Форсунки инжекторного двигателя: Работа форсунки инжекторного двигателя управляется. Инжекторная система — что это и как она работает. Принцип работы инжекторного двигателя

Содержание

Устройство автомобиля: инжектор

Споры о преимуществах инжекторного двигателя над карбюраторным, давно не актуальны – инжекторные системы воцарились на рынке, а новый автомобиль с карбюратором теперь попросту не найти. И все же не лишним будет разобраться, что же такое «инжектор», и чем обеспечено его тотальное господство на рынке легкового автотранспорта?

История инжектора

Впервые о замене карбюратора принципиально новой системой задумались ещё в самом начале 20-го века авиационные инженеры. Перепробовав все известные типы карбюраторов, они уже к сороковым годам прошлого века пришли с готовой к серийному производству системой инжектора, под давлением подающей топливо в камеру сгорания независимо от гравитации (что важно для самолётов) и точно в требуемом количестве (что позволяет получать меньший расход топлива, большую мощность и снижение уровня вибраций).

К концу второй мировой войны инжекторный двигатель с механическим впрыском можно было встретить на истребителях и бомбардировщиках Германии, Японии, Великобритании, СССР и США.

Кстати, тогда же появилась и столь знакомая многим современным автолюбителям процедура, как промывка инжектора — легендарный японский истребитель А6М «Зеро» требовал чистки форсунок после каждого вылета.

Затем автопроизводители оценили возможности применения впрыска для увеличения мощности двигателя при сохранении его экономичности: в 1940 году итальянцы из Alfa Romeo на своём купе 6C тестируют экспериментальную систему электронного впрыска, а Mercedes-Benz в 1954 году запускает в серию своё легендарное купе 300SL «Крыло Чайки», где была установлена механическая система прямого впрыска топлива.

Впрочем, никто из них не был пионером в создании «инжектора» – те или иные технические решения, примененные в этих автомобилях, отрабатывались на множестве экспериментальных конструкций, начиная с французских двигателей Леона Левассера с механическим впрыском образца 1902 года.

В России же системами инжекторного впрыска на автомобильной технике занимались и в Центральном научно-исследовательском автомобильном и автомоторном институте «НАМИ» и на Горьковском автомобильном заводе. Впрочем, некоторое отставание в области электронных компонентов не позволило удачно развернуть производство электронных систем впрыска в шестидесятых годах. Механический же впрыск в СССР, к сожалению, массово не вышел за рамки авиационных и дизельных двигателей.

Схема работы инжектора

Схема инжектора и закономерности его работы, пожалуй, даже проще для понимания, чем принципы работы карбюратора. Если карбюратор – это изящное техническое воплощение целого ряда физических законов в металле, то даже самая современная система инжектора таит в себе всего-лишь насос, подающий топливо сначала в находящуюся под небольшим давлением систему топливных каналов (топливную рампу), а потом (через электрический клапан) в сопло форсунки. Сопло, в свою очередь, распыляет топливо, которое смешивается с воздухом внутри впускного коллектора и через впускной клапан попадает в цилиндр уже в виде топливо-воздушной смеси. Собственно, терминами «инжектор» и «форсунка» сейчас чаще всего обозначают устройство, совмещающее в одном корпусе сопло-распылитель и электрический клапан.

Для понимания принципов работы инжекторного двигателя можно представить себе обычный цикл работы цилиндра четырёхтактного двигателя. При установке на нём карбюратора можно вполне налить топлива в сам карбюратор и отключить его от топливной системы вовсе – двигатель сможет завестись сам, так как топливно-воздушная смесь формируется в карбюраторе под действием втягивающего потока воздуха, который «засасывает» с собой смесь, и она уже готовой попадает во впускной коллектор. Не нужно ни давления, ни особого управления – схема проста и характеризуется тем, что топливная смесь формируется ещё до попадания к впуску в цилиндр.

В схеме с применением инжекторных форсунок смесь «готовится» непосредственно во впускном коллекторе (а в случае прямого впрыска – вообще в самой камере сгорания). В точно заданный системой управления момент открывается электроклапан, разделяющий топливную систему и впускной коллектор. Под давлением, созданным бензонасосом, инжектор распыляет топливную смесь в количестве, строго необходимом для поддержания близкого к стехиометрическому (читай-оптимальному) составу смеси. При этом воздух в коллектор на большей части нетурбированных автомобилей попадает под воздействием разряжения, созданного цилиндром – что позволяет, зная текущую его температуру, точно понимать, сколько топлива можно сжечь, имея данный объем воздуха.

Минус схемы инжектора в том, что смесь получается не настолько гомогенной (однородной и хорошо перемешанной), как на дорогих спортивных карбюраторах, а система управления форсунками требует точной настройки для оптимальной синхронизации работы топливных форсунок, впускных клапанов и цилиндров. Но плюсов системы всё же оказывается больше:

  • растёт экономичность и одновременно мощность за счёт точной дозировки топлива в зависимости от текущей потребности и ситуации.
  • равномернее распределяется топливо и между цилиндрами (мы не берем сейчас многокарбюраторные системы и ранние инжекторы с одной форсункой на несколько цилиндров),
  • автоматизируются процессы настройки двигателя в зависимости от условий эксплуатации,
  • понижается уровень вредных выбросов в атмосферу,
  • расширяются возможности для тюнинга двигателя
  • облегчается диагностика двигателя (с учетом использования электронных технических средств)
  • сборка и настройка инжекторных двигателей в производстве обходится дешевле, чем сборка и настройка карбюраторных систем

С точки зрения водителя, автомобиль с инжекторной системой впрыска, как правило, быстрее реагирует на изменение положения педали газа, легче заводится в условиях, отличных от идеальных, потребляет меньше топлива и обладает более высокой мощностью по сравнению с аналогичным двигателем с карбюраторной системой питания.

Кстати, возможность выбирать – карбюратор или инжектор, когда-то была: на раннем этапе развития систем впрыска применялся в основном центральный (моно, одноточечный, Single-Point injection, SPi) впрыск, форсунка легко ставилась на место карбюратора как опция и работала одновременно на все цилиндры двигателя. Система была проста, надёжна и предполагала расположение форсунки вне зоны высоких температур.

При такой схеме не требовалось сложной электроники или механики для синхронизации работы форсунок на нескольких цилиндрах, но за это приходилось платить отсутствием той универсальности, которую дают более современные системы с распределенным, или многоточечным (Multi-Point Injection, MPi), впрыском.

В итоге именно распределенный впрыск получил наибольшее распространение и сейчас эволюционировал во множество подвидов, как то непосредственный впрыск в камеру сгорания (Direct Fuel injection, DFI) и несколько подвидов обычного распределенного впрыска в зависимости от времени открытия форсунок:

  • при параллельном, или одновременном, впрыске (SMPI) все форсунки в двигателе срабатывают одновременно и независимо от тактов цилиндров, дважды за цикл впрыскивая топливо во впуск соответствующего цилиндра. При данном способе впрыска, часто встречавшемся на автомобилях 90-х годов, форсунки нужны в основном для более точной – по сравнению с центральным впрыском — дозировки топлива. Тем не менее, время между впрыском и попаданием топлива в цилиндр для разных цилиндров оказывается разным (пусть мы и говорим о миллисекундах), что сказывается на неравномерности смеси от цилиндра к цилиндру.
  • при попарно-параллельном – форсунки делятся на группы, срабатывающие в разное время. Таким образом, точка срабатывания форсунки приближается к оптимальному времени впрыска топлива для подготовки смеси – что позволяет сократить разницу в качестве смеси в цилиндрах. За цикл работы двигателя топливо впрыскивается дважды, как и при одновременном впрыске – более того, на время пуска двигатель с попарно-параллельной схемой впрыска переходит в режим одновременного впрыска.
  • при фазированном впрыске или (CIFI) – каждая форсунка управляется независимо от остальных и открывается точно перед тактом впуска. Именно эта система в данный момент является наиболее распространенной, так как позволяет обеспечить точное управление каждой форсункой и использовать оптимальное для каждого цилиндра время впрыска.

Отдельно следует отметить, что система инжекторного впрыска сама по себе универсальна и используется не только для бензиновых автомобилей. Механический впрыск на дизельных двигателях появился едва ли не раньше, чем на бензиновых – с двадцатых годов двадцатого века и поныне только на модельных дизелях и некоторых тракторных моторах используется схема, отличная от инжекторного впрыска.

Например, для дизельных силовых агрегатов крайне распространена прогрессивная система прямого впрыска Common Rail (она же известна как TDI, VCDi, CDI, TCDi, i-DTEC, CRDi – в зависимости от производителя), фактически превращающая топливную рампу в замкнутый аккумулятор для хранения топлива под более высоким, по сравнению с другими системами впрыска, давлением. В результате форсунки подают топливо с ещё большим давлением, что положительно сказывается, в частности, на расходе топлива. Но между прочим, впервые эта «современная» система была применена на британских двигателях для подводных лодок Vickers в 1916 году и в дальнейшем развивалась в основном по пути повышения давления в топливном аккумуляторе.

Система управления инжектора

Системы, координирующие действия каждой отдельной форсунки- инжектора двигателя, бывают как механическими, так и электронными. Собственно, первые массовые системы впрыска на легковых автомобилях появились в пятидесятых годах двадцатого века и довольно долгое время были исключительно механическими (как, например, целое семейство систем Bosch D-Jetronic).

Но по-настоящему эпоха инжекторного впрыска началась только с распространением микроконтроллеров — стоимость их разработки, производства и настройки гораздо ниже в сравнении с аналогичными процессами для механических систем с теми же функциональными возможностями.

Сегодня система управления инжекторным двигателем далеко ушла от алгоритмов работы первых механических систем. Соблазн относительно недорого использовать возможность оперативного изменения дозировки и времени подачи топлива на каждый отдельный инжектор двигателя (форсунку – ведь именно так переводится слово «инжектор») сделал своё – микроконтроллер сейчас собирает данные со множества дополнительных датчиков (от температурных и ДМРВ(Датчик Массового Расхода Воздуха) до датчиков включения кондиционера и отслеживания неровностей дороги). В зависимости от результата анализа этих данных контроллер выдаёт указания целому ряду устройств помимо, собственно, связки «бензонасос-инжектор» — системе зажигания, регулятору холостого хода, системе охлаждения и тому же кондиционеру.

Промывка инжектора

Есть целый ряд проблем, характерных именно для инжекторных двигателей. Это могут быть проблемы, общие для всех типов двигателей, а могут появляться и проблемы с электронными датчиками, вышедшими из строя по разным причинам.
Но главная проблема даже самого надежного инжекторного двигателя в России — сбои из-за засорения системы топливоподачи.

Троение, не связанное с состоянием свечей зажигания, катушек и высоковольтных проводов, трудности запуска зимой, заметное ухудшение приемистости двигателя, разница в нагаре на свечах зажигания из разных цилиндров, повышенный расход топлива и неполное сгорание смеси – всё это действительно может указывать в том числе и на закоксовывание форсунок.

Большая часть операций с системой впрыска инжекторного двигателя, с точки зрения многих официальных производителей, сводится к замене неразборных форсунок новыми, но существуют и методики чистки, охотно предлагаемые различными автосервисами.

Их условно можно разделить на два типа – промывку инжектора и ультразвуковую чистку форсунок. И та, и другая операция выполняется как со снятием топливных форсунок, так и прямо на двигателе.

У каждого способа свои нюансы, но следует помнить, что при промывке форсунок жидкостью без снятия их с двигателя после завершения процедуры рекомендуется заменить свечи и масло (и соответствующий фильтр) в двигателе, предварительно промыв его — что делает операцию весьма накладной. Кроме того, следует учитывать, что ввиду наличия в форсунках сеточки-уловителя, промывка некоторых форсунок может быть возможна только в направлении, обратном обычному распылению.

При снятии форсунок с двигателя замене подлежат уплотнительные резиновые прокладки этих форсунок. При этом для самой чистки потребуется специальный промывочный стенд либо самодельные приспособления, которые заставят форсунку открыть клапан для промывки.

В любом случае есть серьёзный риск повреждения двигателя в результате неверных действий. А в случае обслуживания дизельных двигателей следует учитывать еще и возможность наличия в системе серьёзного остаточного давления.

И все же нельзя сказать, что диагностика и обслуживание инжекторного двигателя существенно сложнее диагностики и обслуживания карбюраторного.

Конечно, для обслуживания карбюраторного двигателя не нужен сканер ошибок или бортовой компьютер. В нем не присутствует того количества датчиков и подсистем, которое мы встречаем в системе управления инжекторным двигателем.

С другой стороны – при наличии нужного оборудования компьютер инжекторного двигателя тут же объясняет, где искать неисправность – и для этого не надо вызывать опытного специалиста-диагноста, а достаточно подключить бортовой компьютер или OBD-сканер.

На ряд же неисправностей, не улавливаемых сканером, существует управа в виде внимательного отношения к собственному авто – изменение поведения автомобиля на дороге, смена звучания двигателя, сбои в работе отдельных систем или внезапно проснувшийся аппетит – всё это указывает на возникшие проблемы и необходимость диагностики. А еще, самый страшный враг «инжектора» — некачественное топливо. Так что внимательно стоит отнестись и к выбору заправочной станции.

Автор
Дмитрий Лонь, корреспондент MotorPage.ru
Издание
MotorPage.Ru

Топливная форсунка двигателя что это? Форсунки для дизельных двигателей – ухаживаем за ними правильно! Что делают форсунки.

Неисправности инжектора (форсунок) встречаются как на , так и на двигателях. В схеме устройства системы питания инжекторного двигателя форсунка является элементом, который отвечает за впрыск распыленной порции топлива в камеру сгорания под определенным давлением.

Точное дозирование, герметичность и своевременное срабатывание инжекторной форсунки обеспечивают устойчивую и исправную работу двигателя на всех режимах его работы. Если форсунка «льет» (пропускает лишнее топливо в момент, когда его подача не требуется), снижается эффективность распыла горючего (нарушается форма факела) и возникают другие неисправности инжектора, тогда , теряет мощность, расходует много топлива и т.п.

Читайте в этой статье

Что указывает на возможные проблемы с инжектором

Сразу отметим, что причин нестабильной работы двигателя может быть много, начиная от забитого , поломки , вышедшей из строя свечи зажигания или неисправной катушки до , проблем с и т.д. Наряду с этим одним из главных признаков неисправности форсунок является , а также расход бензина или солярки (зависимо от типа двигателя), который заметно увеличивается.

Еще необходимо отметить неустойчивую работу ДВС в режиме холостого хода, похожую на так называемое «троение» двигателя.

При езде возможно достаточно частое проявление одного или сразу нескольких симптомов:

  • наличие рывков, сильно замедленны реакции при нажатии на педаль газа;
  • явные провалы и потеря динамики при попытках резкого ускорения;
  • машина может дергаться на ходу, при сбросе газа, а также после смены режима нагрузки на мотор;

Необходимо добавить, что подобную неисправность необходимо устранять безотлагательно, так как проблемы с инжектором негативно сказываются не только на ресурсе двигателя и трансмиссии, но и на общей безопасности движения. На автомобиле с неисправными форсунками водитель может испытать серьезные трудности при обгоне, на крутых подъемах и т.п.

Самостоятельная проверка форсунок

Начнем с того, что автомобильные форсунки делятся на несколько типов, из которых в разное время широкое применение нашли два вида: механические форсунки и электромагнитные (электромеханические) инжекторы.

Электромагнитные форсунки имеют в основе специальный клапан, который осуществляет открытие и закрытие форсунки для подачи топлива под воздействием управляющего импульса двигателем. Механические форсунки открываются в результате роста давления топлива в форсунке. Добавим, что на современных авто зачастую устанавливаются электромагнитные устройства.

Чтобы проверить форсунки своими руками без снятия с машины можно воспользоваться несколькими способами. Наиболее простым и доступным способом, который позволяет быстро проверить инжекторные форсунки не снимая их с машины, является анализ шумов, издаваемых двигателем в процессе работы.

Определить неисправную форсунку на слух по звуку работы ДВС можно в том случае, если из блока цилиндров доносится приглушенный высокочастотный звук. Это указывает на необходимость чистки инжектора или неисправность форсунок.

Как проверить подачу питания на форсунки

Указанную проверку производят в том случае, если сами форсунки исправны, но какой-либо из инжекторов не работает при включении зажигания.

  • для диагностики от инжектора отключается колодка, после чего к нужно подключить два провода;
  • другие концы проводов крепятся к контактам форсунки;
  • затем нужно включить зажигание и зафиксировать наличие или отсутствие вытекания топлива;
  • если горючее течет, тогда данный признак указывает на проблемы в электрической цепи;

Еще одним из диагностических приемов является проверка инжектора при помощи мультиметра. Данный способ позволяет измерить сопротивление на форсунках не снимая их с двигателя.

  1. Перед началом работ необходимо выяснить, какой импеданс (сопротивление) имеют форсунки, установленные на конкретном автомобиле. Дело в том, что встречаются инжекторные форсунки как с высоким, так и с низким сопротивлением.
  2. Следующим шагом станет выключение зажигание, а также сбрасывание минусовой клеммы с АКБ.
  3. Далее потребуется отключить электрический разъем на форсунке. Для этого необходимо использовать отвертку с тонким концом, при помощи которой нужно отщелкнуть специальный зажим, расположенный на колодке.
  4. После отсоединения разъема переводим мультиметр в нужный режим работы для замера сопротивления (омметр), подключаем контакты мультиметра к соответствующим контактам форсунки для измерения импеданса.
  5. Сопротивление между крайним и центральным контактом форсунки с высоким импедансом должно быть в рамках от 11-12 до 15-17 Ом. Если на автомобиле применяются форсунки с низким сопротивлением, тогда показатель должен быть от 2 до 5 Ом.

Если замечены явные отклонения от допустимых норм, тогда форсунку нужно демонтировать с двигателя для подробной диагностики. Также возможна замена форсунки на заведомо исправную, после чего оценивается работа двигателя.

Комплексная диагностика работы форсунок на рампе

Для такой проверки топливную рейку понадобится снять с мотора вместе с закрепленными на ней форсунками. После этого нужно присоединить все электрические контакты к рампе и форсункам в том случае, если таковые отключались перед снятием. Также необходимо вернуть на место минусовую клемму АКБ.

  1. Рампу необходимо разместить в подкапотном пространстве так, чтобы получилось поставить под каждой из форсунок мерную емкость с нанесенной шкалой.
  2. Нужно подключить к рампе трубки подачи топлива и дополнительно проверить надежность их крепления.
  3. Следующим шагом является включение зажигания, после чего необходимо немного провернуть двигатель стартером. Данную операцию лучше проводить с помощником.
  4. Пока помощник вращает двигатель, проконтролируйте эффективность работы всех инжекторов. Подача горючего должна быть одинаковой на всех форсунках.
  5. Завершающим этапом станет выключение зажигания и проверка уровня топлива в емкостях. Указанный уровень должен быть равнозначным в каждой емкости.

Большее или меньшее количество горючего в мерных емкостях укажет на неисправность форсунки или необходимость очистки одного или нескольких инжекторов. Если форсунка демонстрирует недолив, тогда элемент нужно чистить или менять. Подтекание топлива после отключения зажигания укажет на то, что форсунка «льет» и потеряла герметичность.

Кроме самостоятельной проверки можно воспользоваться услугой диагностики инжектора в автосервисе. Данную операцию совершают на специальном проверочном стенде. Проверка форсунки на стенде позволяет точно определить не только эффективность подачи горючего, но и форму факела во время распыла топлива.

Как самому очистить форсунки без снятия с двигателя

В процессе диагностики частой причиной неустойчивой работы мотора является то, что инжекторные форсунки забились. Существует несколько способов очистки форсунок, среди которых может использоваться механический, ультразвуковой или очистка при помощи специальных химических составов.

В ряде случаев заливка в топливный бак специальной присадки-очистителя инжектора достаточно для того, чтобы нормализовать работу всей системы. Также рекомендуется с определенной периодичностью раскручивать мотор до высоких оборотов и разгонять автомобиль до 110-130 км/ч. на ровных отрезках пути. В таком режиме нужно проехать 10-20 километров.

Продолжительная работа форсунок под нагрузкой позволяет реализовать так называемую самоочистку.

Напоследок добавим, что перечисленные выше способы очистки позволяют удалить только незначительные загрязнения. Серьезно забитый инжектор необходимо чистить механически, составами под давлением или ультразвуком. Что касается промывки форсунок, специалисты рекомендуют промывать инжектор каждые 30-40 тыс. пройденных километров.

Чистку инжектора стоит делать для профилактики, а не после появления признаков неисправности. Если автомобиль эксплуатируется в режиме городской езды на топливе сомнительного качества, тогда интервал профилактических мер следует сократить применительно к индивидуальным условиям эксплуатации.

Читайте также

Когда и для чего нужно снимать топливные форсунки с двигателя. Снятие форсунок на бензиновом и дизельном моторе: особенности процесса демонтажа.

  • Чистка инжектора автомобиля без снятия форсунок. Способы очистки форсунок со снятием на кавитационном стенде. Ультразвуковая и гидродинамическая кавитация.


  • Инжектор — это революция в автомобилестроении. Сам по себе механизм сложный и для максимальной производительности его работа должна быть хорошо отлажена. Инжекторная система подачи топлива в двигатель работает по средствам ЭБУ (электронный блок управления), который высчитывает параметры топливной смеси перед ее подачей в цилиндры и управляет подачей напряжения на для создания искры. Инжекторные агрегаты сместили с производства карбюраторные моторы.

    В карбюраторных устройствах задачу подачи исполняет механический эмулятор, что не совсем удобно, потому что его система не способна сформировывать оптимальную смесь при низких температурах, оборотах и старте двигателя. Использование компьютерного блока дало возможность максимально точно осуществлять расчет параметров, и беспрепятственно на любых оборотах и температуре подавать топливо, соблюдая при этом экологические стандарты. Минус наличия ЭБУ в том, что если возникнут проблемы, например, слет прошивки, то мотор начнет работать либо с перебоями, либо вовсе откажется функционировать.

    Инжекторный двигатель

    Вообще, инжекторный двигатель работает по тому же принципу, что и дизельный. Отличие только в устройстве зажигания, которое придает ему мощности на 10% больше чем у карбюраторного мотора, что не так уж и много. О плюсах и минусах системы пусть спорят профессионалы, но знать устройство инжектора или хотя бы иметь представление о его строении обязан каждый водитель, планирующий ремонтировать двигатель собственноручно. Также со знаниями инжекторного узла, вас не смогут обмануть на СТО недобросовестные работники.

    Инжектор по сути, форсунка, выступающая распрыскивателем горючего в двигателях. Изготовлен первый инжекторный мотор был в 1916 году российскими конструкторами Стечкиным и Микулиным. Однако воплощена система впрыска топлива в автомобилестроении, была только в 1951 году западногерманской компанией Bosch, которая наделила двухконтактный мотор незамысловатой механической конструкцией впрыска. Примерил на себя новинку микролитражный купе «700 Sport» компании Goliath из Бремена.

    По прошествии трех лет задумку подхватил четырехконтактный мотор Mercedes-Benz 300 SL — легендарное купе «Крыло Чайки». Но, так как жестких экологических требований не было, то идея инжекторного впрыска была не востребована, а состав элементов сгорания двигателей не вызывал интереса. Главной задачей на тот момент было повысить мощность, поэтому состав смеси составлялся с расчетом избыточного содержания бензина. Таким образом, в продуктах сгорания, вообще, не было кислорода, а оставшееся несгоревшее горючие образовывало вредоносные газы посредством неполного сгорания.

    Установлен инжекторный двигатель

    Стремясь увеличить мощность, разработчики ставили на карбюраторы ускорительные насосы, заливавшие горючие в коллектор с каждым нажатием на педаль акселератора. Только в конце 60 х-годов 20 века проблема загрязнения окружающей среды промышленными отходами стала ребром. Транспортные средства заняли лидирующую строчку среди загрязнителей. Было решено для нормальной жизнедеятельности кардинально перестроить конструкцию топливного аппарата. Тут-то и вспомнили за инжекторную систему, которая гораздо эффективнее обычных карбюраторов.
    Так, в конце 70-го произошло массовое вытеснение карбюраторов инжекторными аналогами, превосходящими во много раз эксплуатационными характеристиками. Испытательной моделью выступил седан Rambler Rebel («Бунтарь») 1957 модельного года. После инжектор был включен в серийное производство всеми мировыми автопроизводителями.

    Обычно он имеет в своей конструкции следующие составляющие:

    1. ЭБУ .
    2. Форсунки .
    3. Датчики .
    4. Бензонасос .
    5. Распределитель .
    6. Регуляторы давления .

    Если описывать коротко принцип работы инжектора заключается в следующем:


    Электронный блок управления

    Его задача беспрерывно анализировать поступающие параметры от датчиков и давать команды системами. Компьютер учитывает факторы внешней среды и особенности различных режимов работы двигателя, при которых происходит эксплуатация. В случае выявления несовпадений, центр подает команды исполнительным элементам для коррекции. ЭБУ также имеет систему диагностики. Когда случается сбой, она распознает возникшие неполадки, оповещая водителя индикатором «CHECK ENGINE». Вся информация о диагностических кодах и ошибках хранится в центральном блоке.

    Различают 3 вида памяти:


    Расположение, классификация и маркировка форсунок

    После разбора вопроса как работает инжектор, просмотрим поверхностно всю инжекторную систему. Инжекторная система, производит впрыск горючего во впускной коллектор и цилиндр мотора посредством форсунки, которая способна за секунду открываться и закрываться много раз. Система делится на два типа. Классификация зависит от расположения крепления форсунки, устройства ее работы и количества:


    Есть несколько классификаций распределительного впрыска:

    • одновременный – работа всех форсунок синхронна, то есть впрыск идет сразу во все цилиндры;
    • попарно-параллельный – когда одна открывается перед впуском, а другая перед выпуском;
    • фазированный или двухстадийный режим – инжектор открывается только перед впуском. Дает возможность на малых оборотах, при резком нажатии на педаль акселератора увеличить момент двигателя. Впрыск проходит в два этапа.
    • непосредственный (впрыск на такте впуска) GDI (Gasoline Direct Injection) – струя идет сразу в камеру сгорания. Для моторов с таким впрыском требуется и более качественное топливо, где незначительное количество серы и других химических элементов. Мотор GDI способен исправно служить в режиме сгорания сверхобедненной топливовоздушной смеси. Меньшее содержание воздуха делает состав менее воспламеняемым. Горючее внутри цилиндра прибывает как облако, пребывающее рядом со свечей зажигания. Смесь схожа с стехиометрическим составом, который легко воспламеняется.

    Инжекторные форсунки имеют разный способ подачи струи:


    Нейтрализатор/катализатор

    Для сокращения выброса окисей углерода и азота, в инжектор был добавлен каталитический нейтрализатор. Он преобразует выделенные из газов углеводороды. Применяется на инжекторах лишь с обратной связью. Перед катализатором имеется датчик содержания кислорода в выхлопных газах, по-другому его называют как лямбда-зонд. Контроллер, получая информацию от датчика, вытягивает подачу топливной смеси до нормы. В нейтрализаторе есть керамические составляющие с микроканалами, где содержатся катализаторы:


    Нельзя чтобы мотор с нейтрализатором работал на этилированном бензине. Это выведет из строя не только нейтрализаторы, но и датчики концентрации кислорода.

    Так как простых каталитических нейтрализаторов недостаточно, то используется рециркуляция отработавших газов. Она существенно убирает образовавшиеся оксиды азота. Помимо этого, для этих целей устанавливается дополнительный NO-катализатор, так как система EGR не способна создать полное удаление NOx. Есть два типа катализаторов для понижения выбросов NOx:

    1. Селективные . Не привередливы к качеству топлива.
    2. Накопительного типа . Гораздо эффективнее, но очень чувствительны к высокосернистым горючим, что нельзя сказать о селективных. Поэтому они обширно применяются на авто для стран с малым количеством серы в топливе.

    Основные датчики


    Система подачи топлива

    Узел включает в себя:


    Рассмотрим, как работает бензонасос на инжекторе. Насос находится в топливном баке и подает бензин на рампу под давлением 3,3–3,5 Мпа, что обеспечивает качественный распыл горючего по цилиндрам. Если обороты мотора увеличиваются, заметно возрастает и аппетит, то есть для сохранения давления, в рампу нужно поставлять больше бензина. Поэтому бензонасос по оповещению контроллера начинает ускорять вращения. Вовремя, прохода бензина к топливной рампе, лишнее убирается регулятором давления и спускается назад в бензобак, поддерживая тем самым постоянное давление в рампе.

    Топливный фильтр находится под капотом кузова за топливным баком, он вмонтирован между электробензонасосом и топливной рампой в подающую магистраль. Его конструкция не разбирается, она являет собой металлический корпус с бумажной фильтрующей установкой.
    Есть прямой и обратный топливопровод. Первый нужен для топлива, идущего из модуля насоса в рампу. Второй возвращает излишки горючего после регулятора назад в бензобак. Рампа – полая планка, соединённая с форсунками, регулятором давления и штуцером контроля давления в системе. Установленный на ней регулятор контролирует давление внутри ее и во впускной трубе. Его конструкция содержит мембранный клапан с диафрагмой и пружину, поджатую к седлу.

    В этой статье мы постараемся разобраться, что такое, для чего нужен и где находится инжектор. Инжектор – однокоренное слово со словом инъекция, а инъекция – это впрыск. Хотя инжектор мало похож на шприц, но он тоже впрыскивает топливо в цилиндры двигателя. Собственно говоря, инжектор – форсунка, которая разбрызгивает топливо мелкими каплями для поступления в цилиндры смеси воздуха и паров бензина. Вы скажете, что делает все так же. Так же, но не совсем.

    Жиклер карбюратора работает практически как , разбрызгивая в его камере бензин. Но бензин засасывается в карбюратор с помощью поршня двигателя, что отбирает около 10% его мощности. Плюс ко всему, отрегулировать карбюратор до идеального состояния почти невозможно: он то переливает топливо, что двигатель «захлебывается» и коптит, а часть так и не сгорает, то не доливает, и мотор работает с провалами и не тянет.

    Бензин закачивается в инжектор с помощью специального электронасоса, а смешивание паров бензина и воздуха происходит в самой камере сгорания цилиндра. Количество топлива четко порционно, и зависит оно от необходимого именно в данный момент количества для оптимальной тяги.

    Где же находится инжектор:

    В обычных случаях инжектор устанавливают вместо карбюратора, а точнее – вообще на его место. В качестве инжектора используют лишь одну форсунку, которая «обслуживает» все цилиндры, а впрыск топлива будет во впускной коллектор, так называемый моновпрыск. Перед карбюраторной схемой преимущество здесь только одно: двигатель не расходует мощность на всасывание топлива через жиклер карбюратора.

    Система многоточечного или распределенного впрыска производится также во впускной коллектор. Благодаря распределенному впрыску лучше дозируется топливо, которое поступает к каждому цилиндру. Но все же самые лучшие результаты дает только прямой впрыск прямо в камеру сгорания цилиндра, так же, как в .

    Предназначена для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

    Форсунка используется в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

    В зависимости от способа осуществления впрыска различают следующие виды форсунок: электромагнитная, электрогидравлическая и пьезоэлектрическая.

    Электромагнитная форсунка

    Электромагнитная форсунка устанавливается, как правило, на бензиновых двигателях , в т.ч. оборудованных системой непосредственного впрыска . Форсунка имеет достаточно простое устройство, включающее электромагнитный клапан с иглой и сопло.

    Работа электромагнитной форсунки осуществляется следующим образом. В соответствии с заложенным алгоритмом электронный блок управления обеспечивает в нужный момент подачу напряжения на обмотку возбуждения клапана. При этом создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло. Производится впрыск топлива. С исчезновением напряжения, пружина возвращает иглу форсунки на седло.

    Электрогидравлическая форсунка

    Электрогидравлическая форсунка используется на дизельных двигателях , в т.ч. оборудованных системой впрыска Common Rail . Конструкция электрогидравлической форсунки объединяет электромагнитный клапан, камеру управления, впускной и сливной дроссели.

    Принцип работы электрогидравлической форсунки основан на использовании давления топлива, как при впрыске, так и при его прекращении. В исходном положении электромагнитный клапан обесточен и закрыт, игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Впрыск топлива не происходит. При этом давление топлива на иглу ввиду разности площадей контакта меньше давления на поршень.

    По команде электронного блока управления срабатывает электромагнитный клапан, открывая сливной дроссель. Топливо из камеры управления вытекает через дроссель в сливную магистраль. При этом впускной дроссель препятствует быстрому выравниванию давлений в камере управления и впускной магистрали. Давление на поршень снижается, а давление топлива на иглу не изменяется, под действием которого игла поднимается и происходит впрыск топлива.

    Пьезоэлектрическая форсунка

    Самым совершенным устройством, обеспечивающим впрыск топлива, является пьезоэлектрическая форсунка (пьезофорсунка). Форсунка устанавливается на дизельных двигателях, оборудованных системой впрыска Common Rail.

    Преимуществами пьезофорсунки являются быстрота срабатывания (в 4 раза быстрее электромагнитного клапана ), и как следствие возможность многократного впрыска топлива в течение одного цикла, а также точная дозировка впрыскиваемого топлива.

    Это стало возможным благодаря использованию пьезоэффекта в управлении форсункой, основанного на изменении длины пьезокристалла под действием напряжения. Конструкция пьезоэлектрической форсунки включает пьезоэлемент, толкатель, переключающий клапан и иглу, помещенные в корпусе.

    В работе пьезофорсунки, также как и электрогидравлической форсунки, используется гидравлический принцип. В исходном положении игла посажена на седло за счет высокого давления топлива. При подаче электрического сигнала на пьезоэлемент, увеличивается его длина, которая передает усилие на поршень толкателя. Открывается переключающий клапан, топливо поступает в сливную магистраль. Давление выше иглы падает. Игла за счет давления в нижней части поднимается и производится впрыск топлива.

    Количество впрыскиваемого топлива определяется:

    • длительностью воздействия на пьезоэлемент;
    • давлением топлива в топливной рампе.

    Оборудование такого рода используется во всех системах впрыска двигателей — и бензиновых, и дизельных. Сегодня на современных двигателях используют форсунки, которые оснащены электронным управлением впрыска.

    Зависимо от того или иного способа выполнения впрыска различают такие виды форсунок, как: электромагнитная, пьезоэлектрическая и электрогидравлическая.

    • Читайте также статью:

    Конструкция и принцип функционирования электромагнитной форсунки


    Фотография устройства электромагнитной форсунки


    Электромагнитное устройство такого плана, как правило, используют, на бензиновых двигателях, включая и те, которые имеют систему непосредственного впрыска. Данный вид оборудования характеризуется довольно простой конструкцией, которая состоит из сопла и включающего электромагнитного клапана, оснащенного иглой.

    Работа электромагнитной форсунки происходит таким образом. Электронный блок управления, в точном соответствии с заложенным ранее алгоритмом, обеспечивает в необходимый момент на обмотку возбуждения клапана подачу напряжения. В процессе этого создается электромагнитное поле, которое преодолевает усилие пружины, затем втягивает якорь с иглой и, таким образом, освобождает сопло. После этого осуществляется впрыск топлива. Когда же напряжение пропадает, пружина иглу форсунки возвращает на седло.

    Конструкция и принцип функционирования электрогидравлической форсунки


    Фотография устройства электрогидравлической форсунки


    Электрогидравлическое оборудование такого плана применяют на дизельных двигателях, включая и те, которые оборудованы системой впрыска под названием «Common Rail». Конструкция устройства данного типа объединяет в себе электромагнитный клапан, сливную и впускную дроссели, камеру управления.

    Принцип работы данного оборудования основан на применении давления топлива, и при впрыске, и после его прекращения. Электромагнитный клапан в исходном положении обесточен и полностью закрыт, игла устройства прижата к седлу с помощью силы давления на поршень топлива в камере управления. В таком положении впрыск топлива не осуществляется. Следует отметить, что в такой ситуации давление топлива на иглу в связи с разностью площадей контакта менее давления, осуществляемого на поршень.

    После команды электроблока управления происходит срабатывание электромагнитного клапана и осуществляется открытие сливной дроссели. При этом, топливо, находящееся в камере управления, вытекает в сливную магистраль через дроссель. Впускной дроссель служит препятствием тому, чтобы произошло быстрое выравнивание давлений не только во впускной магистрали, но также и в камере управления. Постепенно давление на поршень уменьшается, но не изменяется давление топлива, осуществляемое на иглу — в результате этого происходит поднятие иглы и, соответственно, впрыск горючего.

    Конструкция, преимущества и принцип функционирования пьезоэлектрической форсунки


    Схема устройства пьезоэлектрической форсунки


    Наиболее совершенным устройством, с помощью которого обеспечивается впрыск топлива, считается пьезоэлектрическое оборудование такого плана — оно называется «пьезофорсунка». Данный вид устройств устанавливают на тех дизельных двигателях, которые оборудованы системой впрыска, носящей название Common Rail — аккумуляторная топливная система.

    Преимущество подобных устройств — это быстрота срабатывания (примерно в четыре раза быстрее, чем электромагнитный клапан), что в результате предоставляет возможность многократно впрыскивать топливо на протяжении течение одного цикла. Кроме этого плюсом пьезофорсунок является максимально точная дозировка топлива, которое впрыскивается.

    Создание данного вида оборудования стало возможным в связи с использованием в управлении форсункой пьезоэффекта, который основан на смене длины пьезокристалла в результате воздействия напряжения. Конструкция такого устройства включает в себя пьезоэлемент и толкатель, отвечающий за переключение клапана, а также иглу — всё это помещено в корпус устройства.

    В работе данного вида оборудования, также как и в работе электрогидравлических устройств такого плана, используют гидравлический принцип. Игла в исходном положении посажена на седло из-за высокого давления топлива. В процессе подачи на пьезоэлемент электрического сигнала, происходит увеличение его длины, что передает на поршень толкателя усилие. В результате этого происходит открытие переключающего клапана и поступление в сливную магистраль топлива. Падает давление выше иглы. В связи с давлением в нижней части происходит поднятие иглы и, соответственно, впрыск топлива.

    Количество топлива, которое впрыскивается, определяется такими факторами, как:

    • длительность воздействия на пьезоэлемент;
    • давление топлива в топливной рампе.

    Чистка форсунок двигателя

    Признаком того, что форсунки вашего инжекторного автомобиля требуют технического обслуживания служат провалы в работе двигателя при резком нажатии на педаль газа, слабая тяга двигателя и рывки автомобиля при низкой температуре за бортом. Если это про ваш автомобиль, необходимо прочистить форсунки системы питания двигателя.

    Техническое обслуживание форсунок двигателя рекомендуется производить каждые 30000 км пробега. Эти работы можно выполнить на станциях техобслуживания. Они предоставляют услугу по чистке форсунок двигателя при помощи ультразвука. Такой способ чистки позволяет в большинстве случаев восстановить работоспособность форсунок. После проведения этой операции улучшается дисперсность топливной струи, повышается производительность, топливо впрыскивается равномерно всеми форсунками, восстанавливается факел распыления топлива в цилиндре.

    Итогом качественного технического обслуживания форсунок будет ощутимый подъем тяги на низких оборотах двигателя, отсутствие провалов тяги, расход топлива приблизится к заявленному производителем для данного двигателя.

    В объем работ по ТО форсунок в специализированных центрах обычно входят:

    — замеры СО и СН, проверка работы двигателя на холостом ходу.
    — демонтаж топливной рампы вместе в форсунками.
    — проверка производительности и герметичности форсунок.
    — чистка форсунок ультразвуком.
    — замена фильтра и уплотнений форсунки.
    После всех операций и установки форсунок на двигатель выполняется контрольная проверка герметичности и производительности форсунок, производится корректировка уровня СО и СН в выхлопных газах, а также регулировка работы двигателя на холостом ходу.

    Однако чистку форсунок двигателя вашего автомобиля можно выполнить самостоятельно, сэкономив при этом определенную сумму денег.

    Для этого нам необходима жидкость — очиститель инжектора, либо очиститель для карбюратора. Вполне подойдет любой отечественный спрей.

    Лучше сразу приобрести пару запасных уплотнителей форсунки, если вдруг потеряется — не придется из-за этой крошечной детали ехать обратно в магазин.

    Для снятия форсунок надо вначале демонтировать топливную рампу, на которой они крепятся.
    Если не знаем как снять рампу, смотрим в любом руководстве (каждый обладатель ВАЗа должен всегда держать такое руководство в машине, вдруг что). Сжимая пружинную скобу, отсоединяем электроразъем форсунки, отверткой сдвигаем фиксатор форсунки вдоль рампы и аккуратно вынимаем форсунку из рампы.Наливаем в емкость очиститель инжектора и погружаем в нее форсунки и оставляем на время откисать.

    Обычно вокруг сопла форсунки имеется слой коксообразных смолистых отложений, его надо полностью удалить. Также аккуратно чистим от всякой нечисти воронкообразную поверхность, в которой расположено сопло форсунки, не повредив сопло. Для очистки пользуемся спреем.

    Чистая (слева) и загрязненная (справа) форсунки

    Теперь промываем сам канал подачи топлива, проходящий внутри форсунки.
    Нам понадобится источник питания на постоянное напряжение 12В, можно использовать для этой цели автомобильный аккумулятор. С помощью него мы открывать электромагнитный клапан подачи топлива внутри форсунки. Для того, чтобы не сжечь обмотку форсунки, подавать напряжение будем через любую автомобильную лампу накаливания, включив ее последовательно в плюсовой провод источника питания.

    Наша задача промыть очистителем инжекторов под давлением канал форсунки. Для этого можно использовать ножной насос с манометром. Снимаем наконечник шланга насоса, заливаем в него жидкость для очистки инжекторов. Теперь надеваем шланг на форсунку и насосом накачиваем давление до 4-6 атмосфер. После того, как давление накачали, подаем на контакты электромагнитного клапана форсунки напряжение от источника питания. Питание нужно подавать короткими импульсами, имитируя работу форсунки в двигателе. При снижении давления подкачиваем его насосом. Обратите внимание на факел распыла форсунки, он должен иметь характерную форму и не должен сильно различаться у разных форсунок. Если форсунка негерметична и подтекает в закрытом состоянии, а также количество впрыскиваемого топлива за одинаковый по длительности цикл заметно отличается от остальных, форсунку необходимо заменить.

    Факел распыления форсунки

    Когда продули подобным образом все форсунки, собираем все обратно.

    В процессе чистки можно обратить внимание на то, что топливные каналы покрыты черными смолянистыми отложениями. Эти отложения — результат использования в автомобиле некачественного отечественного бензина. Их тоже желательно периодически удалять, иначе все это попадет в форсунки и засорит их каналы.
    Периодически в течение всего периода эксплуатации автомобиля рекомендуется добавлять в топливный бак специальный мягкий очиститель инжекторов, следуя инструкции по применению, обычно раз в 3000-5000 км. Это позволит содержать топливные каналы инжектора в чистоте, мягко смывая накопившуюся грязь. Если же до этого момента вы его не применяли, то лучше сначала почистить топливные каналы с их разборкой, иначе рискуете разом смыть всю грязь и засорить каналы форсунок, тогда их замены или профессиональной чистки в сервисе точно не избежать.

    И на последок совет: берегите родные заводские ВАЗовские форсунки! Часто при замене их на другие, даже различные фирменные иностранные, расход топлива заметно возрастает. Характеристики форсунок разных производителей могут сильно отличаться.

    В процессе чистки можно обратить внимание на то, что топливные каналы покрыты черными смолянистыми отложениями. Эти отложения — результат использования в автомобиле некачественнго отечественного бензина. Их тоже желательно периодически удалять, иначе все это попадет в форсунки и засорит их каналы.

    Оцените статью: Поделитесь с друзьями!

    Как прочистить форсунки инжекторного двигателя

    Как прочистить форсунки инжекторного двигателя мы сегодня обсудим. Инжекторные двигатели по праву считаются наиболее мощными и экономичными двигателями на современном этапе. Если ранее для подачи топлива в камеру сгорания использовались карбюраторы, известные своей нестабильным образованием топливной смеси, то с появлением топливных форсунок у бензиновых версий двигателей, ситуация улучшилась на порядок.   Но топливные форсунки имеют свойство периодически выходить из строя. И если водитель не уследит за этим процессом, то двигатель автомобиля сможет вспыхнуть и весь кузов сгорит за считанные секунды!

    И главным виновником такого исхода дела является некачественное топливо, из-за которого топливные форсунки забиваются и окончательно выходят из строя.

    Как прочистить форсунки инжекторного двигателя — здесь пригодится ультразвуковая очистка топливных форсунок, которая чем-то напоминает очистку свечей зажигания.

    Как прочистить форсунки инжекторного двигателя

    В данном случае топливные форсунки погружают в воду, через которую проводится ультразвук. И если мощность прибора окажется достаточной, то через 15-20 минут все внутренние каналы топливных форсунок окажутся чистыми. И топлива будет впрыскиваться в камеру зажигания двигателя ровно столько, сколько это нужно.

    Как прочистить форсунки инжекторного двигателя быстро и эффективно? Все разговоры, что форсунки можно будет очистить более дешевым пескоструйным методом, следует считать несостоятельными. Иначе, все форсунки могут окончательно испортиться. Порой, форсунки могут отказать работать из-за банального виткового замыкания.

    Самостоятельно обнаружить данную неисправность водитель не в состоянии. Лучше вызывать для дефектовки форсунок грамотного специалиста, который действительно в них разбирается. Но как показывает обширная практика, если сопротивление в форсунках будет составлять порядка 10-15 Ом, то все в порядке.

    Если же сопротивление окажется другим, то придется полностью менять негодные форсунки на новые.

    Что нужно делать водителю, чтобы топливные форсунки отличались долгим сроком эксплуатации?

    Здесь потребуется комплекс мер. И в качестве первой профилактической меры окажется заправка качественного топлива. Чем чище будет топливо, тем лучше будет работать вся топливная система. И, тем более, форсунки.

    Постоянно нужно следить за бортовым питанием автомобиля. В особенности, это будет актуально по части выбора надежных и качественных предохранителей. Не стоит устанавливать в блоке предохранителей «самопальные» предохранители из монет или алюминиевой фольги из-под пачек сигарет.

    Лучше установить штатные, и ездить спокойно. Если электрическая проводка все же «коротит» и предохранители «вылетают», то придется сперва разобраться с источником неисправности с помощью автоэлектрика в Марьино http://sto-lublino.ru/avtoelektrik.php и только затем устанавливать штатные предохранители.

    Если водитель будет постоянно выполнять все вышеперечисленные рекомендации, то топливные форсунки с легкостью смогут отработать весь положенный ресурс.

    Как прочистить форсунки инжекторного двигателяПонравилась статья? Поделись с друзьями в соц. сетях!

    Типы инжекторного двигателя

    Инжекторный двигатель — это следующая (после карбюраторного) эволюционная ступень развития двигателя внутреннего сгорания. Такой двигатель имеет ряд значительных преимуществ, благодаря чему практически вытеснил карбюраторный.

    Основное отличие инжекторного двигателя заключается в системе подачи топлива прямо в впускной коллектор или цилиндр двигателя при помощи форсунки (инжектора).

    По количеству форсунок, месту их размещения, а так же принципу действия инжекторная система впрыска топлива делится на следующие типы.

    Центральная подача топлива или моновпрыск. Данный тип использует одну форсунку, расположенной на впускном коллекторе, которая осуществляет подачу топлива сразу во все цилиндры мотора.

    Распределенная подача топлива, здесь за каждый цилиндр отвечает своя форсунка. В свою очередь такая система имеет следующие типы:

    1. прямой – подача топлива происходит непосредственно в камеру сгорания
    2. одновременный – все форсунки синхронно подают топливо во все цилиндры
    3. фазированный – впрыск топлива из форсунок происходит перед тактом впуска
    4. попарно параллельный – одна половина инжекторов открывается на начале цикла (впуске), другая на его завершении (выпуске).

    Несмотря на то, что инжекторная система имеет больший КПД, более экологически чиста и ее использование ведет к экономии топлива, эксплуатация таких двигателей имеет ряд недостатков. Поскольку работа инжекторного двигателя управляется при помощи микропроцессора и большого количества специализированных датчиков, самостоятельно провести ремонт и диагностику крайне сложно. Для этого необходимо особое оборудование и квалифицированные навыки. Другим минусом является высокая требовательность инжекторного двигателя к составу и качеству топлива. При использовании некачественного топлива с примесью твердых частиц и различных смол инжектор быстро засоряется и приходит в негодность. Поэтому, для долгой корректной работы двигателя стоит чаще менять топливные фильтры и периодически очищать форсунки, не стоит забывать и о бензобаке в котором может появиться ржавчина.

    Как проверить пусковую форсунку инжекторного двигателя? | Моторное масло — ГСМ

    При пуске двигателя часть впрыснутого топлива конденсируется на холодных стенках впускного тракта и зеркалах цилиндров. Чтобы в таких условиях получить необходимый для воспламенения состав горючей смеси и обеспечить надежный запуск, следует подать во впускной коллектор дополнительное количество бензина. Для этой цели в инжекторных системах питания предусмотрена пусковая форсунка. Она включается в момент запуска холодного двигателя, определенное время работает и выключается, когда надобности в дополнительном топливе больше нет.

    Управляется пусковая форсунка инжектора электромагнитным способом — в конструкции имеется электрообмотка и якорь магнита, который одновременно является клапаном, открывающим или, наоборот, отсекающим доступ топлива к сопловому аппарату форсунки. А «командует» электромагнитом форсунки тепловое реле, оценивающее температуру двигателя и продолжительность его запуска. Если двигатель прогрет, то реле просто не включает пусковую форсунку, и питание при запуске осуществляется только рабочими инжекторами. При продолжительном запуске, когда двигатель долго «не схватывает» (задержка более 10 секунд), тепловое реле также выключает пусковую форсунку, чтобы не допустить излишнего переобогащения смеси и не «залить» свечи.

    Пусковую форсунку инжектора и ее электрическую часть проверяют, когда холодный двигатель не запускается либо запускается и сразу глохнет. Для этого форсунку надо снять с двигателя и установить в какую-нибудь мерную емкость. Один вывод форсунки соединяют с «плюсом» аккумулятора, другой — с «массой» автомобиля. «Плюс» аккумулятора соединяют также с клеммой реле топливного насоса, включив его тем самым в работу. Теперь проверяют конус распыла топлива и производительность форсунки. Эти данные можно найти в инструкциях по эксплуатации и обслуживанию автомобилей (например, для системы K-Jetronic угол распыла должен быть около 800, производительность — от 68 до 102 см3 бензина в минуту).

    После отсоединения проводов от форсунки ее протирают насухо и проверяют герметичность. В течение минуты из распылителя не должно подтекать топливо.

    Работу теплового реле можно проверить с помощью контрольной лампы, один провод которой подсоединяют к «плюсу» аккумулятора, а другой — к штекерному выводу реле. При температуре охлаждающей жидкости ниже 350°C «контролька» должна гореть, а при температуре выше 350°C — погаснуть.

    Две последние проверки полезно провести, если у двигателя вдруг без видимой причины прорезался «аппетит» на бензин.

    Инжекторная система питания

    На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.

    Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.

    Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).

    Устройство ДВС

    Основным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.

    Устройство системы

    Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

    К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

    • лямбда-зонд;
    • положения коленвала;
    • массового расхода воздуха;
    • положения дроссельной заслонки;
    • детонации;
    • температуры ОЖ;
    • давления воздуха во впускном коллекторе.

    Датчики системы инжектора

    На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

    Что касается механической части, то в ее состав входят такие элементы:

    • бак;
    • электрический топливный насос;
    • топливные магистрали;
    • фильтр;
    • регулятор давления;
    • топливная рампа;
    • форсунки.

    Простая инжекторная система подачи топлива

    Как все работает

    Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

    Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

    Первый инжекторный двигатель Toyota 1973 года

    Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

    Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

    Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

    К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

    Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

    Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

    Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

    Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

    Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

    Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

    По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

    Виды и типы инжекторов

    Инжекторы бывают двух видов:

    1. С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
    2. Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).

    На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:

    1. Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
    2. Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
    3. Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.

    Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.

    Обратная связь с датчиками

    Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

    Эволюция датчика лямбда-зонд от Bosch

    Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

    Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

    На разных режимах обратная связь работает так:

    • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
    • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
    • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
    • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
    • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
    • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

    Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

    Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.

    предупреждающих знаков, требующих внимания топливной форсунки

    Топливные форсунки — это сердце топливной системы автомобиля. Поскольку они обеспечивают бесперебойную подачу топлива, когда возникает проблема с форсункой, от последствий страдает весь двигатель.

    Поскольку топливные форсунки играют важную роль, владельцам автопарков необходимо заботиться о них. Вот что вам нужно знать, чтобы проблемы с форсунками не влияли на производительность вашего автопарка.

    Что такое топливные форсунки?

    Так же, как сердце перекачивает кровь к телу, форсунки перекачивают топливо в двигатель.В сердце насосное действие происходит через ряд клапанов, и топливная форсунка действует аналогично клапану.

    Топливные форсунки работают за счет чередования стержня в тонкой трубке и выхода из нее. Когда шток втянут, трубка открыта, и топливо поступает внутрь. Когда шток выдвигается, трубка закрывается, и топливо прокачивается.

    В конце трубы туман сжатого топлива распыляется через сопло в камеру сгорания, где он воспламеняется и приводит в действие двигатель. Так же, как сердце снабжает организм энергией, топливный инжектор обеспечивает энергией ваш автомобиль, поэтому он так важен для защиты.

    Плюсы и минусы современных дизельных топливных форсунок

    Чем мельче топливный туман, распыляемый форсункой, тем полнее сгорает топливо. Достижение более полного сгорания дает много преимуществ, включая снижение выбросов и восстановление топливной экономичности.

    Но создание более тонкого тумана требует огромного давления. По сравнению со старыми моделями современные топливные форсунки не только имеют меньшие отверстия, но и используют большую силу. В то время как когда-то топливные форсунки обычно работали при давлении 15 000 фунтов на квадратный дюйм, современные форсунки могут легко превышать 30 000 фунтов на квадратный дюйм.

    Форсунки

    Common Rail (HPCR), как их называют, обеспечивают максимальную эффективность, хотя компромисс в том, что они могут быть более чувствительными, чем старые модели. Точное машиностроение требует более жестких допусков, поэтому очень важно следить за проблемами.

    Наиболее частые проблемы с форсунками дизельного топлива

    Чтобы обнаружить проблемы с топливной форсункой, обратите внимание на некоторые из наиболее распространенных предупреждающих знаков. Часто неисправные топливные форсунки могут вызвать снижение расхода топлива, непостоянную мощность двигателя или пропуски зажигания в двигателе.Если ваше оборудование испытывает какие-либо из этих проблем, это может означать, что у вас проблемы с топливной форсункой. Вот самые частые диагнозы.

    • Отложения коксования на сопле: Под сильным нагревом и давлением внутри форсунок HPCR, тип. 2 дизельное топливо может разрушаться и образовывать деформации черного графита — проблему, известную как коксование. Когда топливо закоксовывается, оно может оставлять вредные отложения на концах форсунки, снижая мощность и топливную эффективность.
    • Внутренние отложения дизельных форсунок (IDID): В отличие от отложений коксования форсунок, IDID образуются глубоко внутри высокоточных форсунок.Поскольку эти компоненты имеют жесткие допуски, даже минимальные отложения могут значительно снизить мощность и экономию топлива, а в некоторых случаях привести к отказу форсунки.
    • Засорение топливного фильтра: Топливные фильтры улавливают нежелательные загрязнения в топливе. Что касается систем впрыска HPCR, эти фильтры могут быть подвержены преждевременному засорению. В результате поток топлива становится ограниченным, что приводит к снижению мощности.
    • Чрезмерный износ: Наконец, проблемы с топливными форсунками могут возникнуть просто из-за чрезмерного износа. Так как каждый ход насоса длится всего несколько миллисекунд, топливные форсунки двигаются с невероятно высокой скоростью. Если топливная форсунка не обслуживается должным образом, это постоянное движение может постепенно изнашивать ее, снижая производительность.

    Как предотвратить проблемы с форсунками дизельного топлива

    Хотя проблемы с топливными форсунками могут быть серьезными, хорошей новостью является то, что их легко свести к минимуму. Один из простейших способов автоматического обслуживания топливных форсунок — использовать дизельное топливо премиум-класса, такое как CENEX® ROADMASTER XL®.

    Улучшенный многофункциональный пакет присадок Cenex Premium Diesel помогает предотвратить проблемы с форсунками до того, как они возникнут. Хотя каждая присадка важна для общего состояния двигателя, они больше всего работают для защиты форсунок.

    • Стабилизатор впрыска: Эта присадка придает топливу прочность, необходимую для того, чтобы выдерживать интенсивное нагревание и давление внутри современных форсунок HPCR, сводя к минимуму закоксовывание топлива и отложения, которые оно может вызвать.
    • Моющие средства: Эти присадки делают именно то, что следует из их названия — они поддерживают чистоту топливных магистралей, помогая уменьшить как отложения, так и засорение топливного фильтра для оптимальной работы двигателя.
    • Присадка, улучшающая смазывающую способность: Эта присадка снижает трение между движущимися частями топливной системы, такими как форсунка. Поддерживая плавную работу инжектора, присадка, улучшающая смазывающую способность, помогает снизить износ, продлевая срок службы инжектора.

    Форсунки — это сердце топливной системы вашего автомобиля. А если сердце терпит неудачу, вместе с ним падает и вся система. Вот почему рисковать с некачественным дизельным топливом просто не стоит. Чтобы заправиться на Cenex Roadmaster XL, найдите ближайший к вам филиал Cenex с помощью НАШЕГО ПОИСКА МЕСТОПОЛОЖЕНИЙ.

    Разница между Common Rail и насос-форсунками

    Топливная форсунка — это топливная форсунка. Все они одинаковые, правда? Ну не очень. На самом деле существует множество различных методов, позволяющих осуществить процесс сгорания, но, пожалуй, наиболее популярными являются два: насос-форсунки и форсунки Common Rail.

    Оба этих типа топливных систем в той или иной форме существуют уже много лет.В частности, насос-форсунки на протяжении десятилетий были популярным выбором для дизельных двигателей. Хотя ранние разработки систем впрыска Common Rail существуют почти столько же, их популярность только недавно начала расти. Частично это вызвано новыми стандартами выбросов, которым форсунки Common Rail могут соответствовать гораздо легче, чем форсунки других типов.

    Хотите больше отличного контента? Загрузите эту бесплатную электронную книгу по топливным форсункам с сайта HHP! & nbsp

    Скачать мою электронную книгу !!


    Характеристики насос-форсунок и форсунок Common Rail

    Хотя их основная функция одинакова — впрыск топлива в цилиндр во время процесса сгорания, эти типы систем работают совершенно по-разному, и точно так же сами форсунки состоят из разных частей. Ниже мы рассмотрим различные функции и проблемы обеих систем.

    Насос-форсунка

    В насос-форсунках (также обычно называемых «насос-форсунки») каждая форсунка работает независимо, полагаясь на распределительный вал для правильного выбора времени. Инжектор и насос представляют собой единый компонент, что позволяет поддерживать давление топлива внутри самого инжектора перед его впрыскиванием в цилиндр для сгорания.

    Из-за того, что она полагается на распределительный вал, эта система не обладает таким же уровнем гибкости, как другие типы впрыска, при которых синхронизация управляется контроллером ЭСУД.Насос-форсунки бывают как электронными, так и механическими, в зависимости от типа двигателя. Поскольку форсунки представляют собой как инжектор, так и насос в одной части, отдельные компоненты сами по себе немного сложнее.

    В системе насос-форсунок топливо не поддерживается под постоянным высоким давлением перед подачей в форсунки. Скорее, он находится под гораздо более низким давлением при движении через двигатель. Это сами форсунки, которые повышают давление топлива перед каждым впрыском из-за их двойной производительности как форсунок и насосов.

    Насос-форсунки используют меньшее количество топлива в начале процесса, в результате чего получается высокоэффективный двигатель с более низким уровнем сажи и выбросов, чем мог бы быть достигнут с помощью других систем впрыска (за исключением, возможно, системы Common Rail). Но из-за растущей популярности системы Common Rail по какой-то причине маловероятно, что мы увидим много изменений или улучшений в конструкции и работе насос-форсунок в будущем.

    Форсунка Common Rail

    В форсунках

    Common Rail используется топливная рампа высокого давления, которая подает топливо к отдельным форсункам.В отличие от насос-форсунок, рампа поддерживает постоянное высокое давление топлива, необходимое для впрыска. Форсунки сами по себе не изменяют давление топлива, так как оно готово к впрыску, когда втягивается в форсунку. Из-за этого насос представляет собой отдельный компонент, а не часть самого инжектора. Сам инжектор в этом случае имеет немного более простую конструкцию, чем насос-форсунка.

    Форсунки в системе Common Rail по большей части являются электронными, в них используются соленоиды, и контроллер ЭСУД контролирует их синхронизацию.В этой системе небольшое количество топлива впрыскивается в цилиндр перед полным впрыском для оптимизации времени и количества топлива. Это помогает сделать двигатель более экономичным в целом. В результате вы также получите больше мощности, уменьшив при этом количество шума и вибраций, производимых двигателем.

    Возможности более высокого давления также позволяют повысить эффективность и уменьшить выбросы. Некоторые даже отмечают, что все возможности этой технологии еще не реализованы, что ведет к вероятности дальнейших улучшений общего дизайна и функций в будущем, особенно по мере того, как правила продолжают меняться.

    Хотя система впрыска Common Rail находится в производстве гораздо меньше времени, чем другие типы впрыска, ее популярность выросла, и, похоже, это не замедляется. Однако он несет с собой свой уникальный набор проблем.

    Это более сложная система в целом, что может привести к более высокой цене, когда дело доходит до замены компонентов. Поскольку он дольше поддерживает топливо под более высоким давлением, это давление влияет на большее количество компонентов. Это может привести к повышенному риску повреждения других компонентов.Он очень чувствителен к загрязнениям, в большей степени, чем другие типы инжекторов. Фактически, одной из основных причин отказа в системах Common Rail является загрязнение топлива, но это одна из наиболее часто игнорируемых. Если вы заметили снижение экономии топлива и думаете, что это может быть связано с проблемой с топливными форсунками Common Rail, вы можете проверить качество топлива.

    В конце концов, ваш тип впрыска топлива определяется типом вашего двигателя, и вы ограничены модификациями, внесенными в этот двигатель и его компоненты.Однако хорошо знать, что это за топливная система, чтобы убедиться, что вы получаете для нее подходящие детали.

    Если вы покупаете новый двигатель, это важное соображение, которое следует принять во внимание, потому что, хотя двигатель с насос-форсункой может быть дешевле изначально, он может в конечном итоге обойтись вам дороже, поскольку компоненты перестают развиваться и их становится труднее найти. С другой стороны, инжекторный двигатель Common Rail обойдется вам дороже, однако он сэкономит вам деньги на насосе, и все время разрабатываются улучшения.

    Есть вопросы по форсункам? У нас есть ответы! Позвоните нам по телефону 844-304-7688, чтобы поговорить с одним из наших сертифицированных специалистов по продажам! Мало времени? Вы также можете запросить расценки онлайн.


    Изменено 16 августа 2019 г. Инжектор

    — обзор | Темы ScienceDirect

    2.5 Двигатель внутреннего сгорания

    Дизельный двигатель — это двигатель внутреннего сгорания, в котором для создания движения используется дизельный цикл. Основное отличие от других двигателей — использование сгорания из-за перегрузки. В этом типе сгорания нет взрыва, но комбинация топлива и воздуха сжимается из-за высокого сжатия без искрового зажигания, и основная причина этих двигательных двигателей в отличие от бензиновых двигателей 100 об / мин [17]. Они могут воспламенить горение без использования электрической искры. Эти двигатели используются для воспламенения топлива при высоких температурах. В первом случае температура КС очень высока, и после повышения температуры горючая смесь смешивается с воздухом [17].

    Для сжигания топлива необходимы два типа тепла и кислорода. Кислород подается в камеру цилиндра через входы двигателя и затем сжимается поршнем. Это сжатие настолько велико, что вызывает очень сильный нагрев. Затем третий фактор, горение, добавляется к теплу и кислороду, что вызывает горение топлива [17].

    Например, дизельные двигатели можно разделить на категории в соответствии с количеством циклов сгорания в каждом цикле картера на двухтактные дизельные двигатели или четырехтактные дизельные двигатели, или с точки зрения выработки мощности в лошадиных силах. Либо по количеству цилиндров, либо по форме цилиндров, которые соответственно делятся на два типа линейных двигателей или V-образные двигатели.

    Строение конструкции дизельного двигателя отличается только системой подачи и регулирования топлива с двигателями с искровым зажиганием. Таким образом, эти двигатели имеют очень похожие конструкции, и единственная разница заключается в следующих деталях, которые существуют в дизельных двигателях и отсутствуют в других двигателях внутреннего сгорания.

    Насос форсунки: Задача регулировки количества топлива и подачи необходимого давления для распыления топлива [17].

    Форсунки: закачайте топливо и газ в CC.

    Топливные фильтры: разделение выхлопных газов и выхлопных газов.

    Топливопроводы: они должны быть нестабильными и устойчивыми к нагрузкам.

    Турбокомпрессор: увеличивает воздух, поступающий в цилиндр.

    Как указано, дизельные двигатели делятся на две категории: четырехтактные и двухтактные в зависимости от того, как они работают. Однако в обоих этих двигателях выполняются четыре основных операции: всасывание или дыхание-сжатие, или работа под давлением, или взрыв, и выпуск, или дым, но в зависимости от типа двигателей эти шаги могут выполняться по отдельности или в комбинации [17] .

    Все дизельные генераторы, газогенераторы и двигатели для кипячения вырабатывают определенную степень тепла во время производства, которое можно использовать в процессе, называемом «ТЭЦ». ТЭЦ, или рекуперация отходящего тепла, может использоваться как для отопления и охлаждения больших зданий, так и для промышленных целей.В среднем паровые машины теряют 50% тепловой энергии. С помощью ТЭЦ КПД электростанций может достигать 80%. В этой главе рассматриваются инженерные аспекты ТЭЦ и их текущее применение в мире [17].

    Наиболее распространенными типами систем утилизации отходящего тепла являются паровые системы и системы горячего водоснабжения. Большинство двигателей имеют максимальную температуру воды 210 ° F. Другие двигатели могут работать при температуре до 260 ° F. Двигатели должны быть рассчитаны на работу при высоких температурах. Однако температура 210 ° F достаточно высока, чтобы удовлетворить все потребности устройств.Водяной пар низкого давления может быть получен из водяной рубашки при температуре от 250 ° F до 260 ° F. Эта температура (в правильно сконфигурированном двигателе) может быть получена с помощью охлаждающего устройства, в котором пар генерируется в водяной рубашке, а затем он увеличивается из-за разницы в плотности между водой и паром. Прежде чем подумать об устройстве вольера, лучше всего поговорить с профессиональным подрядчиком по электрике, чтобы определить, какие настройки водяной рубашки необходимы [18].

    Этот метод аналогичен методу распределенной генерации на газовых установках, за исключением использования поршневых двигателей внутреннего сгорания вместо ГТ.На электростанциях, использующих поршневые двигатели, тепло может быть получено из моторного масла, охлаждающей воды двигателя или выхлопных газов [18].

    Электрический КПД двигателей возврата и возврата составляет от 35% до 42%. Поскольку современные двигатели из-за повышенного КПД выхлопных газов более холодные, рекуперация тепла может осуществляться только в виде пара и горячей воды. Например, дизельный двигатель мощностью 4,2 МВт может производить 1,5 МВт пара и 3,1 МВт горячей воды. Учитывая, что общий расход топлива для этого двигателя составляет около 10 МВт, общая мощность составляет около 88% [18].

    Двигатели внутреннего сгорания следовали двум термодинамическим циклам — циклу Отто и дизельному циклу. Цикл Отто — это совокупность идеальных процессов, лежащих в основе двигателей внутреннего сгорания. Большинство велосипедов используются в большинстве общественных транспортных средств. Следует отметить, что газ используется в качестве жидкости в цикле Отто. Конечно, как в цикле Ренкина или холодильном цикле, жидкость не проходит через реальный цикл в реальной жизни, и легче моделировать процессы, которые считаются циклом [19].

    В цикле Отто смесь воздуха и топлива в форме постоянного давления впрыскивается в цилиндр (также называемый всасыванием). После этого газ сжимается в изоэнтропическом виде и его температура повышается. На следующем этапе, когда поршень достигает наивысшей точки, происходит сгорание, которое приводит к опусканию поршня и, таким образом, к производству работы. На заключительном этапе температура и давление газа снижаются изоэнтропически. После этого смесь топлива и воздуха снова всасывается и повторяются те же шаги [19].

    Идеальный тепловой КПД цикла Отто может быть получен следующим образом [19]: где k — показатель степени изоэнтропы (для воздуха k = 1,4) и ε = v1 / v2 — степень сжатия. Дизельный цикл очень похож на большинство циклов, используемых в двигателях. Основное отличие этого цикла от других циклов заключается в следующем: в начале процесса конденсации в цилиндре нет топлива, поэтому автоматический процесс сгорания не будет происходить в условиях скопления [19].

    В дизельном цикле используется сжигание на основе сжатия, а не искровое зажигание.Поскольку процесс адиабатической плотности приводит к очень высокой температуре, процесс сгорания будет происходить за счет распыления топлива после конденсации (подробнее об этом процессе будет сказано ниже). В результате дизельные и дизельные двигатели не требуют свечей зажигания. В этом цикле цикл Отто позволяет достичь более высокого перепада давления.

    Этот цикл состоит из процесса постоянного давления, процесса постоянного объема и двух изоэнтропических процессов. На рис. 2.8 показан график зависимости давления от объема дизельного цикла.Полная система рекуперации тепла в ТЭЦ газ / дизель включает три теплообменника [7]:

    Рисунок 2.8. Энергетический цикл на основе газового или дизельного двигателя.

    теплообменник выхлопных газов двигателя

    теплообменник охлаждающей воды

    теплообменник смазочного масла

    Среднее эффективное давление (MEP) показывает среднее эффективное давление (MEP) оптимальный расход топлива и экономичность.MEP получается как [7]: где Wnet — чистая выходная мощность двигателя в кДж, а Vdis — смещение поршня двигателя в м 3 . Когенерационная установка с газодизельным двигателем показана на рис. 2.9.

    Рисунок 2.9. ТЭЦ с газодизельным двигателем в качестве основного двигателя.

    Топливные форсунки K-DI с кинетической форсункой и кинетической форсункой с высоким расходом для приложений GM Gen V V8

    Мощные двигатели GM Gen V V8 и V6 с прямым впрыском, включая LT4, LT1, L86, L83 и LV3 E85 модификации двигателей GM Gen V V8 и V6

    2017-2018 ZL1 LT4
    2014-2018 Сильверадо и Сьерра с 4.Двигатели 3 л LV3, 5,3 л L83 и 6,2 л L86
    2015-2018 Suburban, Tahoe, Yukon и Escalade с двигателями 5,3 л L83 и 6,2 л L86.

    Форсунки продаются в наборе по 8 штук.

    Эти бензиновые форсунки с прямым впрыском топлива с высоким расходом специально разработаны для использования в двигателях GM Gen V V8 с прямым впрыском. двигатели или двигатели LT. При расходе 27 граммов в секунду эти форсунки обеспечивают необходимый поток топлива для приложений с большой мощностью, не прибегая к вспомогательным топливным системам. Эти форсунки имеют запатентованную Nostrums кинетическую геометрию форсунок K-DI, которая обеспечивает высокую скорость потока без ущерба для распыления. Направленность распыления предназначена для обеспечения оптимального качества сгорания. Эти характеристики в сочетании с предоставленными характеристиками форсунок гарантируют, что эти форсунки будут хорошо работать при низкой нагрузке на холостом ходу до высоких оборотов при пиковой мощности / нагрузке. Форсунки также совместимы с E85, что позволяет двигателям с более высокой мощностью использовать топливо E85.

    Запатентованная кинетическая геометрия сопла K-DI, обеспечивающая высокий расход при небольшой длине жидкости и небольших каплях топлива
    Распыление, предназначенное для создания струйного факела определенной формы для камеры сгорания двигателя GM Gen V V8 и движения всасываемого заряда
    Оптимизированные струи распыления, управляемость и реакция для легкой интеграции
    Изготовлен и протестирован в соответствии со спецификациями прочности и производительности OEM
    Проток проверен, отсортирован и помечен по расходу для лучшего согласования форсунок
    Данные о характеристиках расхода предоставляются для целей калибровки

    Преимущества:
    Простая установка
    Высокий расход
    Позволяет переоборудовать E85 штатные и модифицированные двигатели L86, LT1 и LT4, чтобы обеспечить более простой и экономичный способ получения топлива с более высоким октановым числом для насоса.
    Этот продукт позволяет тюнерам увеличивать HP без ущерба для полнодиапазонных характеристик.
    Характеристики потока можно легко откалибровать с помощью дополнительных инструментов, используя прилагаемые данные
    Устраняет необходимость во вторичных топливных системах

    Технические характеристики:
    Номинальный расход 27 грамм / сек при 10 МПа

    — расход на 122% больше, чем у серийных топливных форсунок L83
    — Расход на 67% больше, чем у серийных форсунок LT1 / L86
    — Расход на 52% больше, чем у серийных форсунок LT4
    — Совместимость с E85

    Изучите автомобильную инженерию у инженеров-автомобилестроителей

    Некоторые люди предполагают, что все будущие двигатели будут иметь конструкцию с прямым впрыском, но на самом деле двойные форсунки, похоже, обеспечивают лучшую экономию топлива, чем прямой впрыск в двигателях с низким рабочим объемом.Эта технология, вероятно, займет достойное место в качестве жизнеспособного варианта конструкции двигателя. Капли топлива из форсунок проходят через порт, и есть два пути, по которым они могут попасть в камеру сгорания: попасть в воздушный поток в виде капель или удариться о стенку порта и скользить по нему пленкой. Автомобильные производители внедряют двигатели с двумя форсунками, чтобы они могли использовать первый подход — капли — с еще меньшими каплями, чем когда-либо до .

    Японские производители автомобилей применяют двигатели с двумя форсунками в течение последних нескольких лет.Компания Nissan Motor Co., Ltd. коммерциализировала технологию в своем Juke в 2010 году, за ним последовал Swift от Suzuki Motor Corp. в июле 2013 года и N-WGN от Honda Motor Co., Ltd. в ноябре 2013 года.

    Все три фирмы быстро адаптировали технологию к другим моделям. Suzuki добавила тот же двигатель с двумя форсунками, что и Swift, к своему Solio, с небольшими модификациями, в ноябре 2013 года , а в декабре того же года Honda переключила свои модели N-BOX и N-BOX + на двигатели с двумя форсунками.Эти дополнения способствовали значительному росту количества производимых автомобилей с двумя форсунками. Тем временем Nissan установил тот же двигатель, что и Juke, в свои модели Cube и AD / AD Expert на японском рынке, продемонстрировав свое доверие конструкции с двумя форсунками, установив его в грузовые автомобили, которые сталкиваются с такими жесткими требованиями к экономичности. Компания также установила двойные форсунки в автомобили Sunny и 1.6L Tida в Китае и 1.6L Versa для Северной Америки.

    Наряду с другими улучшениями, это изменение повысило экономию топлива примерно на 4% .Honda N-BOX продемонстрировала улучшение экономии топлива в режиме JC08 с 24,2 км / л до 25,2 км / л, то есть на 4%. Однако это включает улучшения за счет перехода на полый выпускной клапан. Nissan также увеличил экономию топлива на 4%, но опять же, частично это связано с изменением фаз газораспределения.

    Suzuki не только улучшил двигатель, но и добавил его систему рекуперативного торможения «активизатор», в результате чего общая экономия топлива увеличилась на 21%, с 21,8 до 26,4 км / л.

    Показательно сравнение удельного расхода топлива на тормозную систему (BSFC) для двигателей Suzuki.Старая конструкция не могла опускаться ниже 240 г / кВтч, пока не достигла частоты вращения двигателя 2000 об / мин, но двигатель с двумя форсунками достигал ее примерно при 1200 об / мин. Крутящий момент также упал ниже 240 г / кВтч примерно на 10 Нм ниже, чем в предыдущей конструкции.

    Suzuki по-прежнему указывает в своем каталоге предыдущий одноинжекторный двигатель Swift, а разница в цене составляет от 82 000 до 112 000 иен (без учета налогов). Компания заявляет, что около 60% продаж приходится на модели с двумя форсунками… 60% клиентов готовы платить такую ​​большую разницу в цене, чтобы повысить экономию топлива.

    Источник: Nikkei Technology

    Мнение Ромена:

    Этот выбор технологии кажется хорошей альтернативой непосредственному впрыску для повышения экономии топлива. Тем не менее, он в основном используется в двигателях малого объема, для небольших городских автомобилей, где цена является требованием номер один. Двигатели с двумя форсунками могут быть намного дороже, чем современные двигатели с непрямым впрыском, поэтому я уверен, что эта технология специфична для японского рынка, потому что существует множество стимулов к расходу топлива, которые уравновешивают увеличение стоимости.Это может быть причиной того, что эта технология не появляется в Европе. Считаете ли вы, что малые европейские двигатели в ближайшем будущем примут эту технологию с двумя форсунками?

    Избегайте проблем с форсунками Powerstroke 7.3, 6.7 и 6.0

    Неудачная диагностика форсунок может быть дорогостоящим мероприятием и может привести к тому, что многие владельцы автомобилей полностью заменят форсунки. К счастью, есть несколько решений, которые могут помочь вам решить распространенные проблемы дизельных форсунок вместо полной замены форсунки.Ознакомьтесь с нашим руководством ниже, чтобы узнать больше о форсунках, распространенных причинах отказа форсунок и способах их устранения.

    Как работают форсунки?

    Правильное соотношение топлива и воздуха важно для эффективной и плавной работы двигателя, и здесь пригодятся форсунки. Топливная форсунка отвечает за прием и впрыск бензина или дизельного топлива в двигатель. Они могут помочь с оптимизацией топлива и регулировать время впрыска топлива в двигатель. Обычно в каждом цилиндре имеется по одной топливной форсунке.

    С момента появления в 1994 г. форсунок 7,3 л Ford Powerstroke, форсунки обычно полагались на давление масла для срабатывания поршня через топливную систему HEUI. Конструкция некоторых форсунок HEUI включает масло для повышения давления топлива и смазки других областей, таких как поршень, уплотнительные кольца и пружины. Этот процесс под высоким давлением подвергает масло воздействию высокой температуры, в результате чего излишки масла попадают в форсунку. Когда излишки масла распадаются, внутри инжектора остается липкий осадок, известный как прилипание.

    Иногда забитая или неисправная форсунка может привести к пропуску зажигания в двигателе, потому что цилиндр не получает топлива, необходимого для правильной работы. Эта проблема может привести к включению индикатора «Проверьте двигатель».

    Распространенные причины выхода из строя форсунок

    Есть несколько причин, по которым вы можете увидеть неисправную диагностику форсунки вашего двигателя. Вот несколько распространенных причин, которые могут быть причиной проблем с форсунками Powerstroke:

    1. Заедание: Клейкий остаток, известный как прилипание, обычно является причиной отказа форсунок.Этот остаток может препятствовать способности инжектора эффективно подавать топливо в двигатель. Эта проблема особенно характерна для многих моделей Ford с дизельным двигателем Powerstroke и, вероятно, может быть причиной проблем с форсунками Ford.
    2. Обломки: Иногда грязь, ржавчина и другие виды мусора могут попасть через топливную систему в форсунки. Мусор часто может забивать сопло или вызывать его застревание.
    3. Низкое качество топлива: Другой частой причиной выхода из строя форсунок является использование некачественного топлива.Если в выбранном вами топливе слишком много примесей или мусора, они могут попасть в топливную форсунку и засорить ее.
    4. Прорыв двигателя: Прорыв двигателя — это остатки масла и топлива, которые попадают через поршни в коленчатый вал. Если система ПВХ или воздушный фильтр не улавливает его, остатки могут попасть в топливные форсунки, вызывая заедание.

    Зная некоторые из распространенных причин проблем с дизельными форсунками, вы можете начать устранение этих проблем, чтобы восстановить форсунки и увеличить срок их службы для вашего автомобиля.

    Как восстановить забитые форсунки

    Многие механики могут рекомендовать замену форсунок после срабатывания кода неисправности. Здесь и вступает в игру миф о «отказавшем» инжекторе. Элементы инжектора хорошо продуманы и могут служить в течение всего срока службы двигателя. Причин может быть несколько, например, заедание, обломки или прорыв двигателя.

    Если вы заметили медленный запуск или ускорение, падение расхода топлива на галлон или какое-либо вздрагивание или пыхтение, особенно холодным утром из-за двигателя, скорее всего, виной всему заедание.Если ваш дизель не решается разогнаться или теряет мощность, возможно, ваш двигатель застрял. К счастью, есть несколько вещей, которые вы можете попытаться устранить заеданием и восстановить форсунки для максимальной производительности автомобиля.

    Хотя многие водители выбирают топливные присадки для улучшения характеристик, заедание, вызывающее отказ форсунки, требует специальной высококонцентрированной масляной присадки, которая может устранить заедание и восстановить заводские характеристики форсунок.Stiction Eliminator — это высококачественная и эффективная очистка масла как для дизельных, так и для бензиновых двигателей. Это идеальное решение для устранения заедания и может помочь вернуть ваши топливные форсунки в нужное русло. Это также может помочь улучшить экономию топлива и снизить износ двигателя на 62% больше, чем обычное моторное масло. А с гарантией возврата денег становится очевидным, почему этот продукт так популярен среди владельцев дизельных двигателей Powerstroke, Duramax и Cummins.

    Восстановите топливные форсунки с помощью Hot Shot’s Secret

    Полная замена топливных форсунок может оказаться сложной и дорогостоящей задачей.Вот почему мы разработали высококачественные решения, которые помогут вам восстановить топливные форсунки вместо их замены. Благодаря нашей специальной команде экспертов и нашей гарантии возврата денег мы можем помочь решить ваши проблемы с топливными форсунками и помочь вам сэкономить деньги в долгосрочной перспективе. Это беспроигрышная ситуация.

    Приобретите средство для устранения трения сегодня или сделайте покупки из нашего ассортимента, чтобы вернуть топливные форсунки в их идеальное состояние. У вас есть вопросы? Свяжитесь с нашими специалистами, которые будут рады вам помочь.

    Amazon.com: AUS Injection TB-24008 Восстановленный топливный инжектор

    Качественные восстановленные топливные форсунки, прошедшие электронную проверку на правильное электрическое сопротивление и слабость катушки. Затем исправные агрегаты разбираются (удаляются микрофильтр, уплотнения, крышки штырей и пластиковая прокладка). Инжекторы одновременно очищаются в ультразвуковых резервуарах, специально разработанных для очистки топливных инжекторов. Все агрегаты индивидуально промываются обратно для удаления разбитых частиц грязи, эти частицы не могут быть удалены через отверстия для впрыска, поэтому вытесняются через впускное отверстие инжектора.Затем все форсунки устанавливаются на проточном стенде в перевернутом положении, чтобы позволить им реверсировать поток при значительном давлении. Мы пропускаем высокоэффективный очищающий растворитель для форсунок через форсунки в течение 30 минут, завершая процесс очистки. Этот процесс обеспечивает полное удаление всех частиц грязи из инжектора. Теперь форсунки установлены на проточном стенде в правильном положении, чтобы начать процедуры тестирования. Мы применяем давление 60 PIS (больше, чем обычная многоточечная система впрыска топлива) и оставляем форсунки без сигнала на них в течение 30 секунд, чтобы убедиться в отсутствии утечек.В зависимости от оригинальной презентации производителя, форсунки окрашиваются или полируются для достижения наилучшего внешнего вида. Затем форсунки собираются с новыми заменяемыми компонентами (корзины фильтров, крышки штырей, уплотнительные кольца и уплотнения), и проводится окончательное испытание всех новых компонентов форсунок. Цель этого теста — убедиться, что корзина фильтра; Уплотнительные кольца, уплотнения и колпачки игл установлены правильно и не мешают потоку или форме распыления форсунки.Инжекторы смазываются специальным маслом, а на обоих концах размещены защитные колпачки, чтобы продлить срок годности и гарантировать, что после установки в транспортном средстве они будут в оптимальном рабочем состоянии. Каждый инжектор упакован индивидуально.

    .

    Автор: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *