, при отсутствии давления мембрана восстанавливает свою форму, при этом калибровка такого датчика не требуется. А также высокая стабильность характеристик обусловлена малым влиянием погрешности температуры за счёт небольшого объёма жидкости, которая заполняет внутренний объем ячейки.
  • Резонансный метод. За основу работы по такому принципу взято изменение частоты резонансы колеблющегося элемента при его деформации. Из недостатков можно выделить большое время отклика, и невозможность работы в агрессивных средах без потери измерительной точности.
  • Индуктивный метод. Основывается на регистрации вихревых оков. Измерительный элемент состоит из двух изолированных катушек металлическим экраном. Преобразователь проводит измерение смещения мембраны при отсутствии фактического контакта между двумя поверхностями. Электрический ток генерируется в катушках таким образом, что заряд и разряд катушки происходит на равных отрезках временного промежутка. При изменении положения мембраны создаётся ток в зафиксированной катушке, после чего следует изменение индуктивности системы. Смещение данных основной катушки даёт возможность о преобразовании данных в стандартный сигнал, который по своим параметрам пропорционален оказанному давлению.
  • Ионизационный метод. Работает по принципу регистрации поток ионизированных частиц, как ламповый диод. Лампа оборудуется двумя электродами, катодом, анодом, и нагревателем в некоторых случаях. Преимуществом является возможность регистрировать данные в средах с низким давлением, в том числе и вакуума, но при атмосферном давлении такое оборудование эксплуатировать нельзя.
  • Пьезоэлектрический метод. Задумка основывается на основе пьезоэлектрического эффекта, в котором пьезоэлемент создаёт электрический сигнал, пропорционально воздействию измеряемой среды на него. Используется для измерения постоянно изменяющихся акустических и импульсных сред. Обладает широким диапазоном динамического и частного измерения данных. Обладает небольшой массой, габаритами и высокой надёжностью при эксплуатации в тяжёлых условиях.

Виды датчиков

Ёмкостный. Обладает самой простой конструкцией, которая включает в себя два плоских электрода с зазором между ними. Один из них выполнен в виде мембраны на которую, оказывается влияние измеряемой среды, в результате чего изменяется зазор между электродами. По сути, этот тип похож на конденсатор с изменяемым зазором. Такой датчик в силах зафиксировать даже маленькое изменение показаний.

Пьезоэлектрический. Основным конструктивным элементом является пьезоэлемент, материал который выводит сигнал при оказании на него измеряемых характеристик. Находится он в измеряемой среде, и выделяет ток в зависимости от величины изменения давления. Но по причине того, что этот элемент изменяет свои выводимые данные только при изменении среды, то при постоянных параметрах он никакие данные показывать не будет, и пригоден для работы только в среде где давление периодически изменяется.

Оптический.

Устройство работы таких датчиков может заключаться на основе двух принципов работы:

  • Волоконно-оптическом. Является наиболее точным и работа по измерению не зависит от изменения температурного режима. Основной частью для измерения приходится оптический волновод. О величине измерения давления у такого рода приборах делают заключение по изменению амплитуды и полярности проходящего света через чувствительную часть.
  • Оптоэлектронном. Состоит из многослойной прозрачной структуры, чрез которую проходит свет. При этом один из этих слоёв может изменять показатель преломления и толщину слоя в зависимости от оказываемого давления.

На иллюстрации ниже схематично изображены оба метода работы. Рисунок, А — изменение преломления, рисунок Б — изменение слоя в толщине.

Ртутный.

Элементарный и технически простой датчик. Работает на основе двух сообщающихся сосудов, на один из который, оказывается давление, а на второй аналоговым способом выводятся данные, и определяется по параллельно совмещённой измерительной шкале.

Магнитный.

Работает на основе индуктивного метода. Чувствительная часть заключается в Е-образной планке, посередине которой расположена катушка, и чувствительная мембрана, по ней передаются измеряемые параметры. Располагается мембрана около пластины, на небольшом расстоянии от края. Катушка при включении, создаёт магнитный поток, который в свою очередь, следует через планку, зазор и мембрану. Проницаемость магнитного зазора в несколько сотен раз меньше проницаемости планки и мембраны, поэтому изменение индуктивности происходит даже при небольшом изменении величины зазора.

Пьезорезонансный.

Работает на основе пьезоэффекта, но с одним отличием — в этом случае используется обратный эффект пьезоэлемента, основанный на изменение формы материала в зависимости от поступающего тока. В этом датчике применяется резонатор, на котором расположены два электрода по разные стороны, на них попеременно подаётся ток разной полярности, и вследствие этого пластина выгибается в различные стороны с учётом поступаемой частоты.

Отличие от манометра

Главным отличие такого рода датчиков, от манометра — то что это прибор, предназначающийся для измерения характеристик без его преобразования. В манометре от измеряемых характеристик зависит показание прибора, которые выводятся на его аналоговый прибор или дисплей.

220v.guru

Типы датчиков измерения давления

В современной пищевой промышленности, энергетике, газовой, нефтяной и других отраслях широко применяются  датчики давления. Прибор служит для максимально точного фиксирования показателей давления исследуемой в конкретном случае среды и последующего преобразования полученного сигнала в электрический или цифровой результат. По такому параметру, как принцип действия, принято выделять следующие типы датчиков давления: оптические, резистивные, магнитные, пьезоэлектрические, емкостные, ртутные, пьезорезонансные.

В состав любого датчика давления входит:

  • первичный преобразователь давления с чувствительным элементом;
  • различные по конструкции корпусные детали;
  • схемы для повторной обработки сигнала.

ЕМКОСТНЫЕ ДАТЧИКИ

Имеет одну из наиболее простых конструкций. Состоит из двух плоских электродов и зазора между ними. Один из этих электродов представляет собой мембрану на которую давит измеряемое давление, вследствие, чего изменяется величина зазора. То есть, по сути, этот тип датчиков представляет собой конденсатор с изменяющейся величиной зазора. А как известно емкость конденсатора зависит от величины зазора. Емкостные датчики способны фиксировать очень маленькие изменения давления.

ПЬЕЗОЭЛЕКТРИЧЕСКИЕ ДАТЧИКИ

Чувствительным элементом датчиков этого типа является пьезоэлемент — материал, выделяющий эклектический сигнал при деформации (прямой пьезоэффект). Пьезоэлемент находится в измеряемой среде, он будет выделять ток пропорциональный величине изменения давления. Так как электрический сигнал в пьезоматериале выделяется только при деформировании, а при постоянном давлении деформирование не происходит, то этот датчик пригоден только для измерения быстро меняющегося давления.

ОПТИЧЕСКИЕ ДАТЧИКИ

Оптические датчики давления могут быть построены на двух принципах измерения: волоконно-оптическом и оптоэлектронном.

Волоконно-оптические

Волоконно-оптические датчики давления являются наиболее точными и их работа не сильно зависит от колебания температуры. Чувствительным элементом является оптический волновод. Об измеряемой величине давления в таких приборах обычно судят по изменению амплитуды и поляризации проходящего через чувствительный элемент света. 

Оптоэлектронные

Датчики этого типа состоят из многослойных прозрачных структур. Через эту структуру пропускают свет. Один из прозрачных слоев может изменять свои параметры в зависимости от давления среды. Есть 2 параметра, которые могут изменяться: первый это показатель преломления, второй это толщина слоя.

На иллюстрации показаны оба метода, изменение показателя преломления — рисунок а, изменение толщины слоя — рисунок б.

Понятно, что при изменении этих параметров будут меняться характеристики проходящего через слои света, это изменение будет регистрироваться фотоэлементом. Более подробно об оптоэлектронных датчиках давления можно почитать в этом PDF документе. К достоинствам датчика этого типа можно отнести очень высокую точность.

РТУТНЫЕ ДАТЧИКИ

Тоже очень простой измерительный прибор. Работает по принципу сообщающихся сосудов. На один из этих сосудов давить измеряемое давление. Давление определяется по величине ртутного столба.

МАГНИТНЫЕ ДАТЧИКИ

Другое название таких датчиков — индуктивные. Чувствительная часть таких датчиков состоит их Е-образной пластины, в центре которой находится катушка, и проводящей мембраны чувствительной к давлению. Мембрана располагается на небольшом расстоянии от края пластины. При подключении катушки, создается магнитный поток, который проходит через пластину, воздушный зазор и мембрану. Магнитная проницаемость зазора примерно в тысячу раз меньше магнитной проницаемости пластины и мембраны. Поэтому, даже небольшое изменение величины зазора влечет за собой заметное изменение индуктивности.

ПЬЕЗОРЕЗОНАНСНЫЕ

Этот тип тоже использует пьезоэффект, только в отличие от прошлого типа тут используется обратный пьезоэффект — изменение формы пьезоматериала в зависимости от подаваемого тока. В датчиках данного типа используется резонатор (например пластина) из пьезоматериала, на которую нанесены с двух сторон электроды. На электроды по переменно подается напряжение разного знака, таким образом пластина изгибается то в одну то в другую сторону с частотой подаваемого напряжения. Но если на эту пластину подать силу, например мембраной чувствительной к давлению, то частота колебания резонатора изменится. Частота резонатора и будет показывать величину, с которой давление давит на мембрану, а она в свою очередь давит на резонатор.

Схема пьезорезонатора

В качестве примера, на рисунке приведен пьезорезонансный датчика абсолютного давления. Он выполнен в виде герметичной камеры

1. Герметичность достигается соединением корпуса 2, основания 6 и мембраны 10, которая крепится к корпусу с помощью электронно-лучевой сварки. На основании 6 закреплены два держателя: 4 и 9. Держатель 4 крепится к основанию с помощью специально перемычки 3 и он держит силочувствительный резонатор 5. Держатель 9, установлен для крепления опорного пьезорезонатора 8.
Мембрана 10 передает усилие через втулку 13 на шарик 6, закрепленный в держателе 4. Шарик 4 передает силу давления на силочувствительный резонатор 5.
Провода 7 крепятся на основании 6 и служат для соединения резонаторов 5 и 8 с генераторами 17 и 16 Выходной сигнал абсолютного давления формируется схемой 15 из разности частот генераторов. Датчик давления помещен в активный термостат 18 с постоянной температурой 40 градусов Цельсия. Измеряемое давление подается через штуцер 12.

РЕЗИСТИВНЫЕ

По-другому этот тип датчиков называет тензорезистивный. Тензорезистор — это элемент, изменяющий свое сопротивление в зависимости от деформирования. Эти тензоризисторы устанавливают на мембрану чувствительную к изменению давления. В итоге, при давлении на мембрану она изгибается и изгибает тензоризисторы, закрепленные на ней. Вследствие чего, сопротивление на них меняется и меняется величина тока в цепи.

ДАТЧИКИ ДАВЛЕНИЯ С АНАЛОГОВЫМ ВЫХОДОМ

Для непрерывного измерения давления и передачи его значения в системы учета и контроля применяются датчики давления со стандартными выходными сигналами тока или (существенно реже) напряжения. Датчики могут измерять избыточное или абсолютное давление, а также разряжение. Это зависит от конструкции датчика. Абсолютное давление это сумма избыточного и атмосферного давлений.

РАБСОЛЮТНОЕ = РИЗБЫТОЧНОЕ + РАТМОСФЕРНОЕ

Датчик давления состоит из сенсора, модуля преобразования сигнала сенсора, дисплея и корпуса. В настоящее время наиболее распространены тензометрические сенсоры с металлической мембраной. Все более широкое применение находят емкостные сенсоры с мембраной из сверхчистой керамики (99,9% Al2O3).

Принцип действия тензосенсоров с металлической мембраной основан на измерении деформации тензорезисторов, сформированных в тонкой пленке кремния на сапфировой подложке (КНС), припаянной твердым припоем к титановой мембране. Иногда вместо кремниевых тензорезисторов используют металлические: медные, никелевые и др. Принцип действия тензорезисторов основан на явлении тензоэффекта в материалах, который выражается в том, что при линейном удлинении проводника его электрическое сопротивление увеличивается. Тензорезисторы соединены в мост Уитсона. Под действием давления измеряемой среды мембрана прогибается, тензорезисторы деформируются. Их сопротивление меняется, что приводит к разбалансу моста. Разбаланс имеет линейную зависимость от степени деформации резисторов и, следовательно, от приложенного к мембране давления. Разбаланс моста преобразуется электроникой датчика в выходной аналоговый сигнал и в цифровой код для вывода данных на дисплей. Мембрана и корпус сенсора образуют герметичную конструкцию, заполненную внутри кремнийорганической жидкостью.

Несмотря на множество достоинств, таких как: высокая степень защиты от воздействия агрессивных сред, высокая предельная  температуры измеряемой среды, низкая стоимость, отлаженное серийное производство датчики давления с тензосенсорами и металлической мембраной имеют ряд недостатков. В частности, неустранимую временную нестабильность передаточной характеристики (давление-ток) и существенные гистерезисные эффекты от воздействия давления и температуры. Это обусловлено неоднородностью конструкции и жесткой связью мембраны с корпусом сенсора. При эксплуатации датчиков с сенсорами данного типа практически всегда наблюдается эффект прямого и обратного хода. Например, если на датчик со шкалой 0-10 Bar и выходным сигналом 4-20 mA подать давление 5 Bar, плавно увеличивая его с 0 значения то установиться, допустим, выходной ток 11,5 mA. Если же, на тот же датчик подать давление 5 Bar, но теперь  плавно уменьшая с 10 Bar, то выходной сигнал будет уже 12,5 mA. Этот эффект связан с упругими свойствами металлической мембраны.

Работа емкостных сенсоров датчиков давления основана на зависимости емкости конденсатора от расстояния между его обкладками. Чем меньше расстояние, тем больше емкость. Роль одной обкладки (подвижной) выполняет металлизация внутренней стороны мембраны, роль второй обкладки (неподвижной) – металлизация основания сенсора. Подвижная мембрана изготавливается из сверхчистой керамики, кремния или упругого металла. При изменении давления процесса (рабочей среды) мембрана с обкладкой деформируется, расстояние между ней и основанием сенсора изменяется и происходит изменение емкости.

Достоинством емкостного сенсора из сверхчистой керамики является простота конструкции, высокая точность и временная стабильность показаний, возможность измерять низкие давления и слабый вакуум благодаря отсутствию заполняющего масла. Керамическая мембрана обладает коррозионной стойкостью к химически-агрессивным средам и стойкостью к истиранию. Кроме того у емкостных керамических сенсоров отсутствует эффект прямого и обратного хода. Они в меньшей степени подвержены воздействию гидравлических ударов, так как мембрана в этом случае просто прижимается к основанию сенсора.

К недостаткам емкостных сенсоров можно отнести нелинейную зависимость емкости от приложенного давления, но эта нелинейность компенсируется электроникой датчика. Так, например, к керамическим емкостным сенсорам датчиков давления Cerabar фирмы Endress+Hauser прилагается специальный паспорт, в котором производитель указывает настроечные коэффициенты. При замене сенсора эти коэффициенты должны быть занесены во внутреннюю энергонезависимую память датчика с помощью HART-коммуникатора. В противном случае погрешность измерения давления существенно возрастает, возрастает и нелинейность измерения.

Достаточно широко в настоящее время распространены датчики с чувствительными элементами на основе монокристаллического кремния. Несмотря на схожую конструкцию с приборами на основе КНС структур они имеют на порядок большую временную и температурную стабильности, более устойчивы к воздействию ударных и знакопеременных нагрузок. Эффект прямого – обратного хода также отсутствует, что объясняется использованием идеально-упругого материала.

Данный тип сенсора (интегральный преобразователь давления), представляет собой мембрану из монокристаллического кремния с размещенными на ней методом диффузии пьезорезисторами. Пьезорезисторы соединены в мост Уинстона. Кристалл ИПД прикрепляется к диэлектрическому основанию легкоплавким стеклом или методом анодного сращивания. Для измерения давления чистых неагрессивных сред применяются, так называемые, Low cost – решения. Чувствительные элементы в датчиках данного типа либо не имеют защиты вовсе, либо защищены лишь слоем силиконового геля. При измерении агрессивных сред чувствительный элемент размещается в герметичном металлическом корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды на ИПД посредством кремнийорганической жидкости.

Недостатком датчиков с пьезорезистивными сенсорами является их сравнительно невысокая предельная рабочая температура измеряемой среды – не более 150 °С.

Не зависимо от типа, сенсор является самой уязвимой частью датчика давления. Для защиты сенсора от повреждений применяют различные защитные устройства. Для предотвращения коррозии или загрязнения мембраны сенсора при измерении давления вязких, агрессивных или сильно загрязненных сред применяют разделительные мембраны или колонки. Разделительная мембрана монтируется непосредственно перед датчиком и служит для передачи давления без контакта сенсора с измеряемой жидкостью. Давление измеряемой жидкости подается в одну полость разделительной мембраны и деформирует мембрану. Датчик давления подсоединен ко второй полости, заполненной инертной жидкостью, например, силиконовым маслом, и воспринимает деформацию мембраны. Разделительные колонки чаще всего применяют для измерения давления горячего мазута. Нижнюю часть колонки и датчик заполняют водой, после этого открывают вентиль на мазутопроводе. Мазут заполняет верхнюю часть колонки, и остается сверху, так как имеет плотность чуть меньше чем находящаяся снизу вода и не растворяется в ней.

 

Для защиты сенсора от чрезмерного давления среды применяют специальные пружинные вентили, которые автоматически закрываются, перекрывая подачу давления на датчик при скачках давления или гидроударе. Еще одним эффективным способом защиты сенсора датчика от гидроударов является глушитель ударов давления TTR производства компании «BD Sensors Rus», работающий на многокамерном принципе. Они обладают способностью эффективно демпфировать гидроудары длительностью от 20 миллисекунд и амплитудой до 70 МПа. При пульсации давления длительностью до 100 миллисекунд, глушитель ударов давления позволяет датчику давления выдерживать четырехкратную перегрузку.

Для измерения давлений рабочих сред с температурой до 300 °С применяют радиатор-охладитель. Как правило, он изготавливается из нержавеющей стали, например, 12Х18Н10Т. Радиатор-охладитель и разделительная мембрана могут быть изготовлены и смонтированы как самостоятельные изделия или быть частью конструкции датчика, например, как в датчике S-11 фирмы WIKA.

Датчики давления могут подключаться к вторичным приборам по двух-, трех- или четырехпроводной схеме. По двухпроводной схеме подключаются только датчики, имеющие выходной сигнал 4-20 мА. Это объясняется тем, что в цепи питания (являющейся одновременно и цепью передачи выходного сигнала) всегда должен протекать небольшой ток, обеспечивающий питание электронной «начинки» датчика. В данном случае этот минимальный ток равен 4 мА. Понятно, что датчики с выходным сигналом 0-5 мА или 0-20 мА при включении по двухпроводной схеме работать не будут, так как при нулевом давлении ток в цепи также должен равняться нулю. Соответственно, в этом случае электроника датчика останется без электропитания и перестанет работать.

Если выходной токовый сигнал датчика нестабилен при стабильном входном давлении, то, как правило, это связано с наличием сильных электромагнитных помех. Уменьшить влияние помех можно установкой конденсаторов между заземленным корпусом датчика и контактом питания (и/или контактом выходного сигнала) на контактной колодке датчика. Выводы конденсаторов должны иметь минимальную длину. Для подавления высокочастотных помех достаточно высокочастотного конденсатора емкостью 300…500 пф., для подавления низкочастотной помехи — конденсатора типа К73-17 емкостью 1…2 мкф.
Некоторые датчики давления, например DS200 производства BD Sensors помимо токового выхода имеют встроенные реле с настраиваемыми порогами срабатывания. С их помощью можно реализовывать различные системы автоматики, например, АВР насосной установки и одновременно контролировать текущее значение давления среды.

Во время эксплуатации датчиков давления часто возникает необходимость изменить значение шкалы измерения или выполнить подстройку нуля. Не все датчики (в том числе и самые современные) позволяют сделать это. Как правило, бюджетные приборы являются однопредельными, то есть не перенастраиваемыми. В лучшем случае имеется возможность подстройки нуля и шкалы в небольшом диапазоне. Более дорогие модели позволяют осуществлять корректировку нулевых показаний и шкалы в больших пределах, устанавливать нестандартные значения «нуля» и шкалы и даже инвертировать выходной сигнал (в этом случае нулевому давлению будет соответствовать максимальный выходной ток датчика 20 мА, который будет уменьшаться с ростом давления).

Подстройку шкалы в многопредельных датчиках давления выполняют либо для увеличения точности представления измеренной величины, либо для расширения диапазона измерения, либо для согласования с вторичным прибором, имеющим определенные настройки. Подстройку шкалы для увеличения точности представления осуществляют в том случае, если максимальное значение шкалы датчика существенно превышает давление среды. В этом случае целесообразно уменьшить шкалу датчика, при этом увеличиться точность представления, так как на единицу измеряемого давления будет приходиться большее изменение выходного токового сигнала.

Корректировать ноль датчиков давления (особенно датчиков перепада давления) приходиться довольно часто. Это связано с тем, что у многих датчиков ноль «уходит» если пространственное положение датчика изменить относительно той ориентации, при которой была выполнена настройка нуля (например, наклонить).  Либо, если датчик давления соединяется с трубопроводом импульсной трассой и место подсоединения импульсной трассы к трубопроводу находиться выше места соединения датчика с импульсной трассой. В результате этого, если измеряемой средой является пар, вода или другая жидкость, столб этой жидкости создает дополнительное давление на мембрану датчика, вызывая отклонение его показаний от нулевых значений. Чем больше столб жидкости, тем больше отклонение, которое необходимо скорректировать иначе показания во всем диапазоне измерений будет завышены. Давление столба жидкости рассчитывается по формуле:

PСТОЛБА ЖИДКОСТИ = ρgh

Таким образом, измеренное датчиком значение давления будет равно сумме избыточного давления жидкости в трубопроводе плюс давление столба жидкости в импульсной трассе:

РИЗМЕРЕННОЕ = РИЗБЫТОЧНОЕ + РСТОЛБА ЖИДКОСТИ

Отбор давления рекомендуется осуществлять в тех местах трубопровода, где скорость движения потока наименьшая и завихрения минимальны, то есть на прямолинейных участках трубопроводов, на максимальном расстоянии от запорных устройств, колен, сужений, компенсаторов и других гидравлических соединений.

На измерении давления столба жидкости основан принцип косвенного измерения уровня жидкости в резервуарах, расширительных баках и т.п. Датчик давления крепят к днищу резервуара или на боковой стенке вблизи дна. Чаще всего для измерения уровня применяют датчики давления с открытой мембраной, так как они менее подвержены засорению и более чувствительны к малым изменениям уровня ввиду больших размеров мембраны. Датчики давления с открытой мембраной довольно часто имеют шкалу непосредственно в единицах измерения уровня — миллиметрах (метрах) водяного столба.

Как правило, импульсные трассы применяют для того чтобы персоналу было удобно обслуживать датчики давления или по конструктивным соображениям. При определенной конфигурации импульсные трассы выполняют также роль демпфирующих устройств, сглаживая скачки давления. Но импульсные трассы имеют и ряд существенных недостатков. При большой длине и множестве изгибов они легко засоряются. В холодное время года они часто замерзают, если проложены в не отапливаемом помещении и отсутствует теплоизоляция и обогрев. Наиболее часто применяется электрообогрев с помощью специального нагревательного шнура. Он обвивается вокруг импульсной трассы на всем ее протяжении, затем трасса обматывается теплоизоляционным материалом. Иногда для обогрева используют так называемый спутник – трубу с циркулирующей горячей водой или паром. Кроме того из-за большой протяженности импульсной трассы и ее малого поперечного сечения (как правило используются трубки диаметром 14…16 мм) возникают задержки передачи давления.

К трубе или импульсной трассе датчик давления чаще всего подключается через вентильный блок. Вентильные блоки перекрывают подачу рабочей среды к мембране датчика, что позволяет, при необходимости, демонтировать его не останавливая процесс. При этом утечки рабочей среды также сводятся к минимуму. Вентильные блоки имеют различную конструкцию: от самых простых игольчатых до сложных комбинированных вентилей, сочетающих в себе функции отключения и продувки датчика на свечу или в окружающую среду.

C вентильным блоком датчик соединяется посредством резьбы. Самыми распространенными резьбами датчиков давления являются метрическая М20х1,5 и дюймовая G ½’’резьбы. Для уплотнения резьбовых соединений достаточно редко используют льняную прядь или фум ленту. Чаще применяют торцевые кольцевые прокладки из паронита, фторопласта или обожженной меди. Прокладки из обожженной меди и фторопласта имеют высокую температурную и химическую стойкость, но обладают одним существенным недостатком – они являются одноразовыми.    Прокладки из паронита обладают худшей стойкостью, но допускают несколько циклов установки – демонтажа датчика, обеспечивая при этом герметичное уплотнение. В пищевой промышленности, где попадание в измеряемую среду частиц уплотнительных материалов недопустимо применяют датчики с фланцевым или «рюмочным» креплением.

Калибровку датчиков давления производят с помощью калибраторов давления или масляных колонок. Калибраторы давления, например, DPI фирмы Druck, позволяют генерировать и плавно регулировать давление сжатого воздуха в широких пределах. Проверять работоспособность датчиков давления нажатием твердым предметом или пальцем на мембрану сенсора для имитации давления не рекомендуется — это может привести к повреждению сенсора.

На какие параметры нужно обращать внимание при покупке датчиков давления:

  • Вид давления. Очень важно понимать какой вид давления необходимо измерять. Существует 5 типов: абсолютное, дифференциальное(относительное), вакуум, избыточное, барометрическое. Для лучшего понимания разницы между ними, рекомендуем прочитать статью «виды давления».
  • Диапазон измеряемого давления.
  • Степенью защиты прибора. В разных отраслях использования датчиков будут разные условия эксплуатации, для которых необходимы разные степени защиты от проникновения воды и пыли. Определитесь, какую степень защиты электроприбора нужно выбрать именно вам.
  • Наличие термокомпенсации. Температурные эффекты, такие как расширение материалов, могут наложить достаточно сильные помехи на выходные показания датчика. Если у вас происходят постоянное изменение температуры измеряемой среды, то термокомпенсация необходима. Обратите также внимание на границы температур. Например, у датчика ST250PG2BPCF есть термокомпенсация в пределах от -40 до 100 градусов Цельсия.
  • Материал. Материал может оказать решающую роль при использовании датчика в агрессивных средах, в таком случае необходим выбор материала с высокой коррозийной стойкостью.
    Вид выходного сигнала. Важно определиться какой вид нужен вам. Аналоговый или цифровой? Если аналоговый, то какие диапазоны выходных сигналов и сколько проводов? Например, диапазоны могут быть 4…20 мА.

Вам понравится

[/su_posts]

www.stroykat.by

Датчики давления: устройство и принцип работы

Иногда многим людям может потребоваться измерить давление. Для этого необходимо использовать датчики давления. Их принцип работы основан на преобразовании давления в механическое перемещение.

Кроме, механических систем, для измерения давления также могут использоваться механические и тепловые системы.

Датчики давления

Механические датчики давления состоят из:

  1. Жидкостных датчиков давления.
  2. Поршневых систем.
  3. Пружинных систем.

Теперь пришло время рассмотреть датчики движения, которые встречаются наиболее часто. Наиболее часто на сегодняшний день используют пружинные датчики давления. Их действие будет основано на том, что возникновении упругой деформации пружины, которая считается пружинным элементом прибора. При изменении давления будет возникать деформация внутри и снаружи. Изменение формы определенного элемента будет передаваться на подвижную часть прибора со стрелкой. При снятии давления элемент примет прежнюю форму.

В технических манометрах чаще всего применяются упругие пружины:

  • Одновитковые.
  • Многовитковые.
  • Плоские мембраны.
  • Сильфоны.

Раскручивание пружины будет происходить из-за того, что при увеличении внутреннего давления эллиптическое сечение будет стремиться принять круглую форму. В результате этого могут возникать напряжения, которые будут раскручивать пружину. Свободный конец будет перемещаться прямопропорционально давлению внутри ее. Таким образом, можно сказать о том, что измеряемое давление будет преобразовываться в механическое перемещение свободного конца пружины. Величина такого перемещения чаще всего будет составлять 5-7 мм.

Многовитковая трубчатая пружина будет иметь 6-9 витков. Перемещение свободного конца пружины значительно больше, чем у одновитковой пружины. Обычно датчики в виде одновитковой пружины могут применяться в показывающих приборах. В большинстве случаев это будет связано с тем, что в самопишущих приборах датчик должен иметь большое усилие, которого хватит для преодоления трения. В нашем разделе также есть статья о том, как работает тензодатчик.

Плоская гофрированная мембрана будет использоваться отдельно. При необходимости также можно применять плоскую прорезиненную ткань, которая будет плотно соединена с плоской калиброванной пружиной. Гармоникообразная мембрана отличается от других, так как имеет наибольшую чувствительность.

Сильфонные приборы предназначаются для измерения и записи избыточного давления в схемах автоматизации. Кроме этого, подобные устройства также можно использовать в качестве вторичных приборов к устройствам, которые имеют приспособление для пневматической передачи показаний на расстояние. Пружинные датчики давления в схемах позволяют преобразовывать механическое перемещение в электрический сигнал с помощью индуктивного или контактного датчика.

На рисунке выше представлена схема датчика давления типа МЭД. Здесь сначала давление будет восприниматься трубчатой манометрической пружиной. В дальнейшем оно будет преобразовываться в перемещение конца манометрической трубки. Это перемещение также может передаваться плунжеру трансформаторного датчика. Вторичным приборов в этой конструкции считается устройство типа ЭПИД.

Специалисты сообщают, что датчики расхода на сегодняшний день могут быть:

  1. Механические.
  2. Термические.
  3. Ионизационные.
  4. Индукционные.
  5. Акустические.

Важно знать! Механические датчики расхода разделяются на датчики переменного и постоянного перепада. Также могут быть датчики со сливным отверстием.

Датчики расхода будут действовать по принципу возникновения перепада давления в сужающем устройстве. Перепад давления в этом случае является функцией расхода. Сужающее устройство считается воспринимающим органом датчика расхода. Датчики расхода постоянного перепада (ротаметры) используются для регулирования сечения с целью поддерживания постоянным перепада давления. Если будет интересно, тогда можете прочесть про принцип работы термопары.

На рисунке, который расположен выше вам предоставлена схема ротаметра с индуктивным датчиком. Ротаметр состоит из:

  • Конической трубки.
  • Поплавка.

Во время движения жидкости или газа в кольцевом зазоре между поплавком и трубками будет создаваться перепад давления, который в дальнейшем будет создавать силу, действующую навстречу силе веса поплавка, который здесь расположен. Ротаметры на сегодняшний день могут выполняться, как показывающие приборы и как датчики. Обмотка индуктивного датчика располагается на трубке сопла. Железный поплавок в свою очередь будет являться сердечником катушки индуктивного датчика. При изменении расхода поплавок может перемещаться и соответственно изменять индуктивность катушки.

Датчики уровня

В последнее время наиболее распространенными устройствами считаются поплавковые датчики. Поплавковый датчик будет состоять из: поплавка, промежуточного и выходного органа. Поплавок – это орган, который позволяет воспринимать уровень жидкости. Преобразующий орган позволяет механическое воздействие выходному органу.

Датчики уровня могут быть основаны на измерении веса и гидростатического давления, а также на использовании электрических свойств жидкости.

Отечественная промышленность старается выпускать датчики давления разнообразного типа. Теперь вы точно знаете, принцип работы датчиков давления, расхода и уровня. Надеемся, что эта информация была полезной и интересной.

Читайте также: электромагнитное реле.

vse-elektrichestvo.ru

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *