Цилиндры двигателя
Цили́ндр двигателя внутреннего сгорания является рабочей камерой объемного вытеснения. Во время работы двигателя внутренние и наружные части цилиндров испытывают различный нагрев.
Внутренняя часть цилиндра — втулка или гильза цилиндра.
Наружная часть — рубашка двигателя.
Внутренняя поверхность втулки или гильзы цилиндра называется зеркалом. Зеркало это рабочая часть цилиндра, поэтому она подвергается специальной обработке (хонингование, хромирование, азотирование) и поэтому выбирают следующие типы материалов для гильз цилиндров. На зеркале цилиндра наносится специальный рельеф, который способствует снижению трения между поршнем, поршневыми кольцами и цилиндром, благодаря удерживанию моторного масла на стенках.
В современных двигателях внутреннюю поверхность цилиндров подвергают отбеливающему переплаву лазером, что способствует образованию белого чугуна высокой твердости.
Гильзы цилиндров отливают из чугуна высокой прочности или специальных сталей. Иногда на алюминиевые гильзы цилиндров наносят гальваническое покрытие хромом.
В одноцилиндровом четырехтактном двигателе коленчатый вал вращается неравномерно, поэтому маховик должен обладать большим моментом инерции. В многоцилиндровом двигателе вращение коленчатого вала происходит равномернее, так как рабочие ходы в различных цилиндрах не совпадают друг с другом. Чем больше цилиндров имеет двигатель, тем равномернее вращается коленчатый вал. Нагрузка на детали кривошипно-шатунного механизма в многоцилиндровом двигателе изменяется более плавно, чем в одноцилиндровом.
Цилиндры двигателя могут быть расположены следующим образом: вертикально в один ряд – однорядные, двигателя автомобилей ВАЗ-2107 «Жигули», ГАЗ-52-04, ГАЗ-3102 «Волга» и др., под углом a к вертикали, двигатель автомобиля Москвич 2140; в два ряда V-образные, двигателя автомобилей ГАЗ-53А,ЗИЛ-130, КаМаз 5320 и др.
Дефекты гильз цилиндровГильзы цилиндров изнашиваются вследствие трения между поршнем и зеркалом (внутренней стенкой цилиндра). Как правило повышенный износ может происходить вследствие таких причин:
— не достаточно масла на стенках цилиндров
-двигатель долго не работал, и все масло стекло в картер
-применение масла не соответствующей вязкости
— коррозия, возникает вследствии применения воды, как охлаждающей жидкости
-сколы, царапины возникают вследствие не правильного монтажа, демонтажа ( все действия по съемке гильз цилиндров нужно проводить согласно правил специальным съемником)
-при не правильной эксплуатации двигателя
Методы обработки для устранения дефектов
Дефекты устраняются такими методами обработки как: шлифовка, фрезировка, напыление, наплавка, хонингование.
ХонингованиеХонингование — вид абразивной обработки материалов с применением хонинговальных головок (хонгов). В основном применяется для обработки внутренних цилиндрических отверстий (от 2 мм) путём совмещения вращательного и поступательно-возвратного движения хона с закреплёнными на нём раздвижными абразивными брусками с обильным орошением обрабатываемой поверхности смазочно-охлаждающей жидкостью. Один из видов чистовых и отделочных обработок резанием. Позволяет получить отверстие с отклонением от цилиндричности до 5 мкм и шероховатостью поверхности Ra=0.63÷0.04.
Обработка отверстий в различных деталях в том числе в деталях двигателя (отверстий блоков цилиндров, гильз цилиндров, отверстий кривошипной и поршневой головок шатунов, отверстий шестерен) и т. д. При обработке хонингованием обеспечивается стабильное получение точных отверстий и требуемых параметров шероховатости обработанной поверхности. Зеркало цилиндров должно иметь не совсем гладкую поверхность, так как масло будет стекать и не оставатся между парой трения, что будет приводить к износу, поэтому делается как бы меленькая насечка.
В ней остаються частички масла , которые обеспечивают хорошую работу цилиндр-поршень и приводит к увеличению ресурса деталей.что нужно знать об этих деталях и как продлить срок их службы?
В статье подробно рассмотрены ключевые детали автомобильного двигателя – поршень и цилиндр. Уделено внимание их конструкции, функциям, условиям работы, возможным проблемам при эксплуатации и путям их решения.
Цилиндр и поршень – ключевые детали любого двигателя. В замкнутой полости цилиндро-поршневой группы (ЦПГ) происходит сгорание топливно-воздушной смеси. Газы, образующиеся при этом, воздействуют на поршень – он начинает двигаться и заставляет вращаться коленчатый вал.
Цилиндр и поршень обеспечивают оптимальный режим работы двигателя в любых условиях эксплуатации автомобиля.
Рассмотрим эту пару подробнее: конструкцию, функции, условия работы, возможные проблемы при эксплуатации элементов ЦПГ и пути их решения.
Принцип работы цилиндро-поршневой группы
Современные двигатели внутреннего сгорания оснащены блоками, в которые входят от 1 до 16 цилиндров – чем их больше, тем мощнее силовой агрегат.
Внутренняя часть каждого цилиндра – гильза – является его рабочей поверхностью. Внешняя – рубашка – составляет единое целое с корпусом блока. Рубашка имеет множество каналов, по которым циркулирует охлаждающая жидкость.
Внутри цилиндра находится поршень. В результате давления газов, выделяющихся в процессе сгорания топливно-воздушной смеси, он совершает возвратно-поступательное движения и передает усилия на шатун. Кроме того, поршень выполняет функцию герметизации камеры сгорания и отводит от нее излишки тепла.
Поршень включает следующие конструктивные элементы:
- Головку (днище)
- Поршневые кольца (компрессионные и маслосъемные)
- Направляющую часть (юбку)
Бензиновые двигатели оснащены достаточно простыми в изготовлении поршнями с плоской головкой. Некоторые модели имеют канавки, способствующие максимальному открытию клапанов. Поршни дизельных двигателей отличаются наличием на днищах выемок – благодаря им воздух, поступающий в цилиндр, лучше перемешивается с топливом.
Кольца, установленные в специальные канавки на поршне, обеспечивают плотность и герметичность его соединения с цилиндром. В двигателях разного типа и предназначения количество и расположение колец могут отличаться.
Чаще всего поршень содержит два компрессионных и одно маслосъемное кольцо.
Компрессионные (уплотняющие) кольца могут иметь трапециевидную, бочкообразную или коническую форму. Они служат для минимизации попадания газов в картер двигателя, а также отведения тепла от головки поршня к стенкам цилиндра.
Верхнее компрессионное кольцо, которое изнашивается быстрее всех, обычно обработано методом пористого хромирования или напылением молибдена. Благодаря этому оно лучше удерживает смазочный материал и меньше повреждается. Остальные уплотняющие кольца для лучшей приработки к цилиндрам покрывают слоем олова.
С помощью маслосъемного кольца поршень, совершающий возвратно-поступательные движения в гильзе, собирает с ее стенок излишки масла, которые не должны попасть в камеру сгорания. Через дренажные отверстия поршень «забирает» масло внутрь, а затем отводит его в картер двигателя.
Направляющая часть поршня (юбка) обычно имеет конусную или бочкообразную форму – это позволяет компенсировать неравномерное расширение поршня при высоких рабочих температурах. На юбке расположено отверстие с двумя выступами (бобышками) – в нем крепится поршневой палец, служащий для соединения поршня с шатуном.
Палец представляет собой деталь трубчатой формы, которая может либо закрепляться в бобышках поршня или головке шатуна, либо свободно вращаться и в бобышках, и в головке (плавающие пальцы).
Поршень с коленчатым валом соединяется шатуном.
Конструкционные материалы деталей ЦПГ
Сегодня цилиндры и поршни двигателя чаще всего производят из алюминия или стали с различными присадками. Иногда для внешней части блока цилиндров используют алюминий, имеющий небольшой вес, а для гильзы, контактирующей с движущимся поршнем, – более прочную сталь.
В отличие от чугуна, который применялся ранее для изготовления деталей ЦПГ, внедрение алюминия – намного более легкого, но износостойкого материала – стало толчком к появлению мощных и высокооборотистых двигателей.
Современные автомобили, особенно с дизельными двигателями, все чаще оснащаются сборными поршнями из стали. Они имеют меньшую компрессионную высоту, чем алюминиевые, поэтому позволяют использовать удлиненные шатуны. В результате боковые нагрузки в паре «поршень-цилиндр» существенно снижаются.
Поршневые кольца, наиболее подверженные износу и деформациям, производят из специального высокопрочного чугуна с легирующими добавками (молибденом, хромом, вольфрамом, никелем).
Значительные механические и тепловые циклические нагрузки отрицательно сказываются на работоспособности элементов цилиндро-поршневой группы. В то же время от их состояния напрямую зависит стабильная компрессия двигателя, обеспечивающая его уверенный холодный и горячий запуск, мощность, экологичность и другие эксплуатационные показатели.
Именно поэтому для изготовления поршней и других деталей ЦПГ применяются материалы, обладающие высокой механической прочностью, хорошей теплопроводностью, незначительным коэффициентом линейного расширения, отличными антифрикционными и антикоррозионными свойствами.
В целях снижения потерь на трение производители поршней покрывают их боковую поверхность специальными антифрикционными составами на основе твердых смазочных частиц: графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается, поршни снова испытывают высокие нагрузки, под влиянием которых изнашиваются и выходят из строя.
Одним из самых эффективных антифрикционных покрытий поршней является MODENGY Для деталей ДВС.
Состав на основе сразу двух твердых смазок – высокоочищенного дисульфида молибдена и поляризованного графита – применяется для первоначальной обработки юбок поршней или восстановления старого заводского покрытия.
MODENGY Для деталей ДВС имеет практичную аэрозольную упаковку с оптимально настроенными параметрами распыления, поэтому наносится на юбки поршней легко, быстро и равномерно.
На поверхности покрытие создает долговечную сухую защитную пленку, которая снижает износ деталей и препятствует появлению задиров.
MODENGY Для деталей ДВС полимеризуется при комнатной температуре, не требуя дополнительного оборудования.
Для подготовки поверхностей перед нанесением покрытия их необходимо обработать Специальным очистителем-активатором MODENGY. Только в таком случае производитель гарантирует прочное сцепление состава с основой и долгий срок службы готового покрытия. Оба средства входят в Набор для нанесения антифрикционного покрытия на детали ДВС.
com/embed/ekWeNnFEzHE?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>
Методы охлаждения и смазывания цилиндро-поршневой группы
В каждом цикле работы двигателя сгорает большое количество топливно-воздушной смеси. При этом все детали цилиндро-поршневой группы испытывают экстремальные температурные воздействия, поэтому нуждаются в эффективном охлаждении – воздушном или жидкостном.
Наружная поверхность цилиндров ДВС с воздушным охлаждением покрыта множеством ребер, которые обдувает встречный или искусственно созданный воздухозаборниками воздух.
При водяном охлаждении жидкость, циркулирующая в толще блока, омывает нагретые цилиндры, забирая таким образом излишек тепла. Затем жидкость попадает в радиатор, где охлаждается и вновь подается к цилиндрам.
Второй по важности момент после отвода тепла – система смазки цилиндров. Без нее поршни рано или поздно подвергаются заклиниванию, что может привести к поломке двигателя.
Для того чтобы масляная пленка дольше удерживалась на внутренних поверхностях цилиндров, их подвергают хонингованию, т.е. нанесению специальной микросетки. Стабильность слоя масла гарантирует не только максимально низкое трение в паре «поршень-цилиндр», но и способствует отведению лишнего тепла из ЦПГ.
Неисправности ЦПГ и их диагностика
Даже грамотная эксплуатация автомобиля не гарантирует, что со временем не возникнет проблем с его цилиндро-поршневой группой.
О неисправностях деталей ЦПГ свидетельствует увеличение расхода масла, ухудшение пусковых качеств двигателя, снижение его мощности, появление каких-либо посторонних шумов при работе. Эти моменты нельзя игнорировать, так как стоимость ремонта цилиндро-поршневой группы иногда равна стоимости автомобиля в целом.
Под влиянием очень высоких нагрузок и температур:
- На рабочих поверхностях цилиндров появляются трещины, сколы, пробоины
- Посадочные места под гильзу деформируются
- Днища поршней оплавляются и прогорают
- Поршневые кольца разрушаются, закоксовываются, залегают
- На теле поршней возникают различные повреждения
- Зазоры между поршнем и цилиндром сужаются, вследствие чего на юбках появляются задиры
- Наблюдается общий износ цилиндров и поршней
Перечисленные неисправности цилиндро-поршневой группы неизбежны при перегреве двигателя. Он может возникнуть из-за нарушения герметичности системы охлаждения, отказа термостата или помпы, сбоев в работе вентилятора охлаждения радиатора, поломки самого радиатора или его датчика.
Точно определить состояние цилиндров и поршней можно с помощью специализированной диагностики самой ЦПГ (при полной разборке двигателя) или других автомобильных систем (например, воздушного фильтра).
В ходе сервисных работ измеряется компрессия в цилиндрах ДВС, берутся пробы картерного масла и пр. Все это помогает оценить исправность работы цилиндро-поршневой группы.
Ремонт цилиндро-поршневой группы двигателя включает замену маслосъемных и компрессионных колец, установку новых поршней, шатунов, восстановление (расточку) цилиндров.
Степень износа последних определяется с помощью индикаторного нутрометра. Трещины и сколы на стенках устраняются эпоксидными пастами или путем сварки.
Новые поршни – с нужным диаметром и массой – подбирают к гильзам, а поршневые пальцы – к поршням и втулкам верхних головок шатунов. Шатуны предварительно проверяют и при необходимости восстанавливают.
Как продлить ресурс ЦПГ?
Ресурс цилиндро-поршневой группы зависит от типа двигателя, режима его эксплуатации, регулярности обслуживания и многих других факторов. Срок службы ЦПГ отечественных автомобилей, как правило, меньше, чем у иномарок: около 200 тыс. км против 500 тыс.км.
Для того, чтобы детали ЦПГ вырабатывали свой ресурс полностью, рекомендуется:
- Использовать моторное масло, одобренное автопроизводителем
- Осуществлять замену масла и охлаждающей жидкости строго по регламенту
- Следить за температурным режимом работы двигателя, не допускать его перегрева и холодного запуска
- Регулярно проводить диагностику автомобиля
- Применять для обслуживания автокомпонентов специальные средства, которые могут защитить их от усиленного износа и максимально продлить срок службы
Цилиндр
Цилиндр двигателя — обработанное отверстие в блоке цилиндров, внутри которого движется поршень. В случае, если блок цилиндров выполнен из алюминия, внутрь цилиндра впрессовывается вставка-гильза из тугоплавкого материала.
Классический пример цилиндра — оружейный ствол. Пуля, как поршень, движется вдоль его стенок под воздействием энергии расширяющихся газов
Двигатели, основанные на применении поршня, движущегося внутри закрытого ложа цилиндрической формы, известны с давних пор. На этом принципе еще два века назад строились «двигатели горячего воздуха», к примеру, двигатель Стирлинга, или еще более старые тепловые машины. Применительно к автомобилю мы знакомы с цилиндром как с частью двигателя внутреннего сгорания. Однако и таких двигателей разных конструкций наберется не менее двух десятков. Но, несмотря на явные различия во внешнем виде и конструкции, их объединяет одна общая исходная деталь – цилиндр. Она может быть разной формы, и даже не цилиндрической. Тем не менее, она есть всегда.
Цилиндр как основа двигателя
В цилиндре происходят все важнейшие процессы получения и преобразования энергии, необходимой для движения автомобиля. Цилиндр, по сути, связующее звено двух энергий: в нем энергия сгорания топлива переходит в энергию движения, вращающего коленчатый вал.
Поршень и цилиндрЦилиндр во время работы испытывает колоссальные нагрузки. С одной стороны это высокая температура и давление расширяющихся газов, с другой стороны высокая скорость движения поршня, которая достигает 8 метров в секунду.
При сгорании топлива в цилиндрах образуется такое огромное количество тепловой энергии, что двигатель приходится охлаждать даже когда на улице -25 градусов
Этот процесс можно сравнить с оружейным выстрелом, где пороховые газы толкают пулю, разгоняющуюся в стволе, (кстати, тоже имеющем форму цилиндра) до дульной скорости от 300 до 1000 метров в секунду, в зависимости от длины ствола. К тому же с огромной частотой, как, например, в пистолете-пулемете «Венус», до 2500 выстрелов в минуту.
И если на спортивном автомобиле группа цилиндров должна выдержать один рекордный заезд, то в обычном легковом автомобиле от цилиндров требуется работа в течение многих лет, без потери мощности, динамики и других показателей.
Поэтому инженеры автомобильных компаний вынуждены постоянно решать две основные проблемы, связанные с надежностью цилиндров – отвод тепла и смазывание поверхности, вдоль которой движется поршень.
Конструкция цилиндра
В первых двигателях внутреннего сгорания каждый цилиндр находился внутри отдельного корпуса. Такая конструкция сохранилась и в наши дни и используется, к примеру, при создании мотоциклетных двигателей. В этом случае она не утратила актуальности, потому что для охлаждения открытых со всех сторон двигателей мотоциклов применяется воздух. В автомобильных двигателях все цилиндры объединены в единый прочный корпус, который называется блоком цилиндров.
Для того, чтобы цилиндр двигателя мог выдерживать высоки нагрузки он выполняется из прочного материала — чугуна или специальной стали с различными присадками. Ради снижения веса современные блоки часто делают из алюминия. В этом случае внутренняя часть цилиндра выполняется в виде прочной стальной гильзы, запрессованной в блок.
Внутренняя поверхность цилиндра, непосредственно контактирующая с движущимся поршнем, выполняется из металла со специальными добавками для повышения прочности.
Внешняя часть цилиндра, составляющая единое целое с корпусом блока, называется рубашкой. Внутри рубашки по каналам циркулирует охлаждающая жидкость.
Чтобы облегчить поршню скольжение внутри цилиндра, разработчики BMW предложили покрывать стенки цилиндров Никасилом — специальным сплавом, позволяющим обходиться без гильз в алюминиевом блоке
В двухтактных двигателях цилиндры имеют несколько иную конструкцию и отличаются от цилиндров четырехтактных двигателей наличием окон – впускных и продувочных. Помимо этого в нижней части цилиндра двухтактного двигателя имеется пластина для создания нижнего рабочего пространства под поршнем.
Системы охлаждения цилиндров
Для отвода избыточного тепла от цилиндра двигателя предусмотрена система охлаждения, которая может быть либо воздушной, либо жидкостной.
Воздушное охлаждение
Цилиндры двигателя с воздушным охлаждением снаружи покрыты множеством ребер, которые обдуваются встречным или созданным искусственно посредством воздухозаборников потоком воздуха, отводящим тепло от цилиндра.
Причудливый рисунок на внутренней поверхности цилиндра называется хоном, потому что для его нанесения используется хонинговальный станок
Жидкостное охлаждение
При жидкостном (чаще называемом водяным) охлаждении цилиндры снаружи омываются циркулирующей в толще блока охлаждающей жидкостью. Нагретые цилиндры отдают часть тепла жидкости, которая в дальнейшем попадает в радиатор, охлаждается и вновь подается к цилиндрам.
Система смазки цилиндров
Качественное смазывание стенок – вторая по значимости проблема после отвода тепла. Если цилиндр не смазывать изнутри, поршень попросту заклинит, что приведет к немедленному разрушению двигателя.
Для удержания стабильной масляной пленки на зеркале (внутренней поверхности) цилиндров, он подвергается хонингованию – нанесению микросетки на внутреннюю стенку. Благодаря наличию такой сетки на стенках всегда присутствует слой масла, что снижает трение (поршень-цилиндр), отводит излишки тепла и увеличивает в разы пробег до капитального ремонта.
Нестандартные покрытия цилиндра
Разработчики применяют новейшие технологии и материалы для упрочнения зеркала цилиндра и его износостойкости.
Самый большой объем автомобильного двигателя – 117 литров. Такой огромный объем реализован в двигателе карьерного самосвала с 24 цилиндрами
Так внедрение кристаллов кремния в зеркало цилиндра многократно подняло ресурс двигателя, но одновременно и повысило требования к качеству масла и соблюдению температурного режима. Первые двигатели, созданные с применением этой технологии, были непригодными для ремонта и слишком дорогими. Дальнейшие разработки в этой области позволили несколько улучшить ситуацию в плане ремонтопригодности. Вместо того чтобы покрывать специальным составом поверхность цилиндров, выточенных в толще металла, в блок начали устанавливать подлежащие замене гильзы с напылением кремния.
Типовые технические характеристики цилиндров автомобильных двигателей
- Диаметр цилиндра
- Высота цилиндра
- Рабочий объем – объем цилиндра от верхней мертвой точки до нижней мертвой точки движения поршня.
- Полный объем цилиндра – объем камеры сгорания и рабочего объема вместе.
- Степень сжатия — определяется делением полного объема цилиндра на объем камеры сгорания. Этот критерий показывает, во сколько раз сжата горючая смесь в цилиндре. От увеличения степени сжатия в цилиндре увеличивается давление на поршень при сгорании топлива, а значит, возрастает мощность силовой установки в целом. Увеличение этого параметра очень выгодно, так как от такого же количества смеси можно получить больший КПД.
Блок цилиндров: как он появился, развивался и зачем вообще нужен
Гражданское моторостроение – это очень консервативная отрасль. Все те же коленчатый вал, поршни, цилиндры, клапаны, как и 100 лет назад. Удивительные бесшатунные, аксиальные и другие схемы никак не хотят внедряться, доказывая свою непрактичность. Даже двигатель Ванкеля, большой прорыв шестидесятых, фактически остался в прошлом.
Все современные «новшества», если присмотреться, лишь внедрение гоночных технологий пятидесятилетней давности, приправленное дешевой в производстве электроникой для более точного управления «железяками». Прогресс в строительстве двигателей внутреннего сгорания – скорее в синергии небольших изменений, чем в глобальных прорывах.
И жаловаться-то вроде бы грех. Про надежность и ремонтопригодность в этот раз не будем, а мощость, чистота и экономичность современных двигателей для человека из семидесятых годов показались бы истинным чудом. А если отмотать еще несколько десятилетий?
Сотню лет назад моторы были еще карбюраторные, с зажиганием от магнето, обычно нижнеклапанные или даже с «автоматическим» впускным клапаном… И ни о каких наддувах еще и не думали. А еще старые-старые двигатели не имели детали, которая сейчас является главным его компонентом – блока цилиндров.
До внедрения блока
Первые моторы имели картер, цилиндр (или несколько цилиндров), но блока у них не было. Вы удивитесь, но основа конструкции – картер – частенько был негерметичным, поршни и шатуны были открыты всем ветрам, а смазывались из масленки капельным способом. Да и само слово «картер» сложно применимо к конструкции, сохраняющей взаимное положение коленчатого вала и цилиндра в виде ажурных кронштейнов.
У стационарных двигателей и судовых подобная схема сохраняется и по сей день, а автомобильные ДВС все же нуждались в большей герметичности. Дороги всегда были источником пыли, которая сильно вредит механизмам.
Первопроходцем в области «герметизации» считается компания De Dion-Bouton, которая в 1896 году запустила в серию мотор с цилиндрическим закрытым картером, внутри которого размещался кривошипно-шатунный механизм.
На фото: мотор Де-ДионПравда, газораспределительный механизм с его кулачками и толкателями размещался еще открыто – это было сделано ради лучшего охлаждения и ремонта. Кстати, к 1900 году эта французская компания оказалась крупнейшим производителем машин и ДВС в мире, выпустив 3 200 моторов и 400 автомобилей, так что конструкция оказала сильное влияние на развитие моторостроения.
…и тут появляется Генри Форд
Первая массовая конструкция с цельным блоком цилиндров до сих пор остается одной из самых массовых машин в истории. Модель Ford T, появившаяся в 1908 году, имела четырехцилиндровый мотор, с чугунной головкой блока, нижними клапанами, чугунными поршнями и блоком цилиндров – опять же из чугуна. Объем мотора был вполне «взрослый» по тем временам, 2,9 литра, а мощность в 20 л. с. еще долго считали вполне достойным показателем.
На фото: двигатель Ford TБолее дорогие и сложные конструкции в те годы щеголяли раздельными цилиндрами и картером, к которому они крепились. Головки цилиндров часто были индивидуальными, и вся конструкция из головки цилиндра и самого цилиндра крепилась к картеру шпильками. После появления тенденции к укрупнению узлов картер часто оставался отдельной деталью, но блоки по два-три цилиндра все еще были съемными.
В чем смысл разделения цилиндров?
Конструкция с отдельными съемными цилиндрами выглядит сейчас несколько необычно, но до Второй мировой войны, несмотря на нововведения Генри Форда, это была одна из наиболее распространенных схем. У авиационных моторов и двигателей воздушного охлаждения она сохранилась и поныне. А у «воздушного оппозитника» Porsche 911 series 993 вплоть до 1998 года никакого блока цилиндров не было. Так зачем же разделять цилиндры?
Цилиндр в виде отдельной детали – штука вообще-то достаточно удобная. Его можно сделать из стали или любого другого подходящего материала, например, бронзы или чугуна. Внутреннюю поверхность можно покрыть слоем хрома или никельсодержащих сплавов, при необходимости сделав ее очень твердой. А снаружи нарастить развитую рубашку для воздушного охлаждения. Механическая обработка сравнительно компактного узла будет точной даже на достаточно простых станках, а при хорошем расчете крепления тепловые деформации будут минимальны. Можно сделать гальваническую обработку поверхности, благо деталь небольшая. Если у такого цилиндра появился износ или другие повреждения, то его можно снять с картера мотора и поставить новый.
Минусов тоже хватает. Помимо более высокой цены и высоких требований к качеству сборки моторов с раздельными цилиндрами серьезным недостатком является низкая жесткость такой конструкции. А значит – повышенные нагрузки и износ поршневой группы. Да и с водяным охлаждением сочетать «принцип раздельности» получается не очень удобно.
Из мейнстрима моторы с раздельными цилиндрами ушли уже очень давно – минусы перевесили. К середине тридцатых годов в автомобилестроении подобные конструкции уже почти не встречались. Разнообразные комбинированные конструкции – например, с блоками из нескольких цилиндров, общим картером и головкой блока – попадались на мелкосерийных люксовых авто с объемными моторами (можно вспомнить подзабытую марку Delage), но к концу 30-х это все вымерло.
Победа цельночугунной конструкции
Привычная нам сегодня конструкция победила благодаря своей простоте и низкой стоимости изготовления. Большая отливка из дешевого и прочного материала после точной механообработки получается все равно дешевле и надежнее, чем отдельные цилиндры и тщательная сборка всей конструкции. А на нижнеклапанных моторах клапаны и распределительный вал располагаются тут же, в блоке, что еще больше упрощает конструкцию.
Рубашка системы охлаждения отливалась в виде полостей в блоке. Для особых случаев можно было применить и отдельные гильзы цилиндров, но мотор на Ford T таких изысков не имел. Чугунные поршни со стальными компрессионными кольцами работали прямо по чугунному цилиндру. И кстати, маслосъемное кольцо в привычном нам виде там отсутствовало, его роль выполняло нижнее третье компрессионное, расположенное ниже поршневого пальца.
На фото: Ford Model TТакая «цельночугуниевая» конструкция доказала свою надежность и технологичность за много лет производства. И была перенята у Форда такими массовыми производителями, как GM, на долгие последующие годы.
Правда, отливка блоков с большим числом цилиндров оказалась технологически сложной задачей, и многие моторы имели по два-три полублока с несколькими цилиндрами в каждом. Так, рядные «шестерки» тридцатых годов иногда имели два трехцилиндровых полублока, а уж рядные «восьмерки» и подавно изготавливали по такой схеме. Например, мощнейший мотор Duesenberg Model J был изготовлен именно так: два полублока были накрыты единой головкой.
На фото: двигатель Duesenberg JВпрочем, к началу сороковых годов прогресс позволил создавать и цельные блоки такой длины. Например, блок Chevrolet Straight-8 «Flathead» был уже цельным, что снижало нагрузку на коленчатый вал.
Чугунные гильзы в чугунном же блоке тоже были достаточно удачным решением. Высокопрочный легированный химически стойкий чугун стоил дороже обычного, и отливать из него весь большой блок не имело смысла. А вот сравнительно небольшая «мокрая» или «сухая» гильза оказалась хорошим вариантом.
Освоенная в довоенные еще годы принципиальная конструкция моторов не меняется много десятилетий подряд. Блоки цилиндров многих современных моторов отлиты из серого чугуна, иногда со вставками из высокопрочного в зоне верхней мертвой точки. Например, чугунный блок имеет вполне современный Renault Kaptur с мотором F4R, об обслуживании которого мы писали на днях. Чугун хорош, в частности, тем, что блок из него легко поддается капремонту расточкой цилиндров большего диаметра. Если, конечно, производитель выпускает поршни «ремонтного» размера.
На фото: двигатель F4RПравда, с годами блоки становятся все более «ажурными» и менее массивными. По ранним блокам цифры найти сложно, но давайте возьмем два семейства моторов с разницей чуть более чем в 10 лет. У блока серии GM Gen II середины 90-х толщина стенки моторов колебалась от 5 до 9 мм. У современного VW EA888 конца 2000-х – уже от 3 до 5. Но мы явно забегаем вперед…
Делаем блок легче
Утончение стенок, чем вовсю занимаются конструкторы в последние годы – это, как вы понимаете, не единственный способ снизить вес блока. В 20-30-е годы о экономии массы и топлива думали существенно меньше, чем сейчас, но первые попытки облегчения делались. И уже тогда додумались использовать алюминий.
На гоночных и спортивных машинах той эпохи можно было встретить симбиоз из алюминиевого картера и головки блока с чугунной отливкой блоков цилиндров. Затем прогресс в металлообработке позволил создать более удобный вариант подобного симбиоза. Блок цилиндров оставался цельным, но отливался из алюминия, что снижало его массу в три-четыре раза, в том числе и за счет лучших литьевых качеств металла. Сами же цилиндры изготавливали в виде чугунных гильз, которые запрессовывали в блок.
Гильзы делились на «сухие» и «мокрые», разница в общем-то понятна из названия. В блоках с сухой гильзой она вставлялась в алюминиевый цилиндр (или вокруг нее отливался блок) с натягом, а «мокрая» гильза просто закреплялась в блоке нижним концом, а при установке ГБЦ полость вокруг превращалась в рубашку охлаждения. Второй вариант оказался перспективнее на тот момент, поскольку упрощал отливку и снижал массу деталей. Но в дальнейшем рост требований к жесткости конструкции, а также сложность сборки подобных двигателей оставили эту технологию «за бортом» прогресса.
Сухие же гильзы в алюминиевом блоке – это и сейчас самый распространенный вариант изготовления детали. И один из самых удачных, ведь чугунная гильза изготавливается из высококачественного легированного чугуна, алюминиевый блок жесткий и легкий. К тому же теоретически эта конструкция еще и ремонтопригодна, как и чугунные блоки. Ведь изношенную гильзу можно «вынуть» и запрессовать новую.
Что дальше?
Единственная принципиально новая технология последних лет – это еще более легкие блоки с напылением сверхпрочного и сверхтонкого слоя на внутреннюю поверхность цилиндров. Подробно о плюсах и минусах, и даже о способах капремонта подобных конструкций я уже писал – повторяться смысла нет. Концептуально мы имеем все тот же ДВС образца 30-х годов. И есть все основания полагать, что до конца «эры внутреннего сгорания», когда доведут до ума электромобили, моторы на жидких углеводородах останутся примерно такими же.
Двигатели. Рядный? V-образный? «Оппозит»? — ДРАЙВ
В начале XX века, когда конструкторская мысль бушевала вовсю, двигатель рабочим объёмом 10 л мог быть как одноцилиндровым, так, к примеру, и рядной «восьмёркой». Тогда никого особо не удивляли установленная на автомобиле рядная «шестёрка» объёмом 23 л или семицилиндровый звездообразный мотор с аэроплана. ..
Однако рост мощностей, оборотов и ожесточенная борьба за снижение себестоимости всё расставили по местам. Простейший одноцилиндровый мотор для автомобилестроителей остался в далёком прошлом. Средний объём цилиндра двигателя обычного автомобиля сейчас — от трёхсот до шестисот кубических сантиметров. Литровая мощность — от 35 л.с./л для безнаддувного дизеля до 100 л.с./л для форсированного бензинового «атмосферника». Для серийных двигателей это оптимум, выходить за рамки которого просто невыгодно.
Очень маленькие цилиндры часто встречаются на японских микролитражках: например, объём рядной «четвёрки» у Subaru R1 — всего 658 см³. Из «европейцев» отличился трёхцилиндровый дизельный Smart — 799 «кубиков». Есть цилиндры-напёрстки и у «корейцев»: трехцилиндровый Matiz — это 796 «кубиков», а четырёхцилиндровый — 995. «Четвёркой» объёмом 1086 см³ оснащаются Hyundai i10 и Kia Picanto. На другом полюсе — конечно же «американцы». Объём V-образной «восьмёрки» купе Chevrolet Corvette Z06 составляет 7011 см³. Хотя японцы, например, оснащали внедорожник Nissan Patrol предыдущего поколения рядной «шестёркой» TB48DE объёмом 4758 «кубиков».Сегодня двигатель мощностью 100 л.с. в большинстве случаев окажется четырёхцилиндровым, у 200-сильного будет четыре, пять или шесть цилиндров, у 300-сильного — восемь… Но как эти цилиндры расположить? Иными словами — по какой схеме строить многоцилиндровый двигатель?
Простота хуже компактности
О чём болит голова у конструктора? Во-первых, о том, как упростить конструкцию двигателя, чтобы он был дешевле в производстве и легче в обслуживании. Самый простой двигатель — рядный (мы будем обозначать такие моторы индексами R2, R3, R4 и т. д.). Располагаем в ряд нужное количество цилиндров — получаем необходимый рабочий объём.
- Двигатель R3 (А). Угол между кривошипами — 120°.
- Добиться равномерности вспышек в двухцилиндровом двигателе (В) можно только при двухтактном цикле.
- А такой мотор (C), например, стоит на «Оке». Поршни движутся синфазно.
Двух- и трёхцилиндровые двигатели встречаются на автомобилях нечасто, хотя мода на «двухгоршковые» моторчики набирает обороты. Тому способствуют продвинутые системы смесеобразования и применение турбонаддува (как, например, на 85-сильной двухцилиндровой турбоверсии хэтчбека Fiat 500). А вот рядная «четвёрка» попала в самый массовый диапазон рабочего объёма легковых автомобилей — от 1,0 до 2,4 л.
В современных четырёхтактных двухцилиндровых двигателях, вроде турбомотора Фиата 500, проблему вибраций отчасти решает балансирный вал.
Пятицилиндровые рядные моторы появились на серийных автомобилях сравнительно недавно — в середине 70-х годов. Первым был Mercedes-Benz со своими дизельными «пятёрками» — они появились в 1974 году (на модели 300D с кузовом W123). Через два года увидел свет пятицилиндровый двухлитровый бензиновый двигатель Audi. А в конце 80-х годов такие моторы сделали Volvo и FIAT.
Рядные «шестёрки», до недавнего времени столь популярные в Европе, нынче во мгновение ока стали вымирающим видом. А про рядную «восьмёрку» и говорить нечего — с ней практически распрощались еще в 30-х годах. Почему?
Ответ прост. С ростом числа цилиндров двигатель становится длиннее, и это создаёт массу неудобств при компоновке. Например, втиснуть поперёк моторного отсека переднеприводного автомобиля рядную «шестёрку» удавалось в считанных случаях — можно припомнить лишь английский Austin Maxi 2200 середины 60-х годов (тогда конструкторам пришлось спрятать коробку передач под двигателем) и Volvo S80 с суперкомпактной коробкой передач.
Два мотора R3, составленные друг за другом, дают великолепный результат — абсолютно уравновешенную рядную «шестёрку».
Как укоротить рядный мотор? Его можно «распилить» пополам, поставить две половинки рядом друг с другом и заставить работать на один коленвал. Такие моторы, у которых цилиндры расположены в виде латинской буквы V, вдвое короче рядных — наибольшее распространение получили двигатели с углом развала блока 60° и 90°. А V-образный мотор с углом развала блока 180°, в котором цилиндры расположены друг против друга, называют оппозитным (или «боксером» — обозначения В2, В4, В6 и т. д. происходят именно от слова boxer).
Такие моторы сложнее рядных — например, у них две головки цилиндров (каждая со своей прокладкой и коллекторами), больше распредвалов, сложнее схема их привода. А оппозитные двигатели ещё и занимают много места в ширину. Поэтому из компоновочных соображений они применяются довольно редко — производителей «боксеров» можно пересчитать по пальцам.
А как сделать V-образный двигатель еще компактнее? Одно из простых, на первый взгляд, решений — установить угол развала блока менее 60°. Действительно, такие моторы были, но редко — можно вспомнить, например, автомобили Lancia Fulvia 70-х годов с моторами V4, угол развала блока которых составлял 23°. Почему же этим не пользовались все? Дело в том, что перед конструктором двигателя всегда стоит ещё одна проблема — вибрации.
О силах и моментах
Вообще без вибраций поршневой двигатель внутреннего сгорания работать не может — так уж он устроен. Но бороться с ними нужно, и не только для повышения комфорта пассажиров. Сильные неуравновешенные вибрации могут вызвать разрушения деталей мотора — со всеми вылетающими и выпадающими оттуда последствиями…
Отчего возникают вибрации? Во-первых, в некоторых схемах двигателей вспышки в цилиндрах происходят неравномерно. Таких схем конструкторы по возможности избегают или стараются делать массивней маховик — это помогает сгладить пульсации крутящего момента. Во-вторых, при движении поршней вверх-вниз они то разгоняются, то замедляются, из-за чего возникают силы инерции — сродни тем силам, что заставляют пассажиров автомобиля кланяться при торможении или вдавливают их в спинки сидений при разгоне. В-третьих, шатун в двигателе движется вовсе не вверх-вниз, а совершает сложное движение. Да и возвратно-поступательное перемещение поршня от верхней мёртвой точки к нижней тоже нельзя описать простой синусоидой.
- Силы инерции от двух масс, вращающихся на одном валу поодаль друг от друга, создают свободный момент.
- В простейшем моторе есть свободные силы инерции, но нет моментов. Цилиндр-то один.
Поэтому среди сил инерции появляются составляющие с удвоенной, утроенной, учетверённой частотой вращения коленвала… Этими так называемыми силами инерции высших порядков, как правило, пренебрегают — они по сравнению с основной силой инерции (которой присвоили первый порядок) очень малы. Исключение составляют силы инерции второго порядка, с которыми приходится считаться. Плюс к этому, пары сил, приложенные на определённом расстоянии, образуют моменты — так происходит, когда в соседних цилиндрах силы инерции направлены в разные стороны.
Что сделать для того, чтобы уравновесить силы и моменты? Во-первых, можно выбрать схему мотора, в которой цилиндры и кривошипы коленчатого вала расположены таким образом, что силы и моменты взаимно уравновесят друг друга — всегда будут равны и направлены в противоположные стороны.
Яркий представитель вымершего племени автомобилей с рядной «восьмёркой» — модель 1930-х годов Alfa Romeo 8C.А если ни одна из уравновешенных схем не подходит — например, из компоновочных соображений? Тогда можно попытаться по-другому расположить шейки коленвала и применить всякого рода противовесы, создающие силы и моменты, равные по величине, но противоположные по направлению основным уравновешиваемым силам. Иногда это можно сделать, разместив противовесы на коленчатом валу мотора. А иногда — на дополнительных валах, которые называют балансирными валами противовращения. Называются они так потому, что крутятся в другую сторону, нежели коленвал. Но это усложняет и удорожает двигатель.
Чтобы облегчить описание степени уравновешенности разных двигателей, мы подготовили сводную таблицу. Зелёным в ней выделены самоуравновешенные силы и моменты, а красным — свободные (те, что не уравновешены и вырываются на свободу — через опоры силового агрегата проходят на кузов автомобиля).
Степень уравновешенности (зелёная ячейка — уравновешенные силы или моменты, красная — свободные) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | R2 | R2* | V2 | B2 | R3 | R4 | V4 | B4 | R5 | VR5 | R6 | V6 | VR6 | B6 | R8 | V8 | B8 | V10 | V12 | B12 | |
Силы инерции первого порядка | |||||||||||||||||||||
Силы инерции второго порядка | |||||||||||||||||||||
Центробежные силы** | |||||||||||||||||||||
Моменты от сил инерции первого порядка | |||||||||||||||||||||
Моменты от сил инерции второго порядка | |||||||||||||||||||||
Моменты от центробежных сил | |||||||||||||||||||||
* Поршни в противофазе. | |||||||||||||||||||||
** Уравновешиваются противовесами на коленчатом вале. |
Что же получается? Из распространённых типов двигателей абсолютно уравновешенных всего два — это рядная и оппозитная «шестёрки». Теперь понимаете, почему BMW и Porsche так крепко держатся за такие моторы? Ну а о причинах, по которым от них отказываются остальные, мы уже упоминали. Теперь рассмотрим поподробнее остальные схемы.
Шестицилиндровый «оппозитник» водяного охлаждения Porsche. С левой и правой сторон блока в целях экономии стоят одинаковые головки, поэтому цепные приводы распредвалов пришлось устраивать и спереди, и сзади.
Уравновешенные и не очень
Из двухцилиндровых двигателей на автомобилях нынче применяется только один — двухцилиндровый рядный мотор с коленчатым валом, у которого кривошипы направлены в одну сторону (такой, например, стоял на отечественной «Оке»). Как видно, этот двигатель по степени уравновешенности похож на одноцилиндровый, поскольку оба поршня движутся вверх и вниз одновременно, в фазе. Для того чтобы уравновесить свободные силы инерции первого порядка, в моторе «Оки» слева и справа от коленвала применялись два вала с противовесами. А как же быть с силами второго порядка? Для того чтобы с ними справиться, пришлось бы добавить ещё два балансирных вала, что на двухцилиндровом моторе, изначально предназначенном для маленьких и дешёвых автомобилей, было бы совершенно неуместным.
Впрочем, это ещё ничего — много двухцилиндровых моторов выпускалось вообще без балансирных валов. Так было, например, на малышках Fiat 500 образца 1957 года. Да, вибрации были, их старались погасить подвеской силового агрегата… Но мотор зато получался простым и дешёвым! Дешевизна двухцилиндровых двигателей соблазняет разработчиков и сегодня: не зря же эту схему использовали создатели самого доступного автомобиля планеты, индийского хэтчбека Tata Nano.
Машин с оппозитной «двойкой» — по экономическим и компоновочным соображениям — было немного. Можно упомянуть, например, французский Citroen 2CV.Двухцилиндровый двигатель, у которого кривошипы направлены в разные стороны (под углом 180°), можно встретить сегодня только на мотоциклах. Поскольку поршни в нём всегда движутся в противофазе, то он уравновешен лучше. Однако равномерного чередования вспышек в цилиндрах можно добиться только на двухтактных моторах — такие двигатели устанавливались на довоенные DKW и их прямых наследников, пластиковые гэдээровские Трабанты. По причине простоты и дешевизны никаких балансирных валов на них тоже не было, а с возникающими вибрациями просто мирились.
Автомобиль с двухцилиндровым V-образным мотором припоминается только один — отечественный НАМИ-1. А до наших дней этот тип двигателя дожил только на мотоциклах — вспомните американский Harley Davidson и его японских последователей с их V-образными «двойками» во всей хромированной красе. Такой мотор можно уравновесить практически полностью с помощью противовесов на коленчатом валу, но достичь равномерного чередования вспышек невозможно. Хорошо, что байкеры особого внимания на вибрации не обращают…
НАМИ-1 — прототип 1927 года.
Трёхцилиндровый двигатель уравновешен хуже, чем рядная «четвёрка», и поэтому производители трёхцилиндровых моторов — например, Subaru и Daihatsu — стараются оснащать их балансирными валами. В своё время опелевские двигателисты решили отказаться от балансирного вала, разрабатывая трёхцилиндровый мотор семейства Ecotec для Корсы второго поколения — в целях удешевления и уменьшения механических потерь. И трёхцилиндровая Corsa после дебюта в 1996-м была раскритикована немецкими автожурналистами: «По городу на переменных режимах ездить совершенно невозможно».
В самой популярной среди двигателистов рядной «четвёрке» остаётся свободной сила инерции второго порядка. Её можно уравновесить только балансирным валом, вращающимся с удвоенной скоростью. (Вы не забыли — сила инерции второго порядка действует с удвоенной частотой?) А для компенсации момента от балансирного вала придётся ставить ещё один, вращающийся в противоположную сторону. Дорого? Безусловно. Однако моторы с балансирными валами можно встретить на автомобилях Mitsubishi, Saab, Ford, Fiat и самых разных марок концерна Volkswagen.
Пример рядной «четвёрки» с балансирными валами — двухлитровый двигатель Audi. Валы располагаются по обе стороны от коленвала и с удвоенной скоростью вращаются в противоположные стороны. Здесь балансирные валы расположены снизу и соединены зубчатой передачей, а раньше (как, например, на приведённом на картинке внизу двигателе Saab 2.3) их располагали сверху и у каждого был свой шкив цепного привода.
Кстати, оппозитная «четвёрка» уравновешена лучше, чем рядная, — здесь есть только момент от сил инерции второго порядка, который стремится развернуть двигатель вокруг вертикальной оси. Однако и «оппозитник» воздушного охлаждения легендарного «Жука», и знаменитые «боксеры» Subaru обходились и обходятся без балансирных валов.
Subaru из компоновочных соображений предпочитает рядной «четвёрке» оппозитную. Что до вибраций, то силы инерции второго порядка у «боксера» уравновешены, но момент от них всё же остаётся свободным.
У рядных «пятёрок» с уравновешенностью дела обстоят не очень. Силы инерции компенсируются, но вот моменты от этих сил… Во время работы двигателя по блоку постоянно «пробегает» волна изгибающего момента, поэтому блок должен быть весьма жёстким. Однако и Mercedes-Benz, и Audi, и Volvo борются с вибрациями, дорабатывая подвеску силового агрегата или применяя специальные противовесы (как у наддувной «пятёрки» 2.5 TFSI на Audi TT RS). И только фиатовские мотористы применяли балансирный вал, который полностью уравновешивал все моменты.
- На картинке FIAT JTD от хэтчбека Croma — потомок пятицилиндрового турбодизеля Fiat TD 125 объёмом 2387 см³, образованного путём добавления одного цилиндра к 1,9-литровой «четвёрке» TD 100. Балансирный вал — слева, в нижней части картера.
- Под каким углом расположить кривошипы коленвала рядной «пятёрки»? 360° делим на пять. .. Правильно — 72°!
Кстати, практически все «пятёрки» образованы путём прибавления ещё одного цилиндра к четырёхцилиндровому двигателю — как кубики в конструкторе. Делают это для того, чтобы с минимальными производственными и конструкторскими затратами получить более мощные моторы. При этом всю начинку, включая поршни, шатуны, клапаны и т. д., можно взять от «четвёрки». Понадобятся иные блок и головка цилиндров и, само собой, коленчатый вал, кривошипы которого должны быть расположены под углом в 72°.
О шестицилиндровых моторах — мечте с точки зрения уравновешенности — мы уже упоминали. А вот в моторах V6, которые вытесняют рядные «шестёрки», ситуация с уравновешенностью такая же, как у «трёшки», то есть не ахти. Поэтому, например, балансирным валом в развале блока цилиндров был оснащён самый первый двигатель V6 фирмы Mercedes-Benz — заслуженный М112 с тремя клапанами на цилиндр. У трёхлитровой «шестёрки» концерна PSA вал находился в одной из головок блока. На других моторах того времени инженеры пытались не усложнять конструкцию и старались свести уровень вибраций к минимуму за счёт усовершенствованной подвески силового агрегата и хитроумного смещённого расположения шатунных шеек коленчатого вала (как, например, на Audi V6).
- В моторе V6 с углом развала блока 90° сдвоенные кривошипы расположены под углом 120°. А в моторах с развалом 60° каждый шатун приходится устанавливать на своём кривошипе.
- Для уравновешивания свободного момента от сил второго порядка мотору V6 90° необходим один балансирный вал (показан стрелкой). В двигателе Citroen 3.0 V6 он был установлен в одной из головок блока.
У новейших мерседесовских двигателей V6 угол развала блока сократился до 60°, в результате чего необходимость в балансирном вале отпала.
Добавим сюда ещё одно замечание — в моторах V6 с развалом в 90° не обеспечивается равномерное чередование вспышек в цилиндрах. Возникающая неравномерность хода может компенсироваться за счёт утяжелённого маховика, но лишь отчасти. Вот вам и ещё один источник вибраций…
Двигатели V8 с углом развала цилиндров в 90° и коленвалом, кривошипы которых располагаются в двух взаимно перпендикулярных плоскостях, весьма неплохо уравновешены. В таком моторе можно обеспечить равномерное чередование вспышек, что тоже работает на плавность хода. Остаются неуравновешенными два момента, которые можно полностью утихомирить с помощью двух противовесов на коленчатом валу — на щеках крайних цилиндров. Понимаете, почему американцы раньше других прочувствовали всю прелесть V-образных моторов? Вибрации и тряски в своих автомобилях они очень не любят…
Двигатель V8: и развал блока, и угол между кривошипами — 90°.
Напоследок можно поговорить о схемах необычных. Сначала вспомнить о моторах V4. Таких было немного — европейский Ford образца 60-х годов (который стоял на автомобилях Ford Taunus, Capri и Saab 96) да чудо-двигатель отечественного «Запорожца». Здесь не обошлось без уравновешивающего вала для момента от сил инерции первого порядка. Впрочем, конструкторы вышеупомянутых автомобилей выбирали эту схему из условий компактности и отчасти экономии, а не за хорошую уравновешенность.
- Ford и ЗАЗ выбрали экзотику: мотор V4, в котором и угол развала блока, и угол между кривошипами составляют 90°.
- Угол развала цилиндров моторов V2 колеблется от 25° до 90°.
А что насчёт V-образных «десяток»? Как можно видеть, степень уравновешенности таких моторов точно такая же, как и у моторов R5. Впрочем, конструкторы прежних моторов Формулы-1 или монстров Dodge Viper и Dodge RAM, где стоят двигатели V10, о вибрациях думали далеко не в первую очередь.
Как жаль, что Viper и его коллосальный V10 — уже история.
Двигателями V10 отметилась целая череда знаковых машин: BMW M5, Audi S6 и S8, а также RS6 с наддувной «десяткой». Не говоря уже об автомобилях Lamborghini. Наконец, Lexus LFA тоже оснащается двигателем V10.Ну а прочие схемы легко свести к предыдущим. Например, оппозитная «восьмёрка» (пример применения — гоночные болиды Porsche 917) — это две «четвёрки», работающие на один коленвал. А V-образный и оппозитный двенадцатицилиндровые двигатели можно свести к двум рядным «шестёркам».
VR6, VR5, W12…
Помните, мы упоминали о V-образных моторах с малым углом развала блока — как на Лянчах? Раньше таких схем избегали — уравновесить их сложнее, чем моторы с развалом в 60° или 90°, а выигрыш в компактности тогда ценили не так…
Но теперь ситуация изменилась. Во-первых, повсеместно применяются гидроопоры силового агрегата, которые значительно ослабляют вибрации. Во-вторых, пространство под капотом нынче на вес золота. Ведь кто раньше мог себе представить скромный хэтчбек с 2,8-литровым мотором? А теперь — пожалуйста! Всё началось с Фольксвагена Golf VR6 третьего поколения.
Знаменитый фольксвагеновский двигатель VR6, «V-образно-рядный» мотор (об этом и говорит обозначение VR), стал дальнейшим развитием V-образных двигателей с малым углом развала блока. Цилиндры этого мотора разведены на ещё меньший угол, чем на Лянчах, — всего на 15°. Угол настолько мал, что такой мотор называют ещё «смещённо-рядным». Гениальное решение — «шестёрка» 2. 8 компактнее, чем обычный мотор V6, да ещё и имеет одну головку блока! Потом появился двигатель VR5 — это VR6, от которого «отрезали» один цилиндр. После этого мотористы концерна Volkswagen вообще словно с цепи сорвались.
Двигатель VR5 2.3 конструкторы Фольксвагена получили, отняв один цилиндр от мотора VR6. Угол развала компактного блока — 15°, все пять цилиндров укрыты одной головкой блока.
Они придумали суперкомпактный двигатель W12, который дебютировал в 1998 году на концепт-каре W12 Roadster. Это два двигателя VR6, установленные под углом 72° на одном коленвале. Но прежде в серию пошёл мотор W8, которым оснащалась топ-модель седана Passat. Там тоже два мотора VR6, от которых «отрезано» по два цилиндра и которые тоже объединены в одном блоке на одном коленвале. Когда-то в Вольфсбурге подумывали и о восемнадцатицилиндровом двигателе — но в итоге остановились на W16 с четырьмя турбокомпрессорами, который разгоняет Bugatti Veyron до 431 км/ч.
Супермотор W12, показанный на концепте имени себя, приводит в движение представительские модели фирм Audi, Volkswagen и Bentley. На фото хорошо видно шахматное расположение цилиндров пары блоков, объединённых в одной отливке под углом 72°. Длина 420-сильного мотора — всего 51 см, ширина — 70 см.
Почему же таких моторов не было раньше? Взгляните, к примеру, на коленвал двигателя W12 — такое технологу и в страшном сне не приснится! Создателям новых схем должен помогать компьютер. Чтобы просчитать все варианты угла развала блока, расположения шатунных шеек, порядка вспышек в цилиндрах и выбрать самый уравновешенный, без помощи вычислительных мощностей обойтись очень сложно.
Теория и практика
Как видно, при выборе схемы силового агрегата конструкторы ставят во главу угла вовсе не степень уравновешенности. Главное — это удачно вписать в моторный отсек такой двигатель, который будет обладать наилучшим соотношением массы, размеров и мощности. Потом, двигатели сейчас всё чаще строятся по модульному принципу. Говоря упрощённо, на одной поршневой группе можно построить любой мотор — и трёхцилиндровый, и W12. Вслед за Фольксвагеном на модульные конструкции переходит всё больше производителей. Новейшая линейка моторов Mercedes — тому отличное подтверждение.
А вибрации… Во-первых, следует различать теоретическую и действительную уравновешенность двигателя. Если коленчатый вал в сборе с маховиком не отбалансирован, а поршни и шатуны заметно отличаются по массе, то трясти будет даже рядную «шестёрку». А потом, действительная уравновешенность всегда значительно хуже теоретической — по причинам отклонения деталей от номинальных размеров и из-за деформации узлов под нагрузкой. Так что вибрации «прорываются» из двигателя наружу при любой схеме. Поэтому автомобильные инженеры и уделяют такое внимание подвеске силового агрегата. На самом деле конструкция и расположение опор двигателя — не менее важный фактор, чем степень уравновешенности самого мотора…
Материал адаптирован к публикации с разрешения ООО «Газета «Авторевю». Все права на перепечатку принадлежат Авторевю.
блок, цилиндр, поршень, поршневые кольца и шатун
Для будущего автомобильного механика, диагноста устройство двигателя автомобиля является одной из ключевых тем. Именно двигатель обеспечивает транспортное средство энергией, которая нужна для его движения.Чаще всего механизм запуска устройства двигателя автомобиля возможен за счёт применения бензина или дизеля (дизельного топлива). Сгораемое внутри мотора топливо продуцирует тепло, что приводит к увеличению температуры газов внутри цилиндра двигателя и росту давления газов. Подвижные части двигателя под их влиянием вступают в работу, и тепловая энергия преображается в механическую.
Базовые части двигателя
Чтобы хорошо понимать устройство двигателя автомобиля, важно разбираться, что из себя представляет блок, цилиндр, поршень, поршневые кольца и шатун.
Блок
Металлическую основу мотора, остов называют блоком. Это корпусная деталь. Именно к блоку крепятся механизмы и отдельные части мотора и его систем.Иногда можно встретиться с термином «блок», иногда – с терминами «блок двигателя», «блок цилиндров». Всё это одно и тоже.
Блок двигателя берёт на себя серьёзные нагрузки. Поэтому контроль качества при его изготовлении должен быть предельно высок. Огромное внимание уделяется как материалу, так и уровню точности изготовления детали. Для производства используются высокоточные станки.
Раньше блоки изготавливали из перлитного чугуна с легирующими добавками. Популярность чугуна при изготовлении блоков легко объяснима тем, что материал износостоек, стабилен по своим свойствам, малочувствителен к перегреву, адаптивен к ремонту. Сейчас некоторые производители также выпускают блоки из алюминиевого, магниевого сплава. В этом случае есть выигрыш, связанный с весом мотора. Это очень актуально для блоков моторов спорткаров.
Цилиндр
Рядом с понятием «блок» стоит понятие «цилиндр». Под цилиндром подразумевается цилиндрическое отверстие, высверленное в блоке. То есть это рабочая камера объёмного вытеснения.Уплотнение верхней стороны цилиндра обеспечивает головка. Именно в ней находятся:
- Клапаны. Обеспечивают (в процессе открытия-закрытия) поступление в цилиндр воздуха, топливовоздушной смеси. Также среди функций клапанов обеспечивают очистку камеры сгорания цилиндра от отработавших (выхлопных) газов. Закрытие клапанов и удержание их в таком состоянии обеспечивают клапанные пружины.
- Распредвалы (элементы привода клапанов). От них зависит то, как открываются клапаны, сколько времени они находятся в открытом состоянии
- Механизмы привода клапанов. Функция идентична. И, как видно, из названия – это привод клапанов. Но сами механизмы могут быть разными. Всё зависит от мотора: например, бензиновый, дизельный.
Цилиндр играет роль направляющего для поршня.
Поршень, поршневые кольца и шатун
Цилиндрическая деталь или совокупность деталей, которая преобразует энергию горения топливо в механическую энергию, называется поршнем.
В проточках на боковой поверхности поршня вставлены поршневые кольца. Благодаря им между поршнем и стенкой цилиндра создаётся уплотнение. Задача поршневых колец заключается в создании барьера для перетекания из камеры сгорания в картер коленчатого вала газов.
Среди задач поршня:
- Оказание силового воздействия на шатун.
- Отвод тепла от камеры сгорания.
- Герметизация камеры сгорания.
Подвижное соединение между поршнем и коленчатым валом обеспечивает шатун. Именно шатун передаёт силу движущегося поршня к вращающемуся коленчатому валу.
Коленчатый вал
Коленчатый вал – это важная составляющая кривошипно-шатунного механизма. Кривошип коленчатого вала создает возвратно-поступательное движение поршня через шатун (подвижный элемент), то есть возвратно-поступательное движение поршня превращается в крутящий момент. Физически коленвал расположен в нижней части двигателя. Снизу коленвал прикрыт картером – самой внушительной неподвижной и полой частью двигателя, закреплённой на блоке сбоку. Визуально картер напоминает поддон.
Конструкция коленчатого вала состоит из несколько шеек (коренных и шатунных). Они соединены щеками, соединенных между собой щеками. Место перехода от шейки к щеке всегда является самым нагруженным у коленвала.
На коленчатый вал приходятся переменные нагрузки от сил давления газов.
Для того, чтобы не возникало осевых перемещений коленчатого вала, используется упорный подшипник скольжения. Он устанавливается на одной из шеек (средней или крайней).
Несколько важных терминов, касающихся устройства двигателя автомобиля
Камера сгорания –замкнутое пространство, где осуществляется воспламенение и горение топливовоздушной смеси. Сверху камера сгорания ограничена нижней поверхностью головки цилиндра, сбоку – стенками цилиндра, снизу –днищем поршня.
Толкатели клапанов, подъёмники –промежуточное звено, необходимое для передачи движения от распределительного вала к остальным частям механизма привода клапанов.
Коромысла (рокеры). Детали двигателя, функции которых заключаются в передаче движения от распределительного вала к клапанам.
Маховик. Деталь, ответственная за обеспечение равномерного вращения коленчатого вала. На цилиндрической устанавливается зубчатый венец. Он помогает провести пуск электростартера.
На схеме представлено расположение основных частей двигателя при рассмотрении его со стороны его задней части. На фланце коленчатого вала видны отверстия под болты, с помощью которых к фланцу крепится маховик с зубчатым венцом, или платина привода гидравлического трансформатора автоматической трансмиссии. Источник: Ford.
Автомобильные двигатели
Большинство двигателей автомобилей многоцилиндровые. Это значит при работе используется два или несколько цилиндров и два или несколько поршней.Автопром выпускает машины с 2-; 3-; 4-; 5-; 6; 8-; 10- и 12-цилиндровыми двигателями.
Чем больше цилиндров у мотора, тем больше возможностей для увеличения мощности двигателя. Если нужен двигатель, предназначенный для езды по бездорожью либо машина, развивающая сверхвысокие скорости, актуально именно устройство двигателя автомобиля, ориентированное на большое количество цилиндров. Устройство двигателя с большим количеством цилиндров обеспечивает отличную равномерность вращения коленчатого вала, ведь угол поворота коленчатого вала при 10, 12 цилиндрах – очень небольшой.
Но у 2-х цилиндровых двигателей есть другое преимущество: самые лучшие показатели топливной эффективности.
Циклы двигателя
Устройство двигателя автомобиля всегда рассматривается в купе с его рабочим циклом.Физически цикл – это периодически повторяющиеся процессы в каждом его цилиндре. Достаточно подробно разница между работой четырёхтактного и двухтактного двигателя отражена в нашей статье о двигателе внутреннего сгорания.
Сегодня мы остановимся на работе четырёхтактных моторов. Именно по четырёхтактному циклу работает большинство современных автодвигателей. Хотя сам принцип двигателя был изобретён Николаусом Отто в 19-м веке.
Поршень четырёхтактного двигателя совершает нисходящее и восходящее движение. Эта работа укладывается в один оборот коленчатого вала. При втором обороте коленчатого вала вновь повторяют эти движения.
1. Такт впуска (всасывания). Поступление в цилиндр двигателя свежего заряда: воздуха- от дизельного мотора бензинового двигателя с прямым вспрыском или топливовоздушной смеси, от газово-топливного двигателя, мотора с распределенным или центральным впрыском топлива, или газо-топливные двигатели). В результате разрежения, созданного поршнем, перепад давления между давлением в цилиндре и давление окружающего воздуха, заряд втягивается непосредственно в цилиндр.
2. Такт сжатия. Шатун толкает поршень. Поршень сжимает газообразный свежий заряд в цилиндре. Устройство дизельного двигателя настроено на то, чтобы температура сжатых газов должна достигла температуры воспламенения топлива. Если же речь идёт об устройстве газо-топливного, бензинового двигателя температура в конце такта сжатия достигать температуры воспламенения топлива не должна. Воспламенение производится от электроискрового разряда свечи зажигания.
3. Такт рабочего хода. Температура газов в цилиндре снижается, энергия горящих газов преобразуется в механическую энергию.
4. Такт выпуска отработавших газов. Поршень движется снизувверх. Отработавшие газы выходят из цилиндра через выпускной клапан.
Устройство двигателя автомобиля устроено так, что четыре такта повторяются циклично. Посредством маховика механическая энергия превращается во вращательное движение коленвала.
Модульное обучение автоосновам доступно при изучении электронных программ по профессиям. Удобный дистанционный формат обучения.
Как продлить жизнь мотору: всего 5 условий — журнал За рулем
Современные атмосферники изнашиваются быстрее прежних, и тому есть немало причин. Но отсрочить безвременную кончину двигателя можно — всё в ваших руках!
Ускорение темпа жизни отразилось даже на двигателях внутреннего сгорания. Еще пару десятков лет назад цилиндры и поршни изнашивались довольно медленно. Стенки цилиндров постепенно лишались следов хона и становились зеркальными. Поршни тоже понемножку теряли слой металла на своих юбках. Поверхность алюминия становилась матовой. Зазор в цилиндре рос, но постепенно. Со временем в верхней части цилиндра образовывалась ступенька в зоне остановки верхнего компрессионного кольца.
А современные моторы всё чаще заканчивают жизнь по-другому: у них образуются задиры.
Материалы по теме
Что такое задир?
Задиром называют взаимное повреждение поверхностей трения при их работе без зазора. Нет зазора — значит, прекращается смазка. Дальнейшее движение в отсутствие смазки приводит к микросвариваниям выступающих элементов микронеровностей. Срыв этих частиц ведет к дальнейшему росту температуры. В случае с цилиндром это еще больше увеличивает диаметр поршня вследствие термического расширения — задир растет. Явление может продолжаться вплоть до полного заклинивания поршня. Итог — разрушение поршня, шатуна, блока цилиндров и, возможно, коленвала. Впору идти за другим мотором.
Задиры в цилиндре.Задиры в цилиндре.
Задранный поршень.Задранный поршень.
ГДЕ ОБРАЗУЕТСЯ ЗАДИР?Материалы по теме Чаще задирает ту стенку поршня, на которую действуют силы от наклоненного шатуна при рабочем ходе. Поэтому лучше себя чувствуют моторы, где с этой стороны расположен более холодный впуск, а не горячий выпуск. При поперечном расположении мотора и правом вращении коленвала больше нагружена задняя стенка, и, следовательно, выгодны моторы с выпуском на передней стороне мотора. Например, семейство моторов GM Z16XER или ниссановcкий QR25DE выглядят «правильнее», чем корейские моторы G4FC или G4KD. |
А раньше такое было?
Было, конечно, - и в прошлом веке моторы иногда задирало. Но, как правило, лишь когда при ремонте допускали очень малый зазор по поршню, когда двигатель не обкатывали после ремонта, и когда давали большую нагрузку «на холодную».
Материалы по теме
А вам не кажется, что это — описание современного двигателя и нынешних рекомендаций по эксплуатации?
Сегодня обычно применяются очень малые по высоте поршни — для облегчения и снижения трения. Но невысокий поршень по определению будет иметь возможность сильно наклоняться в цилиндре. Пришлось конструкторам уменьшить монтажный зазор в цилиндре. А еще маленький легкий поршень хуже отдает тепло цилиндру, а потому подвержен быстрому перегреву. Не случайно раньше в алюминиевые поршни заливали стальные пластины — так называемые автотермики. Благодаря гораздо меньшему коэффициенту расширения стали поршни лучше сохраняли форму, удерживая зазоры в допуске.
При такте «рабочий ход» максимальная нагрузка ложится на заднюю стенку цилиндра. Это видно, если провести разложение сил от давления газов.При такте «рабочий ход» максимальная нагрузка ложится на заднюю стенку цилиндра. Это видно, если провести разложение сил от давления газов.
ПЕРЕГРЕВ ПОЧТИ НЕ ВИДЕНСовременные указатели температуры зачастую настроены так, что показывают «всё ОК», даже когда температура двигателя составляет 105–110° C. Но ведь водитель не в курсе, что еще чуть-чуть — и начнется местное вскипание жидкости, теплоотвод упадет и — здравствуй, задир в цилиндре. Лучше всего установить дополнительное устройство для контроля за температурой и узнать характер своей машины — какому показанию стрелки какая реальная температура соответствует. |
Когда прихватит?
В нынешних моторах прихват возможен:
- при перегреве двигателя, когда поршень расширился больше расчетного;
- при большой нагрузке на холодном моторе, когда поршень нагрелся и расширился, а цилиндр не успел;
- при плохой смазке пары поршень-цилиндр.
Материалы по теме
Способствует раннему образованию задиров и экономия производителей на установке форсунок, подающих масло на днище поршня. Ведь струйка масла может отводить от поршня 30–50% тепла, снижая его температуру примерно на 20° С! Это отодвигает порог детонации и уменьшает вероятность появления задиров.
Вдобавок задиры могут возникать при неумеренном использовании пусковых жидкостей, когда смазка со стенок цилиндров смывается, а затем следует резкий запуск, и выход мотора на высокие обороты.
Задиры возможны и при запуске очень долго стоявших двигателей с исчезнувшей пленкой смазки и даже с коррозией цилиндров и поршневых колец.
Посторонним вход воспрещен
Картина, похожая на задиры, появляется на стенках и юбках поршней при попадании в цилиндры посторонних частиц. Фактически цилиндр и поршень трут друг друга — в присутствии «помощников».
Песок
Основных путей попадания песка два: свечные отверстия и впускной тракт двигателя, начиная с воздушного фильтра. Если при замене свечей колодец был недостаточно очищен, то вся дрянь окажется в цилиндре. Ведь свечи почти всегда смотрят или вверх, или под углом, но всё равно вверх.
Материалы по теме
Впускной тракт может подсасывать пыль и песок как до дроссельной заслонки, так и после (в виду сильного разрежения для подсоса достаточно даже мизерных отверстий). Причина — усохшие резиновые прокладки, соскочившие трубочки различных механизмов, управляемых вакуумом.
Не забывайте, что даже вакуумный усилитель тормозов потихоньку подает во впускной трубопровод двигателя воздух, а чистый ли он? Даже самый лучший фильтрующий элемент всё равно пропускает вместе с воздухом какой-то процент пыли.
Самое страшное — когда владелец в спешке или по незнанию сам отправляет приличную порцию пыли на впуск при замене фильтра. А неправильно установленный элемент постоянно подает пыльный воздух в мотор.
Также часто встречается небрежный монтаж патрубка от воздушного фильтра до корпуса дроссельной заслонки. Не затянуты хомуты — и песочек тут как тут.
Такие повреждения цилиндра, поршня и колец не надо путать с задиром. Налицо абразивный износ крупными частицами песка.Такие повреждения цилиндра, поршня и колец не надо путать с задиром. Налицо абразивный износ крупными частицами песка.
ВРЕДОНОСНЫЙ ПЕСОКЧастицы керамики, как и песок из системы впуска, вызывают не только задиры цилиндров. Они приканчивают весь двигатель, так как фильтр отлавливает не все твердые частицы, и они поступают с маслом к коренным и шатунным шейкам, а также к шейкам и постелям распредвалов. |
Частицы керамики
Частицы керамики от разрушающегося каталитического нейтрализатора могут попадать в двигатель, если он действительно керамический (бывают и на металлической основе) и если применена схема с катколлектором.
Материалы по теме
В этом случае блок нейтрализатора находится в выпускном коллекторе на расстоянии около 200–300 мм от выпускных клапанов. Когда керамика начинает разрушаться, а это происходит при пробеге 50–150 тысяч км в зависимости от производителя нейтрализатора и качества топлива, растет вероятность попадания частиц через открытые выпускные клапаны в цилиндры двигателя. Это происходит чаще всего на моторах с фазовращателями на обоих распределительных валах и системами рециркуляции отработавших газов.
А вот на двигателях с турбонаддувом такое явление невозможно в принципе: «стражником» в выхлопе служит турбонагнетатель.
Как продлить жизнь современному мотору
Материалы по теме
- Следить за температурным режимом, не допускать перегрева, вовремя мыть радиаторы;
- После холодного пуска немного прогревать двигатель, а дальше двигаться, не давая больших нагрузок вплоть до полного прогрева;
- Следить за исправностью каталитического нейтрализатора (проверять состояние электронной диагностикой и визуально), своевременно заменять керамический блок ремонтным;
- Применять качественное топливо и — самое главное — высококачественное неподдельное масло;
- Применять качественные воздушные фильтры, своевременно и правильно менять их.
Современные атмосферники изнашиваются быстрее прежних, и тому есть немало причин. Но отсрочить безвременную кончину двигателя можно — всё в ваших руках!
Как продлить жизнь мотору: всего 5 условийцилиндров? Что такое цилиндр? | VroomGirls
Праймер по всему, что связано с двигателем. Вы когда-нибудь задумывались, что такое смещение? А крутящий момент? Что это за фигня? Не волнуйтесь, мы все это объясним.
Автор: Аарон Голд
Класс в работе
Когда вы читаете об автомобилях, вы сталкиваетесь со спецификациями двигателя, то есть с 2,0-литровым 4-цилиндровым турбонаддувом, развивающим мощность 160 лошадиных сил и 175 фунт-фут крутящего момента. Что означают все эти числа? Это тема урока в университете VroomGirls.
Цилиндры
Цилиндр — силовая установка двигателя; это камера, в которой бензин сжигается и превращается в энергию. Большинство двигателей автомобилей и внедорожников имеют четыре, шесть или восемь цилиндров. Как правило, двигатель с большим количеством цилиндров производит больше мощности, а двигатель с меньшим количеством цилиндров обеспечивает лучшую экономию топлива.
Цилиндры будут расположены либо по прямой линии (рядный двигатель, т. Е. «Рядный 4», «I4» или «L4»), либо в два ряда (V-образный двигатель, т. Е. «V8»).
ПЕРЕМЕЩЕНИЕ (в литрах и кубических дюймах)
Двигатели измеряются рабочим объемом, обычно выражаемым в литрах (л) или кубических сантиметрах (куб. См).Рабочий объем — это общий объем всех цилиндров двигателя. Двигатель с четырьмя цилиндрами по 569 куб. См каждый имеет общий объем 2276 куб. См. Он будет более округлым и будет называться 2,3-литровым двигателем. Более крупные двигатели, как правило, производят большую мощность, в частности, больший крутящий момент (см. Ниже), но при этом потребляют больше топлива.
До начала 1980-х годов двигатели измерялись в кубических дюймах. Один литр равен примерно 61 куб.см, поэтому двигатель на 350 кубических дюймов составляет около 5,7 литра.
ТУРБОКОМПЕНСАТОРЫ
Турбокомпрессор — это устройство, которое используется для увеличения мощности двигателя.Четырехцилиндровый двигатель с турбонагнетателем может производить такую же мощность, как шестицилиндровый двигатель, но при щадящем управлении расходует меньше топлива. (Для получения дополнительной информации см. Как работают турбокомпрессоры и нагнетатели. Двигатели с турбонаддувом иногда получают букву T после рабочего объема; «2.0T» обозначает 2-литровый двигатель с турбонагнетателем.
МОЩНОСТЬ И МОМЕНТ
Мощность и крутящий момент в лошадиных силах измеряют мощность, развиваемую двигателем, причем чаще всего используется мощность в лошадиных силах. Разницу между мощностью и крутящим моментом часто неправильно понимают (и ее трудно объяснить).
Крутящий момент, который измеряется в фунт-футах (фунт-фут или фут-фунт), служит для измерения тягового усилия; когда вы нажимаете педаль газа, и сиденье вдавливается вам в спину, вы чувствуете крутящий момент. Грузовикам нужен большой крутящий момент, чтобы перемещать тяжелые грузы. Мощность в лошадиных силах является функцией крутящего момента и частоты вращения двигателя (об / мин) и показывает, сколько продолжительной работы может выполнять автомобиль. Гоночным автомобилям требуется большая мощность для поддержания высоких скоростей. Как правило, двигатели с большим рабочим объемом развивают больший крутящий момент, но небольшие двигатели могут вращаться быстрее, что увеличивает их мощность в лошадиных силах.
Автомобиль с высокой мощностью, но с низким крутящим моментом может казаться вялым после остановки, но будет ощущаться сильнее, когда двигатель вращается все быстрее и быстрее. Двигатель с высоким крутящим моментом и малой мощностью будет сильно ускоряться после остановки, но будет останавливаться при увеличении скорости двигателя (до тех пор, пока трансмиссия не переключит передачи).
Измерения мощности и крутящего момента являются «пиковыми» числами; двигатель мощностью 180 лошадиных сил будет производить только 180 лошадиных сил при определенной частоте вращения двигателя, скажем, 6000 об / мин. На других скоростях двигатель развивает меньшую мощность.То же самое и с крутящим моментом, хотя некоторые двигатели (особенно с турбокомпрессорами) имеют устойчивый диапазон максимального крутящего момента, развивая свой номинальный крутящий момент, скажем, между 1800 и 4000 об / мин. Двигатель с высоким крутящим моментом в среднем диапазоне (пик между 2000 и 4000 об / мин) будет иметь хорошее ускорение при прохождении, в то время как большой крутящий момент на нижнем уровне (ниже 1500 об / мин) полезен для буксировки прицепов или езды по бездорожью. Однако автомобили с двигателями с высоким крутящим моментом более склонны к скольжению в дождь и снег.
С учетом всего вышесказанного, на ускорение будут влиять и другие факторы, такие как вес автомобиля.То, как вы себя чувствуете во время вождения, важнее, чем мощность и крутящий момент.
Volkswagen Group of America, Inc. не несет ответственности за содержание этой колонки.
Все, что вам нужно знать о цилиндрах двигателя
Что такое цилиндр двигателя и почему они различаются от двигателя к двигателю?
Цилиндры двигателя высокопроизводительного автомобиля
Цилиндр — это силовая установка двигателя.Здесь топливо сжигается и преобразуется в механическую энергию, приводящую в движение автомобиль. Количество цилиндров в типичном автомобиле может быть четыре, шесть или восемь.
Цилиндр металлический и герметично закрывается. Он содержит поршень, который перемещается вверх и вниз, сжимая топливо, которое воспламеняется и вызывает возгорание. В верхней части цилиндра есть два клапана; впускной клапан и выпускной клапан. Впускной клапан — это место, где топливо и воздух поступают в цилиндр из карбюратора или электрического топливного инжектора, а выпускной клапан — это место, где выходят выхлопные газы.
Выхлопные газы, образующиеся при сгорании в цилиндре, вращают ось, известную как коленчатый вал. Они подключены к нижней части цилиндра, который, в свою очередь, приводит в действие коробку передач, приводящую в движение колеса.
Чем больше цилиндров, тем больше поршней сжигает топливо и, следовательно, вырабатывается больше энергии.
Цилиндры могут располагаться под капотом по прямой, в два ряда или ровно. Двигатели с цилиндрами, расположенными по прямой линии, известны как рядные двигатели (т.е.е. I4 или L4). У них обычно меньше шести цилиндров. Двигатели, расположенные в два ряда, называются V-образными двигателями, поскольку они обычно расположены в форме буквы «V» и имеют более шести цилиндров. Британские двигатели с плоским расположением обычно имеют от четырех до шести цилиндров.
Как узнать, что цилиндр двигателя не работает?
Если цилиндр двигателя не работает эффективно, это может означать перегрев, утечку или пропуски зажигания. Это могут быть очевидные проблемы, которые можно обнаружить по запаху, дыму или видимым утечкам.
Если у вас проблема с цилиндрами, вы можете почувствовать сладкий запах резины, находясь внутри автомобиля. Этот запах может быть вызван утечкой охлаждающей жидкости в цилиндры.
Серый дым является хорошим индикатором того, что ваши цилиндры не работают эффективно и двигатель перегревается.
Утечки могут быть очевидны, особенно в засушливые дни. Если под вашей машиной образовалась лужа с жидкостью, вы можете проверить уровень охлаждающей жидкости.
Давление в цилиндре должно быть сбалансировано для поддержания эффективного сгорания и хорошего состояния двигателя.Низкое давление будет легко идентифицировать, поскольку основным индикатором является пропуск зажигания в двигателе при его запуске или плохая работа при движении.
Давление можно измерить с помощью манометра. Вы можете сделать это сами, если он у вас есть, или попросить механика сделать это за вас.
Если в вашей машине наблюдается какая-либо из этих проблем, попросите кого-нибудь ее проверить. Цилиндры и прокладки двигателя являются важными рабочими частями двигателя.
Об авторе
Николь Фергюсон
Штатный писатель Арнольда Кларка
Что такое цилиндры двигателя?
Что такое цилиндры двигателя?
Вы ищете новую машину? Или вы любите читать последние автомобильные новости? В любом случае, вы, вероятно, наткнулись на некоторые технические характеристики, которые могли немного запутать.Одна спецификация, которая обычно упоминается, — это количество цилиндров, которые идут в комплекте с двигателем. Если вы не знакомы с цилиндрами двигателя и их номерами, читайте дальше, и мы дадим объяснение.
Для чего нужны цилиндры двигателя?
Двигатель — это сердце вашего автомобиля, и когда он работает без сбоев, вы можете ехать куда угодно! Цилиндры вашего двигателя содержат поршни, которые помогают толкать силу, создаваемую сжиганием топлива, чтобы заставить ваш двигатель работать.
Узнайте, какая модель Prius доставит вас дальше всего!
В чем разница между 4-цилиндровыми и 8-цилиндровыми двигателями?
4-цилиндровые двигателиимеют четыре цилиндра, а 8-цилиндровый двигатель — восемь цилиндров.У двигателя может быть любое количество цилиндров, хотя мы обычно видим четыре, шесть или восемь у Toyota. Как правило, двигатели с большим количеством цилиндров вырабатывают больше мощности, а меньшее количество цилиндров может означать лучшую топливную экономичность.
Узнайте о системе гибридного привода Prius v 2017 года!
Что такое рядные цилиндровые двигатели?
Если вы встретите набор спецификаций, описывающих рядный 4-цилиндровый (или любое количество) двигатель, это означает, что все цилиндры находятся на одной стороне двигателя в прямом ряду.
Приходите в Toyota Дэна Кава, чтобы удовлетворить все ваши потребности в двигателях!
Если у вас есть какие-либо вопросы о двигателе вашей Toyota, обращайтесь в наш сервисный отдел. Наши специалисты по обслуживанию будут рады объяснить компонент, чтобы вы знали, на что обращать внимание при выполнении собственного технического обслуживания. Если звук вашего автомобиля немного нечеткий, не стесняйтесь назначить встречу с сервисом, и мы сделаем так, чтобы он работал как новый!
Ещё от Dan Cava Toyota World
Различия между двигателями I-4, I-6, V-6 и V-8 | Гиды по покупкам
Двигатели с 4, 5, 6 или 8 цилиндрами используются в большинстве современных автомобилей.Конечно, есть исключения, в первую очередь, 10-цилиндровый двигатель Dodge Viper или 12-цилиндровый двигатель, установленный в нескольких роскошных седанах высшего класса. Но в большинстве современных автомобилей используется более распространенное количество цилиндров.
В цилиндре двигателя происходит процесс сгорания. Внутри каждого цилиндра находится поршень, который движется вверх и вниз внутри цилиндра (или из стороны в сторону, как мы узнаем). Каждый цилиндр соединен с коленчатым валом. Коленчатый вал передает энергию, создаваемую процессом сгорания, трансмиссии и, в конечном итоге, колесам, которые приводят в движение автомобиль.Вообще говоря, чем больше цилиндров у двигателя, тем больше он мощности и крутящего момента.
Цилиндры двигателя обычно расположены в вертикальном положении, выровнены друг за другом от передней части к задней части двигателя, или в V-образной ориентации с равным количеством цилиндров с каждой стороны. Когда цилиндры двигателя ориентированы вертикально, двигатель имеет «рядную» конфигурацию, которая используется в сочетании с 4, 5 или 6 цилиндрами. Когда цилиндры двигателя имеют V-образную ориентацию, двигатель имеет V-образную конфигурацию, которая используется в сочетании с 6 или более цилиндрами.Если двигатель установлен поперечно, что является обычным для автомобилей с передним приводом, цилиндры и коленчатый вал ориентированы из стороны в сторону, а не спереди назад.
Porsche и Subaru не используют ни рядный, ни V-образный двигатель. Вместо этого эти модели имеют «горизонтально противоположные» цилиндры. Эти силовые установки, также известные как «плоские» или «оппозитные» двигатели, имеют цилиндры, расположенные плоско по обе стороны от коленчатого вала, а поршни вращаются по сторонам автомобиля, как кулаки боксера.Новый Scion FR-S 2013 года, оснащенный двигателем Subaru, также отличается этой конструкцией двигателя.
Теперь, когда мы понимаем различные конфигурации двигателей, давайте поговорим о различиях между ними. Рядные двигатели (I) выше и уже, и, когда они установлены поперечно, позволяют конструкторам создавать автомобиль с меньшей передней частью. Двигатели V-типа (V) располагаются ниже с улучшенным центром тяжести, и эта конструкция более компактна с большим количеством цилиндров. Горизонтально расположенные двигатели (H) расположены очень низко и широко, что обеспечивает низкий центр тяжести и улучшенную управляемость.
Когда вы комбинируете конфигурацию двигателя с количеством цилиндров, результирующие ссылки будут следующими: I-4, I-5, I-6, V-6, V-8, V-10, V-12, H -4, Н-6.
Поршень и цилиндр | машиностроение
Поршень и цилиндр , в машиностроении, цилиндр скольжения с закрытой головкой (поршнем), который возвратно-поступательно перемещается в цилиндрической камере немного большего размера (цилиндр) под действием давления жидкости или против него, как в двигателе или насос.Цилиндр паровой машины ( qv ) закрыт пластинами на обоих концах, при этом шток поршня, жестко прикрепленный к поршню, проходит через одну из торцевых крышек с помощью сальника и набивки. коробка (паронепроницаемое соединение).
Цилиндр двигателя внутреннего сгорания закрыт на одном конце пластиной, называемой головкой, и открыт на другом конце, чтобы обеспечить свободное колебание шатуна, который соединяет поршень с коленчатым валом. Головка блока цилиндров содержит свечи зажигания в двигателях с искровым зажиганием (бензиновых) и обычно топливную форсунку в двигателях с воспламенением от сжатия (дизельных); на большинстве двигателей клапаны, контролирующие подачу свежих топливовоздушных смесей и отвод сгоревшего топлива, также расположены в головке.
Подробнее по этой теме
Бензиновый двигатель: Двигатели поршневые и цилиндровые
Большинство бензиновых двигателей относятся к поршнево-поршневому типу. Основными элементами поршнево-цилиндрового двигателя являются …
На большинстве двигателей цилиндры представляют собой гладко обработанные отверстия в основном конструктивном элементе двигателя, известном как блок, который обычно изготавливается из чугуна или алюминия.На некоторых двигателях цилиндры имеют гильзы (гильзы), которые можно заменить в случае их износа. В алюминиевых блоках используются вкладыши из центробежного чугуна, которые помещаются в форму при литье алюминия; Эти вкладыши не подлежат замене, но их можно переточить.
Поршни обычно снабжены поршневыми кольцами. Это круглые металлические кольца, которые входят в канавки на стенках поршня и обеспечивают плотную посадку поршня внутри цилиндра. Они помогают обеспечить уплотнение для предотвращения утечки сжатых газов вокруг поршня и предотвращения попадания смазочного масла в камеру сгорания.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасВажной характеристикой двигателя внутреннего сгорания является степень сжатия, определяемая как общий объем камеры сгорания с полностью выдвинутым поршнем (максимальный объем), деленный на общий объем с полностью сжатым поршнем (минимальный объем). Фактическая степень сжатия на практике несколько меньше. Более высокие степени сжатия обычно обеспечивают лучшие характеристики двигателя, но для них требуется топливо с лучшими антидетонационными характеристиками.
Тесно связана со степенью сжатия характеристика, известная как смещение — т. Е. изменение объема (измеряемого в кубических дюймах или кубических сантиметрах) камеры сгорания, которое происходит при перемещении поршня из одного крайнего положения в другое. . Смещение связано с номинальной мощностью двигателя.
4-цилиндровый и 6-цилиндровый двигатель
При покупке нового автомобиля люди склонны думать о типе автомобиля, его марке и дополнительных деталях, таких как цвет и особенности.Одна вещь, которая может не прийти в голову, — это конфигурация двигателя. Это важный фактор, на который обязательно стоит обратить внимание при поиске нового автомобиля.
Возможно, самый важный элемент, который следует учитывать при выборе конфигурации двигателя, — это количество цилиндров. Обычно это сводится к 4-цилиндровому против 6-цилиндрового двигателя. Чтобы помочь вам решить, какой из них подходит вам, давайте посмотрим на разницу между 4-цилиндровыми и 6-цилиндровыми двигателями.
Что такое 4-цилиндровый двигатель?
Чтобы понять разницу между 4-цилиндровыми и 6-цилиндровыми двигателями, полезно узнать больше о том, что делают цилиндры.Внутри цилиндра автомобиля находится поршень. Процесс внутреннего сгорания, который используется в автомобилях более века, активируется внутри цилиндров. Вот как работают цилиндры:
- Топливный насос подает газ в топливные форсунки.
- Каждая топливная форсунка распыляет топливо в цилиндр, количество которого зависит от того, сколько мощности требуется в данный момент.
- Небольшой взрыв, вызванный газом в цилиндре, перемещает поршень внутрь.
- Поршни приводят в движение коленчатый вал, приводя в действие двигатель и заставляя ваш автомобиль двигаться.
Итак, что означает 4-цилиндровый двигатель? Это так просто, как кажется: в двигателе четыре цилиндра. Это означает, что автомобиль питается от четырех поршней, четырех топливных форсунок и четырех цилиндров. Преимущества 4-цилиндрового двигателя:
- 4-цилиндровые двигатели, как правило, экономичны и являются отличной покупкой, если вы ищете небольшой и надежный автомобиль.
- 4-цилиндровые двигатели меньше влияют на ваш углеродный след, чем 6-цилиндровые двигатели.
- 4-цилиндровые двигатели обычно используются в небольших компактных автомобилях, которые легче маневрировать и парковаться.
Что такое 6-цилиндровый двигатель?
Ответ на этот вопрос должен показаться еще проще теперь, когда мы определили четырехцилиндровый двигатель. 6-цилиндровый двигатель имеет шесть цилиндров. Это означает шесть всего, включая поршни и топливные форсунки. Таким образом, 6-цилиндровые и 4-цилиндровые различаются по доступной мощности. Люди обычно выбирают 6-цилиндровые двигатели по следующим причинам:
- 6-цилиндровые двигатели являются более производительными двигателями и обычно используются в спортивных автомобилях и автомобилях, которым необходимо работать с большей мощностью.
- 6-цилиндровые двигатели лучше всего использовать в автомобилях с большими двигателями, которые могут помочь вам с двумя более высокими весовыми нагрузками.
Однако имейте в виду, что 6-цилиндровые двигатели в старых автомобилях часто уступают более новым 4-цилиндровым моделям, поэтому лучше проверить мощность перед покупкой.
Вывод: в чем разница между 4-цилиндровым и 6-цилиндровым двигателем?
Знать разницу между 4-цилиндровым и 6-цилиндровым двигателем — это одно.Знать, какой из них подойдет вам, — другое. Каждый раз, когда вы ищете новую машину, вам нужно спросить, что вам нужно от машины. Вы ищете большую экономию топлива для поездок на работу или хотите большей мощности и производительности для работы или удовольствия? Эти ответы помогут вам сделать лучший выбор для вашей ситуации.
Ключевые моменты, о которых следует помнить, думая о 6-цилиндровых и 4-цилиндровых двигателях:
- В целом, вы получите большую экономию топлива от 4-цилиндрового двигателя.
- Обычно 6-цилиндровый двигатель обеспечивает большую мощность и производительность.
- Если вы хотите купить автомобиль меньшего размера, у вас, скорее всего, будет 4-цилиндровый двигатель.
- Для буксировки лучше всего подойдет 6-цилиндровый двигатель.
Мы говорим об этом несколько в общих чертах, потому что, как уже упоминалось ранее, чем новее двигатель, тем более точными будут его характеристики и эффективность. После того, как вы сделали свой выбор, важно запланировать регулярное техническое обслуживание, чтобы ваш автомобиль работал наилучшим образом, будь то 4-цилиндровый или 6-цилиндровый.
Автомобили могут показаться сложными, но, узнав немного о своем автомобиле, вы сможете узнать более эффективные способы ухода за ним. Вот почему Cascade Collision здесь, чтобы помочь!
Если вы когда-нибудь попадете в автомобильную аварию в округе Юта, обязательно свяжитесь с ближайшим к вам центром Cascade Collision. Мы специализируемся на ремонте автомобилей и можем помочь вашему автомобилю выглядеть как новый, независимо от того, сколько в нем цилиндров.
Вот как работает двигатель вашего автомобиля
Для большинства людей автомобиль — это вещь, которую они заправляют бензином, который перемещает их из точки А в точку Б.Но вы когда-нибудь останавливались и думали, как это на самом деле сделать ? Что заставляет его двигаться? Если вы еще не выбрали электромобиль в качестве повседневного водителя, магия в том, как сводится к двигателю внутреннего сгорания — той штуке, которая шумит под капотом. Но как именно работает двигатель?
В частности, двигатель внутреннего сгорания является тепловым двигателем в том смысле, что он преобразует энергию тепла горящего бензина в механическую работу или крутящий момент. Этот крутящий момент применяется к колесам, чтобы заставить машину двигаться.И если вы не водите старинный двухтактный Saab (который звучит как старая бензопила и изрыгает масляный дым из выхлопных газов), ваш двигатель работает по одним и тем же основным принципам, независимо от того, управляете ли вы Ford или Ferrari.
Двигатели имеют поршни, которые перемещаются вверх и вниз внутри металлических трубок, называемых цилиндрами. Представьте, что вы едете на велосипеде: ваши ноги двигаются вверх и вниз, чтобы крутить педали. Поршни соединены стержнями (они похожи на ваши голени) с коленчатым валом, и они перемещаются вверх и вниз, чтобы вращать коленчатый вал двигателя, так же, как ваши ноги вращают велосипед, который, в свою очередь, приводит в действие ведущее колесо велосипеда или ведущие колеса автомобиля. .В зависимости от транспортного средства в двигателе обычно бывает от двух до 12 цилиндров, в каждом из которых поршень перемещается вверх и вниз.
Откуда сила двигателя
Эти поршни двигаются вверх и вниз тысячи крошечных контролируемых взрывов, происходящих каждую минуту, создаваемых смешиванием топлива с кислородом и воспламенением смеси. Каждый раз, когда топливо воспламеняется, называется тактом сгорания или силовым ходом. Тепло и расширяющиеся газы от этого мини-взрыва толкают поршень вниз в цилиндре.
Почти все современные двигатели внутреннего сгорания (для простоты, мы сосредоточимся здесь на бензиновых силовых установках) относятся к четырехтактным. Помимо такта сгорания, который толкает поршень вниз от верхней части цилиндра, есть еще три хода: впуск, сжатие и выпуск.
Двигателям необходим воздух (а именно кислород) для сжигания топлива. Во время такта впуска клапаны открываются, позволяя поршню действовать как шприц, когда он движется вниз, втягивая окружающий воздух через систему впуска двигателя.Когда поршень достигает нижней точки своего хода, впускные клапаны закрываются, эффективно герметизируя цилиндр для такта сжатия, который находится в направлении, противоположном такту впуска. Движение поршня вверх сжимает всасываемый заряд.
Четыре такта четырехтактного двигателя
Getty Images
В самых современных двигателях бензин впрыскивается непосредственно в цилиндры в верхней части такта сжатия.(Другие двигатели предварительно смешивают воздух и топливо во время такта впуска.) В любом случае, непосредственно перед тем, как поршень достигнет верхней точки своего хода, известной как верхняя мертвая точка, свечи зажигания воспламеняют смесь воздуха и топлива.
Возникающее в результате расширение горячих горящих газов толкает поршень в противоположном направлении (вниз) во время такта сгорания. Это ход, при котором колеса вашего автомобиля крутятся, как когда вы нажимаете на педали велосипеда. Когда такт сгорания достигает нижней мертвой точки, выпускные клапаны открываются, позволяя газам сгорания откачиваться из двигателя (как шприц, выталкивающий воздух), когда поршень снова поднимается.Когда выхлоп выходит — он проходит через выхлопную систему автомобиля перед выходом из задней части автомобиля — выхлопные клапаны закрываются в верхней мертвой точке, и весь процесс начинается снова.
Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.
В многоцилиндровом автомобильном двигателе циклы отдельных цилиндров смещены друг от друга и равномерно распределены, так что такты сгорания не происходят одновременно, а двигатель является максимально сбалансированным и плавным.
Getty Images
Но не все двигатели одинаковы. Они бывают разных форм и размеров. В большинстве автомобильных двигателей цилиндры расположены по прямой линии, например, рядный четырехцилиндровый двигатель, или объединены два ряда рядных цилиндров по схеме V-образного сечения, как в V-6 или V-8. Двигатели также классифицируются по размеру или рабочему объему, который представляет собой совокупный объем цилиндров двигателя.
Различные типы двигателей
Конечно, существуют исключения и незначительные различия среди двигателей внутреннего сгорания, представленных на рынке.Например, двигатели с циклом Аткинсона изменяют фазы газораспределения, чтобы сделать двигатель более эффективным, но менее мощным. Турбонаддув и наддув, сгруппированные вместе с опциями принудительной индукции, нагнетают дополнительный воздух в двигатель, что увеличивает доступный кислород и, следовательно, количество топлива, которое может быть сожжено, что приводит к увеличению мощности, когда вы этого хотите, и большей эффективности, когда вы надеваете не нужна сила. Все это дизельные двигатели обходятся без свечей зажигания. Но независимо от двигателя, если он относится к типу двигателей внутреннего сгорания, основы его работы остаются неизменными.И теперь вы их знаете.
Пора провести весеннюю уборку? Попробуйте продукты Meguiar, которые мы используем в нашем автопарке
Средство для мытья и воска Meguiar’s Ultimate
Ultimate Quik Detailer от Meguiar
Полотенце из микрофибры Meguiar’s Water Magnet
Детальщик интерьера Meguiar’s Ultimate
Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.
.