Опоры двс: Опора двигателя: что это и как работает,виды,фото

Содержание

Опора двигателя: что это и как работает,виды,фото

Работа любого двигателя сопровождается динамическими вибрациями. Они распространяются по всему кузову и передаются в салон автомобиля. Сделать езду комфортной помогают опоры (подушки) двигателя. Кроме того, данные элементы конструкции предназначены для фиксации деталей, а также защиты их от деформации и раскачивания в процессе движения транспортного средства.

Содержание статьи

Что такое опора двигателя (подушка) и для чего она предназначена

Опоры двигателя – это специальные узлы, с помощью которых двигатель и коробка передач закрепляется на раме, подрамнике или кузове автомобиля. Чтобы надежно выполнять свою работу, опора должна обладать высокой износостойкостью и прочностью. Поэтому конструкция детали представляет собой основу из стали, оснащенной в областях стыка с мотором резиновыми подушками. Именно последние гасят колебания, производимые работающим двигателем. Помимо поглощения вибраций, опора служит амортизатором двигателя, предотвращая его механическое повреждение после наезда на неровности дорожной поверхности.


Главные функции опор двигателя: Погасить удары и толчки, которые возникают при движении транспортного средства. Обеспечить эффективную виброизоляцию салона на холостом ходу. Обеспечить меньший износ деталей за счет снижения раскачивания двигателя.

Где находится опора двигателя

Многие авто владельцы даже не знают как выглядят опоры не то что где находятся. Поскольку если не лазить под автомобиль, то опорные подушки скрыты от глаз, из под капота хорошо видно разве что верхнюю. Места установки и количество точек опор под двигатель на кузове автомобиля зависит от типа и расположения под капотом мотора и коробки передач, а также самой марки авто. Главной задачей установки крепления – надежность и минимальные смещения по сторонам во время работы. Классическая схема установки двигателя на опорах в 3-х точках снизу и 2-х точках сверху. К стати не только ДВС машины смонтирован на таких подушка, а и коробка передач также крепится на резинометаллических опорах. По этому нужно четко разделять где двигатель, а где коробка.

Виды опор, их преимущества и недостатки

Современные опоры двигателя – резинометаллические и гидравлические.

Механизм резинометаллических опор прост – две металлические пластины и резиновая подушка между ними. Такой вид опор самый распространенный и бюджетный. На некоторых автомобилях внутри подушек есть пружины для большей жесткости и буферы для смягчения сильных ударов. Вместо резины некоторые производители используют полиуретан – как более износостойкий материал. Также подушки с использованием полиуретана часто используют на спортивных авто, для увеличения жесткости. Резинометаллические опоры могут быть разборной и неразборной конструкции.

Гидравлические опоры – более прогрессивный механизм. Такие опоры могут подстраиваться под разные обороты двигателя и эффективно гасить вибрации на малых и больших скоростях. Опоры состоят из двух камер, с мембраной между ними. Камеры заполненны пропиленгликолем (антифризом) либо специальной гидравлической жидкостью.

Подвижная мембрана гасит колебания на холостом ходу двигателя. На больших скоростях или при неровной дороге в работу включается гидравлическая жидкость. Под давлением, через специальные каналы она перетекает из одной камеры в другую, делая опору жесткой. Жесткая опора гасит сильные вибрации.

Гидроопоры могут быть:

 

С механическим управлением. Конструкция таких опор рассчитывается специально для каждой модели автомобиля. Уже на стадии разработки той или иной модели автомобиля решается вопрос: какая задача для опоры будет основной – комфортная шумоизоляция на холостом ходу или эффективное демпфирование вибраций на скорости;
С электронным управлением. Такие опоры быстрее реагируют на изменения режима вибрации двигателя, жесткость опоры изменяется электроникой в зависимости от дорожной ситуации. Это опоры нового поколения, которые способны обеспечивать одинаковый комфорт при холостой работе двигателя и на высоких скоростях.
Стоит выделить так называемые динамические опоры, в которых используется жидкость с магнитными свойствами (с частичками металла) – она меняет свою вязкость под действием магнитного поля. Электронные датчики следят за поворотами рулевого колеса и ускорениями. В зависимости от стиля вождения и состояния дорожного покрытия изменяется жесткость опор.

От гидроопор с электронным управлением, динамические опоры отличаются уникальной электромагнитной системой. Это относительно новое изобретение американской компании Delphi, передовую технологию уже адаптировала для спортивной версии своего автомобиля 911 GT3 компания Porsche в 2011 году.

Особенности эксплуатации

При возникновении излишней вибрации двигателя проверьте целостность подушки опоры двигателя.

Подушка двигателя является деталью, подверженной износу, так как она работает всегда, когда запущен мотор. Наибольшим испытанием для опор является запуск двигателя, трогание с места, а также остановка авто. В такие моменты нагрузка на опоры является самой большой. Износ или поломка данной детали ведет к повышению нагрузки на двигатель и повышению вероятности его поломки.

Трещины и порывы на опорной подушке видны если для этого специально производить плановый осмотр, но такие симптомы как повышенная вибрация с отдачей в руль при работе двигателя или переключение передач с толчками, а если износится подушка та что возле КПП, то и выбивать скорость может. То тут явные факты на лицо, нужно в строчном порядке нужно покупать комплект новых опор и приступать к замене.

Появление трещин или отслоения резиновой части опоры от металлической – весомый аргумент для замены.

Имея под рукой набор ключей, домкрат и смотровую яму в принципе поменять можно и самостоятельно без особых навыков, хотя встречаются случаи где процедура по замене опор двигателя весьма занятное дело.

Следить за состоянием резинометаллических опор несложно: нужно просто проверять целостность резиновой прокладки и регулярно удалять с нее грязь и масло, подтягивать болты крепления.

В среднем опора двигателя служит около 100 тыс. км пробега. Но надлежащий уход позволяет пролит строк эксплуатации, причем не только за самим креплениям ДВС, но и состоянием мотора в целом.

Если автомобиль оборудован гидравлическими опорами, для их тестирования необходимо открыть капот и завести двигатель. Далее необходимо проехать пару сантиметров вперед и назад. Если с опорами что-то не так, двигатель сместится с места при старте и вернется на место при остановке, что будет сопровождаться хорошо слышимыми звуками.

В не зависимости от того какие опорные подушки держат двигатель на вашем автомобиле, совет для всех общий. Не стоит резко рушать, давая тем самым максимальную нагрузку на опоры, пересекать выбоины и горбы на не больших скоростях, дабы колебания мотора были минимальными, а следовательно и вибрации нуждающиеся в поглощении опорами двигателя, будут не значительными.

Дифференциал Torsen: устройство,виды и принцип работы
Что выбрать: гидроусилитель или электроусилитель руля?
Датчик дроссельной заслонки: предназначение,типы,виды,неисправности,фото
Датчик холостого хода: принцип действия,устройство,виды,фото,назначение
Автомобильные стекла: что это такое и какие виды бывают?

Гидроопора двигателя: как устроена, как её диагностировать и можно ли ремонтировать

То, что колеблющиеся детали механизма нужно виброизолировать от неподвижных, было ясно еще древним римлянам, который аж в первом веке до нашей эры догадались подвесить «кузов» повозки к шасси с колесами на ремнях из толстой амортизирующей кожи.

В автомобилестроении резиновые демпферы для установки двигателя на шасси внедрил Уолтер Крайслер в конце 20-х годов прошлого столетия – изначально для моделей Plymouth. Виброизоляция была хорошим конкурентным преимуществом, поэтому технологии даже придумали маркетинговое название Floating power. В Европе пионером внедрения резиновых демпферов стал Ситроен, который купил права на технологию у Chrysler для внедрения её в конструкцию Traction Avant.

Резиновая подушка крепления двигателя долгие десятилетия оставалась одной из самых консервативных деталей любого автомобиля, а ее эволюции были крайне малозаметны. И в наши дни по дорогам ездит все еще немало машин (УАЗы, Волги, Москвичи), чьи опорные подушки моторов представляют собой простейший монолитный резиновый брусок или диск...

В принципе, для того, чтобы вибрации двигателя не разрушали стальной каркас кузова и не вызывали хронической морской болезни у водителя, этих примитивных резиновых «чурок» вполне достаточно. Однако рост требований к комфорту внутри автомобиля породил некоторое их развитие – инженеры играли с формой демпферов, делали сэндвичи из резины разной упругости, включали в структуру стальные пружины.

Это дало свои плоды – опоры стали работать в более широком диапазоне колебаний и нагрузок: на разных по силе и направлению нагрузках в работу включались разные элементы резиновых модулей, обеспечивая, когда надо, повышенную эластичность или, наоборот, повышенную жесткость:

Однако в середине 80-х годов ХХ века европейские автопроизводители начали внедрять в свои модели резино-гидравлические опоры двигателей. Так, одним из первых автомобилей, примеривших гидроопору, был Mercedes-Benz W124. В отличие от чисто резиновых, они демпфировали колебания в более широком диапазоне частот и амплитуд, действуя по принципу амортизатора – гася вибрации за счет сопротивления жидкости, продавливаемой через калиброванные дросселирующие отверстия. 

Никакой революции в автопроме резино-гидравлические опоры не вызвали – к периоду их появления инженеры давно научились хорошо просчитывать обычные резиновые подушки под конкретные двигатели с их особенностями распределения колебаний и вибраций, и работали они весьма эффективно.

Но конструкции с гидравликой несколько более точно настраивались под характеристики двигателя, чем чисто резиновые. Одну резино-гидравлическую опору на двигатель (реже две) стали ставить, перераспределяя на нее нагрузки так, чтобы улучшить демпфирование и продлить жизнь соседним опорам с обычной структурой, из простой резины.

Устройство и диагностика​

Устройство гидравлической части опоры двигателя несложное. Внутри нее, под основным несущим резиновым упором (как у опоры без гидравлики), имеются две расположенные одна над другой камеры-отсека, заполненные жидкостью. Камеры разделены резиновой демпфирующей стенкой-мембраной, но также они сообщаются между собой через небольшое отверстие – дросселирующий переток. На малых амплитудах вибраций колебаниям сопротивляется мембрана, на больших – вступает в работу канал-переток. В сущности, у такой опоры имеется два «поддиапазона», в которых она проявляет разные демпфирующие характеристики.

Несмотря на то, что жидкость в вышедшей из строя опоре обычно черная от резиновой пыли, гидравлическая часть опоры редко страдает от физического износа – как правило, первым сдается резиновый блок, теряя с возрастом упругость из-за частичных отслоений от металла, микроразрывов и трещин.  

Важно понимать, что жидкость и вообще вся гидравлическая часть в резино-гидравлической опоре играет все же не ведущую роль, а вспомогательную. Массу двигателя, как в случае с обычными резиновыми опорами, держит мощный упругий резиновый элемент. И если жидкость по какой-то причине покинет опору (что иногда случается из-за прорыва эластичного дна или из-за утечки по завальцовке частей корпуса), то катастрофы не произойдет – разве что повысится уровень вибраций по кузову. И не факт, что даже во всем диапазоне оборотов – обычно дефект заметнее на холостых.

Однако затягивать с заменой опоры все же не стоит – усилившаяся амплитуда раскачки двигателя заставляет его при запуске или наборе оборотов под нагрузкой биться о неподвижные элементы подкапотного пространства, от чего могут пострадать разные патрубки, шланги, провода. Да и остальные, обычно еще вполне живые, опоры начинают интенсивно изнашиваться после смерти ведущей, гидравлической.

Если взять опору за рабочую часть (ту, к которой прикручивается кронштейн, соединяющий ее с двигателем) и покачать (за опору в чистом виде или за сам двигатель непосредственно), то ее «гидравлическую сущность» вы никак не ощутите – только обычную резиновую упругость. Поэтому визуально неисправности в резино-гидравлической подушке обычно невозможно обнаружить. Ну, за исключением случаев откровенно текущей из нее жидкости… И новая опора, и убитая отвечают определенной упругостью на приложенное вручную усилие – без опыта или хотя бы сравнения с аналогичной машиной с заведомо исправной опорой найти проблему в одиночку сложно для неспециалиста, хотя опытный механик делает это легко. 

Поэтому для диагностики исправности подушки в гаражных условиях требуется понаблюдать за поведением опоры в условиях, приближенных к рабочим, когда помощник газует под нагрузкой (включение режима «D» или легкое приотпускание сцепления на ручнике). Контролируется амплитуда раскачки двигателя и возможное касание центральным осевым крепежом опоры ее обоймы (корпуса), что недопустимо:

Ремонт резино-гидравлических опор не практикуется. Они неразборные и запчастей к ним в продаже нет. Хотя существует гаражная практика замены опор на похожие (не будем употреблять термин «аналогичные») от других моделей и даже марок машин. У опор переделывают крепления – пересверливают отверстия, изготавливают переходные пластины и т.п. 

В принципе, при использовании опор от другой машины с двигателем сопоставимой мощности и массы подобные ухищрения в целом работоспособны и допустимы от безысходности. Разве что крайне нежелательно использовать на продольно расположенных моторах подушки от поперечно расположенных, и наоборот – нагрузки на сдвиг и сдавливание у них рассчитаны совершенно по-разному, и работают такие опоры при нештатной установке некорректно – либо не гасят вибрации, либо быстро разрушаются.

Пик развития и… грядущее исчезновение

При создании некоторых моделей авто высокого класса инженеры пошли еще дальше, добавив к резино-гидравлической опоре систему из двух-трех клапанов, управляемых по команде электроники импульсами тока, вакуумом или подводимым извне давлением масла в зависимости от оборотов и нагрузки на двигатель. В частности, подобная конструкция применяется на Lexus RX с 1998 года.

20 лет спустя внедрили опоры с бесступенчато-изменяемыми характеристиками – с ферромагнитной жидкостью и катушкой, создающей магнитное поле, которое меняет вязкость – тут пионером стал Porsche 911 GT3 2010 года. Оправданность таких радикальных усложнений в далеко не самом функционально важном узле машины – вопрос дискуссионный, но в некоторых случаях навороченные конструкции однозначно обоснованы. Например, в автомобилях, двигатели которых оснащаются системой отключения части цилиндров и скачкообразно меняют свои вибрационно-резонансные характеристики. Активные опоры могут менять свою упругость импульсно, с высокой частотой – синхронно с вибрацией двигателя, но в противофазе к ней – и гасить колебания, как наушники с шумоподавлением гасят внешний шум.
  
Интересно, что исследования в области разработки подобных активных гидроопор (с ферромагнитной жидкостью и синхронизацией изменения ее свойств с источником вибраций в реальном времени) проводились и в СССР с 80-х годов ХХ века – в частности, в Институте машиноведения им. Благонравова Российской академии наук. Правда, в отечественном автопроме ничего из тех разработок так и не было реализовано – системы активного подавления вибраций применялись в промышленности, в энергетике, в станкостроении.

Впрочем, наиболее сложные и дорогостоящие управляемые опоры автомобильных двигателей, похоже, достигли своего пика развития. И не потому, что идеи для более продвинутых решений исчерпаны, а по причине грядущего вытеснения двигателей внутреннего сгорания электрическими. В эпоху электромобилей сложным управляемым опорам с плавно изменяемыми характеристиками придется уйти в прошлое, поскольку идеально сбалансированный ротор электромотора не порождает такого количества разнонаправленных сил инерции первого и второго порядков и моментов от них, как классические ДВС, в которых движутся поршни, шатуны и коленвал.

Опрос

Вы когда-нибудь меняли опоры двигателя?

Всего голосов:

Подушка двигателя: принцип действия, назначение, устройство

Основным предназначением опоры двигателя является компенсация вибрационных и колебательных движений, передаваемых работающим механизмом кузову автомобиля. Без нее невозможна комфортная поездка, процесс будет напоминать полет на старом «кукурузнике».

Следует отметить, что подушка двигателя представляет собой специальную прокладку, отделяющую мотор от элементов кузова. Старые советские легковые машины оснащались таким изделием, выполненным из цельного отрезка резины, дополненного крепежными деталями на противолежащих сторонах. К тому же, к выпуску автомобилей с передним приводом производители приступили только в 1985 году.

Сегодня опора двигателя — это чаще всего резинометаллическая прокладка. Существуют и гидравлические изделия, но благодаря ощутимой стоимости их применяют лишь для дорогих машин.

Признаки неисправности

Когда при пересечении препятствий в районе коробки передач наблюдается характерный стук, нарушающий шумоизоляцию в салоне, скорее всего, следует уделить внимание замене подушки двигателя. Кроме того, о дефекте такой прокладки свидетельствует сильная вибрация, передающаяся на корпус легкового автомобиля. Если работающий мотор начинает стучать о раму, значит, необходима срочная замена опоры двигателя.

Обратить внимание на состояние подушек следует, когда при торможении и в начале движения машины появляются щелчки и прочие посторонние звуки спереди. Беспокойство должно вызывать, если в салоне возникает грохот при преодолении ям и выбоин на дороге. Если движение по пересеченной местности сопровождается отдачей на рычаг переключения скоростей, опора подлежит немедленной замене.

А также свидетельством признаков неисправности подушек двигателя является значительное возрастание уровня вибрации при запуске или выключении механизма. Игнорировать подобные симптомы категорически не рекомендуется. Последствия могут оказаться весьма неприятными, в конечном итоге выражаясь деформацией подвески и кузова, преждевременным износом трансмиссии.

Поэтому, если в автомобиле наблюдаются признаки неисправности подушек двигателя, то вышедшие из строя прокладки подлежат замене.

Самостоятельная диагностика подвески

При невозможности или нежелании посещения автосервиса существует возможность собственноручного определения неисправности. Самостоятельная проверка состояния подушек двигателя выполняется с использованием следующих приспособлений:

  1. гидравлического или пневматического домкрата. Это устройство способствует облегчению доступа к проверяемым подушкам;
  2. специальной страховочной опоры. В подобном качестве чаще всего применяют деревянный брусок;
  3. монтировки или достаточно прочной палки, выполняющей роль рычага.

Последующие манипуляции рекомендуется осуществлять в такой очередности:

  • машину загоняют в гараж или другое помещение. Необходимым условием считается ровная поверхность пола;
  • домкратом, установленным под передним колесом, приподнимают автомобиль. Для заднеприводных машин подъемное устройство располагают под задним колесом;
  • опора устанавливается под мотором так, чтобы обеспечить отсутствие нагрузки на крепления двигателя. Убедившись в устойчивости положения автомобиля, домкрат опускают.

Используя подкат, устраиваются под машиной и проводят визуальный осмотр. Такой способ осмотра позволяет легко обследовать подушки двигателей на признаки неисправности, приобретенные подушками двигателя в процессе эксплуатации.

Даже неопытный автолюбитель способен увидеть симптомы расслоения опоры, трещины и разрывы на изделии, а также самостоятельно определить, что прокладка вышла из строя в результате чрезмерного затвердевания резины. В таких случаях настоятельно рекомендуется срочно произвести замену подушки двигателя.

Для обнаружения возможного люфта в месте соединения мотора с передней балкой машины или кузовом визуального осмотра недостаточно. Здесь понадобится использование монтировки. Подобный рычаг применяют для того, чтобы двигатель отклонять в разные стороны. Отсутствие люфта свидетельствует об исправности опор, ремонт подушек не требуется.

Устранить подобный симптом можно следующим образом:

  • снова поднять автомобиль домкратом;
  • удалить страховочную опору;
  • проверить качество фиксации подушки двигателя и, при необходимости, затянуть крепление гаечным ключом или трещоткой.

Таким путем избавляются от люфта.

Самостоятельная замена опор двигателя

Для того, чтобы содержать свой автомобиль в идеальном порядке, необходимо регулярно проверять техническое состояние. Поскольку поломка одной детали способна вывести из строя весь дорогостоящий агрегат, необходимо своевременно заменять неисправный механизм.

Предлагаем вам подробную инструкцию, как поменять непригодные подушки двигателя своими руками:

  1. обесточив аккумулятор снятием клемм, автомобиль приподнимают на достаточную высоту для обеспечения комфортного доступа к мотору. После применения домкрата машину надежно фиксируют деревянными брусками;
  2. используя то же подъемное устройство, поднимают мотор, освобождая от нагрузки требуемую деталь;
  3. крепление подушек двигателя осуществляется определенным количеством болтов, которые надлежит снять, предварительно раскрутив;
  4. после удаления негодной детали, новая запчасть устанавливается на подходящее место. Крепежными элементами в виде болтов надежно фиксируют гидроопору двигателя. Следует отметить, что работающий мотор во время затягивания крепежа позволит обезопасить автомобиль от последующей чрезмерной вибрации;
  5. завершение установки подушки опоры двигателя сопровождается возвращением на положенные места всех демонтированных деталей.

Отдельно отметим, что все предложенные манипуляции рекомендуется выполнять в паре с помощником. Постороннее участие потребуется для направления рычагом двигателя во время установки опоры на требуемое место.

Осмотр и замена верхней подушки является достаточно простым процессом. Доступность манипуляций обеспечивается возможностью обойтись без ямы. Кроме того, необязательно поднимать автомобиль.

Заключение

Регулярная проверка состояния подушек крепления двигателя способствует предотвращению многих проблем в перспективе. Своевременная замена негодной опоры обеспечивает комфортное нахождение пассажиров в салоне легкового автомобиля.

Если вас заботит исправность всех узлов и систем машины, рекомендуется периодически проверять подушки. Как показало предыдущее исследование, все необходимые манипуляции можно выполнить самостоятельно, без помощи специалистов автосервиса.

Двигатели внутреннего сгорания (ДВС) - Документация на самолет

Бензиновый трикоптер Canberra UAV. См. Сообщение в блоге здесь

Двигатели внутреннего сгорания могут увеличить время полета, но необходимо соблюдать осторожность, чтобы справиться с повышенной сложностью и повышенной вибрацией.

Подключение и настройка

Выключатель зажигания двигателя и (опционально) стартер должны быть подключены к выходам сервопривода автопилота, Ignition и Starter (см. Раздел ICE в функциях вывода автопилота).

  • Установите ICE_ENABLE = 1, чтобы включить функцию ICE (вам может потребоваться перезагрузить параметры после установки, чтобы увидеть параметры ниже)
  • Установите ICE_START_CHAN на номер канала, соответствующий переключателю на передатчике, который будет использоваться для запуска двигателя

Эти параметры также могут потребовать корректировки:

  • Set ICE_PWM_STRT_ON - это значение ШИМ, отправляемое на стартер для запуска двигателя
  • Set ICE_STARTER_TIME - время (в секундах), в течение которого стартер должен запустить двигатель для запуска двигателя
  • Set ICE_PWM_IGN_ON - это значение ШИМ, отправляемое на переключатель мощности зажигания, когда двигатель должен работать
  • Set ICE_PWM_IGN_OFF - значение ШИМ, отправляемое на переключатель мощности зажигания, когда двигатель должен быть остановлен

При использовании бортового стартера важно настроить датчик частоты вращения для двигателя. Это позволит ArduPilot обнаружить отказ двигателя в полете и попытаться перезапустить двигатель. ArduPilot поддерживает стандартные импульсные тахометры, подключенные к контактам GPIO (например, вспомогательные контакты сервопривода на PixHawk или Cube). Тахометр может быть изготовлен с использованием простой ИС переключателя на эффекте Холла. В качестве альтернативы некоторые модули зажигания поддерживают выход тахометра, который может быть подключен непосредственно к контактам GPIO. Модули электронного зажигания Desert Aircraft V2 поддерживают выход тахометра на сигнальном контакте входного разъема питания.Обратите внимание, что при подключении датчика частоты вращения к выводу AUX важно убедиться, что этот вывод не настроен на вывод значения ШИМ. На PixHawk или Cube Aux 5 и 6 по умолчанию не выводят ШИМ. Если вам нужно использовать другой вывод Aux, вам может потребоваться отрегулировать BRD_PWM_COUNT.

Для настройки датчика частоты вращения необходимо установить следующие параметры:

  • Установите RPM_TYPE на 2 для стандартного входного контакта GPIO.
  • Установите RPM_PIN на соответствующее значение для используемого вспомогательного вывода.
  • Установите оставшиеся параметры «RPM_ *» в соответствии с вашей системой.
  • Установите ICE_RPM_CHAN на 1.

Управление дроссельной заслонкой двигателя ДВС аналогично управлению стандартным бесщеточным ESC. Сервопривод дроссельной заслонки может быть подключен к любому серво выходу с SERVOx_FUNCTION , установленным на 70 (канал 3 настроен таким образом по умолчанию). Важно установить минимальные и максимальные значения ШИМ на этом выходе сервопривода, чтобы они находились в пределах механических ограничений вашего узла дроссельной заслонки (с использованием SERVOx_MIN и SERVOx_MAX ).При этом также убедитесь, что сервопривод движется в правильном направлении по отношению к ручному вводу газа. Обратите внимание, что сервопривод дроссельной заслонки не будет двигаться, если автомобиль не поставлен на охрану. Рекомендуется поставить автомобиль на охрану с отключенным зажиганием, чтобы проверить сервопривод дроссельной заслонки.

После настройки пределов сервопривода газа необходимо установить следующие параметры:

  • Установите THR_MIN на желаемое значение на холостом ходу. Это будет найдено эмпирическим путем во время испытаний двигателя.
  • Установите для THR_SLEWRATE значение, подходящее для вашего двигателя. 20% / с - хорошая отправная точка.
  • Установите THR_MAX, если вы не хотите, чтобы двигатель работал на полную мощность.

Если вы используете квадроцикл и хотите, чтобы двигатель ICE был отключен во время снижения вертикального взлета и посадки, чтобы снизить риск столкновения с винтом, установите Q_LAND_ICE_CUT на 1.

Расширенная конфигурация стартера

Для настройки процедуры запуска двигателя доступны различные параметры.Функция автоматического запуска будет пытаться запустить двигатель каждый раз, когда автомобиль поставлен на охрану, двигатель включен и измеренное число оборотов ниже ICE_RPM_THRESH. Если двигатель не запускается успешно в течение настраиваемого промежутка времени, программа будет ждать настраиваемую задержку перед повторной попыткой запуска. Важно помнить, что стартер будет работать в импульсном режиме. НЕ приближайтесь к двигателю между неудачными попытками запуска, поскольку стартер попытается запустить снова, если двигатель все еще включен.

  • ICE_START_PCT отменяет настройку дроссельной заслонки во время запуска.
  • ICE_START_TIME определяет максимальное количество времени, в течение которого стартер будет работать при каждой попытке запуска.
  • ICE_START_DELAY устанавливает задержку между попытками запуска. Это может быть полезно, когда ваш стартер имеет ограниченный рабочий цикл.
  • ICE_RPM_THRESH устанавливает минимальное значение числа оборотов двигателя, которое считается работающим. Это должно быть установлено на значение ниже ваших оборотов холостого хода.

Запуск и остановка двигателя

При использовании библиотеки ArduPilot ICE для управления двигателем, двигатель можно включить или отключить с помощью переключателя RC, с помощью команды MAVLink или с помощью команды миссии. Обычно для управления двигателем используется трехпозиционный переключатель на передатчике RC. Этот переключатель имеет следующие три положения:

  • Низкий: принудительное отключение двигателя. Это игнорирует команды MAVLink и элементы миссии, которые пытаются контролировать состояние двигателя.
  • Mid: сохранить текущее состояние двигателя, но разрешить командам MAVLink и элементам миссии изменять состояние двигателя.
  • High: принудительное включение двигателя. Это игнорирует команды MAVLink и элементы миссии, которые пытаются контролировать состояние двигателя.

Если ICE_START_CHAN не настроен, поведение будет таким же, как когда переключатель находится в среднем положении.

Для запуска двигателя с дистанционным управлением:

  • Поставить машину на охрану
  • Поднимите выключатель стартера передатчика, чтобы запустить двигатель
  • Если двигатель не имеет стартера, используйте ручной стартер для его запуска

Для остановки двигателя с дистанционным управлением:

  • Опустите переключатель стартера передатчика
  • Снять машину с охраны

Quadplanes также могут автоматически останавливать двигатель после входа в заключительную фазу посадки вертикального взлета и посадки, задав для параметра Q_LAND_ICE_CUT значение 1.

Примечание

Двигатель можно запускать и останавливать в автономных миссиях с помощью команды миссии DO_ENGINE_CONTROL . Это полезно перед NAV_VTOL_TAKEOFF или NAV_VTOL_LAND для запуска или остановки двигателя, чтобы предотвратить удары винта при приземлении на ветру с малым клиренсом. См. Раздел «Команды миссии».

Виброизоляция

Высокая вибрация от двигателей внутреннего сгорания означает, что гашение вибрации критически важно. Часто необходимо установить автопилот на пластину с добавлением самоклеящихся свинцовых грузов для увеличения его массы.

Двигатель внутреннего сгорания с дроссельной и вращательной инерцией и временем задержка

Описание

Блок Generic Engine представляет собой общий внутренний двигатель внутреннего сгорания. Типы двигателей включают искровое зажигание и дизельные. Скорость-мощность и Предусмотрена параметризация скорости-момента. Вход физического сигнала дроссельной заслонки указывает нормированный крутящий момент двигателя. Дополнительные динамические параметры включают инерцию коленчатого вала и отставание во времени ответа.Физический сигнальный порт выводит данные о расходе топлива двигателем на основе выбор модели расхода топлива. Дополнительные контроллеры скорости и красной линии предотвращают работу двигателя заглохнуть и включить круиз-контроль.

Базовая модель двигателя

По умолчанию в базовой модели двигателя используется запрограммированная взаимосвязь между крутящим моментом и скорость, модулируемая сигналом дроссельной заслонки.

Обороты двигателя, дроссельная заслонка, мощность и крутящий момент

Модель двигателя определяется запросом мощности двигателя функция г (Ом).Функция обеспечивает максимальную доступную мощность для данной частоты вращения двигателя Ω. Параметры блока (максимальная мощность, скорость на максимуме мощность и максимальная скорость) нормализуют эту функцию до физического максимального крутящего момента и значения скорости.

Нормализованный входной сигнал дроссельной заслонки T определяет фактический мощность двигателя. Мощность доставляется как часть максимально возможной мощности в устойчивое состояние при фиксированной частоте вращения двигателя.Он модулирует фактическую передаваемую мощность, П , от двигателя: P ( Ом , T ) = T · г ( Ом ). Двигатель крутящий момент τ = P / Ом .

Требуемая мощность двигателя

Мощность двигателя отлична от нуля, когда скорость ограничена рабочим диапазоном, Ом мин Ом Ом макс .Абсолютно максимальная мощность двигателя P макс определяет Ом 0 такой, что P макс = г ( Ом 0 ). Определить w Ом / Ом 0 и г ( Ом ) ≡ P max · p ( w ).Тогда p (1) = 1 и dp (1) / dw = 0. Функция крутящего момента:

τ = ( P макс. / Ом 0 ) · [ p ( w ) / w ].

Формы для p ( w ) можно получить из двигателя данные и модели. Generic Engine использует полиномиальную форму третьего порядка:

p ( w ) = p 1 · w + p 2 · w 2 - p 3 · w 3

удовлетворяющий

p 1 + п. 2 - п. 3 = 1, п. 1 + 2 п. 2 - 3 п 3 = 0.

В типичных двигателях p i положительные. Этот многочлен имеет три нуля, один при w = 0, и сопряженную пару. Один из пары - позитивный и физический; другой - отрицательный и нефизический:

Типичная функция требования мощности двигателя

Ограничения по частоте вращения и мощности двигателя
  • Для полинома мощности двигателя существуют ограничения, как показано, на полиномиальные коэффициенты p i , чтобы получить действительный График мощности-скорости.

  • Если вы используете табличные данные о мощности или крутящем моменте, соответствующие ограничения на P (Ω) остаются.

Укажите скорость и мощность как Вт = Ом / Ом 0 и p = P ( Ом ) / P 0 и определите границы как w min = Ом мин. / Ом 0 и w макс. = Ом макс / Ом 0 .Тогда:

  • Скорость двигателя ограничена положительным диапазоном выше минимального. скорость и ниже максимальной скорости: 0 ≤ w мин Вт Вт макс .

  • Мощность двигателя при минимальных оборотах должна быть неотрицательной: p ( w min ) ≥ 0. Если вы используете полиномиальную форму, это условие ограничение на р и :

    p ( w min ) = p 1 · w min + p 2 · w 2 min - p 3 · w min 3 ≥ 0.

  • Мощность двигателя на максимальной скорости должна быть неотрицательной: p ( w max ) ≥ 0. Если использовать полиномиальную форму, это условие ограничение на w max : w max w + .

Формы мощности двигателя для различных типов двигателей

Для параметризации по умолчанию блок предоставляет два варианта внутреннего типы двигателей внутреннего сгорания, каждый с разными параметрами потребляемой мощности двигателя.

9049 1 9049 1

0
Требуемая мощность
Коэффициент
Тип двигателя:
Искровое зажигание Дизель
p 2 1 1.6948
p 3 1 1,3474

Модель регулятора скорости холостого хода 9000 Регулировка сигнала регулятора скорости вращения на холостом ходу2 вращение двигателя ниже контрольной скорости в соответствии со следующими выражениями:

и

где:

  • Π - Дроссельная заслонка двигателя

  • Π i - Входная дроссельная заслонка (порт T )

  • Π c - Контроллер дроссельная заслонка

  • ω - Частота вращения двигателя

  • ω r - Скорость холостого хода каталожный номер

  • ω t - Скорость регулятора порог

  • τ - Постоянная времени контроллера

Регулируемый дроссель увеличивается с запаздыванием первого порядка от нуля до единицы, когда частота вращения двигателя падает ниже контрольной. Когда частота вращения двигателя поднимается выше опорная скорость, управляемый дроссель уменьшается от единицы до нуля. Когда разница между скоростью двигателя и эталонной скоростью меньше, чем порог скорости контроллера, функция tanh сглаживает время производная управляемого дросселя. Управляемый дроссель ограничен диапазон 0–1. Двигатель использует большее из входных и управляемых значений дроссельной заслонки.Если включена временная задержка двигателя, контроллер изменяет вход От до вычисляется задержка.

Модель контроллера Redline

На холостом ходу регулятор определяет минимальное значение дроссельной заслонки для поддерживая частоту вращения двигателя, контроллер красной линии предотвращает превышение скорости на основе максимальный вход дроссельной заслонки. Чтобы определить максимальное значение дроссельной заслонки, красная линия Контроллер использует уравнение модели регулятора холостого хода. Однако для контроллера красной линии:

  • ω r - скорость красной линии Справка.

  • ω t - скорость красной линии порог.

  • τ - постоянная времени красной линии.

Производительность

Чтобы увеличить скорость моделирования, используйте параметр по умолчанию Нет топлива расход , для модели Расход топлива модель параметр.

Если вы выберете любую другую опцию для Расход топлива модели , блок решает нелинейное уравнение, необходимое для расчет расхода топлива. Блок решает уравнение, даже если FC Порт , сообщающий о расходе топлива, не подключен к другому блоку.

Когда параметр установлен на Нет расхода топлива , блок не рассчитывает расход топлива, даже если порт FC подключен к другому блоку.

Порты

Порт Описание
B Вращающийся консервационный порт, представляющий блок цилиндров
Поворотный вал двигателя
T Порт ввода физического сигнала, указывающий нормализованный дроссель двигателя уровень
P Физический порт вывода сигнала, сообщающий мгновенную мощность двигателя, Вт
FC Порт вывода физического сигнала, сообщающий о расходе топлива, дюйм кг / с

Порт T принимает сигнал со значениями в диапазоне 0–1.Сигнал определяет крутящий момент двигателя как часть максимального крутящего момента, возможного в установившемся режиме при фиксированных оборотах двигателя. Сигнал насыщается до нуля и единицы. Значения ниже нуля интерпретируется как ноль. Значения выше единицы интерпретируются как единица.

Порт FC не выводит данные, когда Расход топлива параметр модели установлен на Нет топлива расход .

Аккумуляторные электромобили vs.Транспортные средства с двигателем внутреннего сгорания

Комплексная оценка в США

Электромобили с аккумуляторной батареей (BEV) не потребляют бензин и не производят выбросов углерода в выхлопных трубах, что делает возможность экологически устойчивого вождения доступной для среднего потребителя.Однако остается вопрос: «Действительно ли BEV обладают экологическим преимуществом в отношении потенциала глобального потепления и вторичного воздействия на окружающую среду - и если да, то какой ценой?»

Чтобы ответить на этот вопрос, Артур Д. Литтл провел анализ экономической стоимости всего жизненного цикла и воздействия на окружающую среду электромобилей с литиево-ионными батареями (BEV) по сравнению с автомобилями с двигателями внутреннего сгорания (ICEV), чтобы лучше понять BEV и их потенциал преобразования. В этом исследовании моделируется относительное влияние новых BEV и ICEV в Соединенных Штатах за последний полный календарный год, за который имеются данные, 2015 г., и прогнозируется влияние BEV и ICEV на экономику и окружающую среду в течение всего предполагаемого двадцатилетнего срока службы для легковой автомобиль США.Учитывая, что это быстро развивающийся рынок, в нашем исследовании также прогнозируется влияние на экономику и окружающую среду, которое новые BEV и ICEV будут иметь в 2025 году, с учетом ожидаемых значительных изменений в технологии аккумуляторов, модельном ряду транспортных средств и стандартах экономии топлива.

Чтобы определить истинные затраты и воздействие на окружающую среду от BEV, мы провели всесторонний количественный анализ, исключая какие-либо государственные стимулы или субсидии. В нашем исследовании был изучен каждый этап жизненного цикла автомобиля, от НИОКР и производства, включая поиск сырья до владения и утилизации по окончании срока службы.Мы оценили воздействия, связанные с каждым компонентом транспортного средства, от новейших технологий и химического состава, задействованных в производстве аккумуляторов, до потребностей в энергии при использовании (например, бензин и электричество, от скважины до колес), необходимых для питания транспортного средства. Мы построили модели, которые рассчитывают общую стоимость владения (TCO) за 2015 г., потенциал глобального потепления (GWP) и вторичные воздействия на окружающую среду (например, потенциал токсичности для человека, характеризуемый как потерянные годы жизни с поправкой на инвалидность) для BEV и ICEV.Мы также прогнозируем развитие технологий BEV и ICEV в ближайшее десятилетие, и мы использовали эту информацию для моделирования совокупной стоимости владения, GWP и вторичного воздействия на окружающую среду на 2025 год для BEV и ICEV.

Согласно результатам нашего исследования, экологическая и экономическая реальность электромобилей намного сложнее, чем они обещали. С экономической точки зрения, BEV обладают рядом явных преимуществ. Во-первых, стоимость электроэнергии, связанная с эксплуатацией BEV на расстоянии в одну милю, значительно ниже, чем стоимость бензина, необходимая для эксплуатации сопоставимого ICEV на том же расстоянии.Во-вторых, обслуживание БЭВ обходится дешевле благодаря относительной элегантности и простоте системы аккумулятор-электродвигатель по сравнению с частым обслуживанием, необходимым для работы системы внутреннего сгорания. В-третьих, технология автомобильных аккумуляторов быстро развивалась с тех пор, как нынешнее поколение BEV вышло на рынок, при этом цена за киловатт-час (кВтч) литий-ионных аккумуляторных батарей снизилась с 1126 долларов в 2010 году до всего 300 долларов в 2015 году (см. Приложение E-1. ).

Согласно результатам нашего исследования, экологическая и экономическая реальность электромобилей намного сложнее, чем они обещали. С экономической точки зрения, BEV обладают рядом явных преимуществ. Во-первых, стоимость электроэнергии, связанная с эксплуатацией BEV на расстоянии в одну милю, значительно ниже, чем стоимость бензина, необходимая для эксплуатации сопоставимого ICEV на том же расстоянии. Во-вторых, обслуживание БЭВ обходится дешевле благодаря относительной элегантности и простоте системы аккумулятор-электродвигатель по сравнению с частым обслуживанием, необходимым для работы системы внутреннего сгорания. В-третьих, технология автомобильных аккумуляторов быстро развивалась с тех пор, как нынешнее поколение BEV вышло на рынок, при этом цена за киловатт-час (кВтч) литий-ионных аккумуляторных батарей снизилась с 1126 долларов в 2010 году до всего 300 долларов в 2015 году (см. Приложение E-1. ).

Рисунок 1. Общая стоимость владения за 20-летний срок службы ICEV 2015 года по сравнению с эквивалентным BEV

Электромобили

и автомобили с двигателем внутреннего сгорания

Рисунок 2. Выбросы парниковых газов в течение 20-летнего срока службы для ICEV 2015 года по сравнению с эквивалентным BEV

являются значительным препятствием для более широкого внедрения BEV и могут объяснить, почему их проникновение на рынок до сих пор ограничено.

С экологической точки зрения картина еще сложнее. BEV в 2015 году достигают цели по сокращению выбросов парниковых газов по сравнению с сопоставимыми ICEV, если рассматривать их на протяжении всего срока службы автомобиля, но это маскирует повышенное воздействие на здоровье человека по сравнению с ICEV и множество других побочных воздействий на окружающую среду (см. Рисунки 2 и 3) . В то время как большинство воздействий на окружающую среду, создаваемых ICEV, локализовано на сгорании бензина в двигателе транспортного средства, производственный процесс для BEV создает гораздо более широкие

Рис. дней воздействия на жизнь (смерть или инвалидность) для компактного пассажирского ICEV 2015 года по сравнению с эквивалентным BEV за 20 лет владения выбросам парниковых газов.

В частности, использование тяжелых металлов в производстве литий-ионных аккумуляторных батарей для BEV в сочетании с загрязнением, создаваемым энергосистемой США (например,г. хвосты угольных электростанций) для эксплуатационной части жизненного цикла BEV создают примерно в три раза большую токсичность для человека по сравнению с ICEV (см. рисунок 3). Принимая во внимание расхождения в распределении воздействий на окружающую среду, можно с уверенностью сказать, что потребитель, который предпочитает использовать BEV вместо ICEV, смещает экологию

Рис. 4. Сравнение исследования ADL с данными Союза обеспокоенных ученых и национального сообщества Результаты Бюро экономических исследований

влияние владения автомобилем.Как подробно описано в недавней серии расследований, опубликованных Washington Post, большая часть кобальта и графита, поступающих в цепочку поставок литий-ионных аккумуляторов, поступает из плохо регулируемых и сильно загрязняющих шахт в Конго1 и Китае2. В то время как драйвер BEV снижает их Вкладывая локальный вклад в выбросы парниковых газов, они создают более рассеянный набор воздействий на окружающую среду, распространяющихся по всему миру, последствия которых в значительной степени несут сельские и часто неблагополучные общины вблизи шахт, откуда поставщики BEV получают сырье для производства аккумуляторных батарей.

В рамках нашего исследования Артур Д. Литтл также представляет результаты двух других широко цитируемых отчетов о влиянии BEV на окружающую среду по сравнению с ICEV - «Более чистые автомобили от колыбели до могилы: как электромобили побеждают бензиновые автомобили по выбросам из-за глобального потепления. , »3 из Союза обеспокоенных ученых (UCS) и« Экологические преимущества от вождения электромобилей? »4 из Национального бюро экономических исследований (NBER). Оба этих отчета исследуют влияние BEV и ICEV на окружающую среду, и оба отчета описывают политические последствия, вытекающие из их выводов.Однако UCS и NBER приходят к совершенно разным выводам. Мы представляем их различные результаты, чтобы сформировать более широкую дискуссию и поместить наше исследование в рамки более широкой дискуссии об истинном воздействии BEV и ICEV на окружающую среду в США (см. Рисунок 4).

Прогнозирование технологических тенденций для новых BEV и ICEV в 2025 году, Артур. Моделирование Д. Литтла показывает, что хотя разница в совокупной стоимости владения между BEV и ICEV значительно снизится по сравнению с 2015 годом, ICEV по-прежнему будут иметь экономическое преимущество в диапазоне от 5 800 до 11 100 долларов (текущая стоимость) по сравнению с BEV.С экологической точки зрения разница в потенциале глобального потепления и в потенциале токсичности для человека увеличится в 2025 году по сравнению с 2015 годом: BEV будут производить еще более низкие уровни парниковых газов по сравнению с ICEV, но они будут генерировать примерно в пять раз больше антропогенных газов. потенциал токсичности по сравнению с ICEV из-за использования более крупных аккумуляторных блоков. В сочетании с большим финансовым бременем, которое BEV возлагает на потребителя, сложная экологическая реальность BEV будет по-прежнему создавать проблемы для потребителя, ориентированного на устойчивое развитие, при выборе между автомобилем BEV или ICEV.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания

Гленн
Исследовательский центр

В течение сорока лет после первый полет братьев Райт использовались самолеты Двигатели внутреннего сгорания превратить пропеллеры чтобы генерировать тяга.Сегодня большинство самолетов гражданской авиации или частных самолетов все еще с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. На этой странице мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.

Обсуждая двигатели, мы должны учитывать как механическая работа машина и термодинамический процессы, которые позволяют машине производить полезные Работа. Основная механическая конструкция двигателя Райта: замечательно похож на современный, четырехтактный, четыре цилиндра автомобильные двигатели.Как следует из названия, процесс горения двигателя внутреннего сгорания происходит в закрытом цилиндр . Внутри цилиндра движется поршень, который компрессы смесь топлива и воздуха перед сгоранием, а затем принудительно возвращается вниз по цилиндру после сгорания. На рабочий ход поршень вращает кривошип, который преобразует линейное движение поршень в круговое движение. Поворот коленчатый вал затем используется для поворота воздушного винта. В движение поршня повторяется в термодинамический цикл называется Цикл Отто который был разработан немцем Dr.Н. А. Отто, 1876 г. и используется до сих пор.

Хотя между современными авиационные двигатели и двигатель Wright 1903, простота конструкции двигателя Райта делает его хорошей отправной точкой для студентов. Индивидуальные веб-страницы для всех основных систем и части предоставляются так, чтобы вы можете подробно изучить каждый пункт. Вот программа на Java, которую вы можете использовать, чтобы посмотреть на движок из разнообразие локаций:

На этой странице показан интерактивный Java-апплет, который позволяет вам изменять вид авиационного двигателя 1903 года путем нажатия кнопок для остановки, шага или поворота изображение.

Вы можете загрузить свою собственную копию этого апплета, нажав следующую кнопку:

Программа скачивается в формате .zip. Вы должны сохранить файл на диск и затем «Извлеките» файлы. Нажмите на "Engine.html" для автономной работы программы.


Действия:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Двигатели внутреннего сгорания

  • Тематический каталог
  • Продукты и услуги для обучения
.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *