Датчик холла схема: Устройство и принцип работы датчика Холла, схема подключения и применение. Как проверить датчик Холла в автомобиле

Содержание

Устройство и принцип работы датчика Холла, схема подключения и применение. Как проверить датчик Холла в автомобиле

Автор Master OffRoad На чтение 9 мин. Просмотров 1.3k. Опубликовано

Содержание

  1. Датчик Холла — что это такое в автомобиле?
  2. Описание и применение
  3. Преимущества датчиков Холла
  4. Недостатки датчиков Холла
  5. Аналоговые и цифровые решения
  6. На основе операции
  7. Биполярный датчик Холла
  8. Униполярный датчик Холла
  9. Признаки неисправности датчика Холла
  10. Проверка датчика
  11. Диагностика мультиметром
  12. Проверка сопротивления
  13. Создание имитации контроллера Холла
  14. Замена датчика Холла
  15. Видео, как заменить датчик Холла своими руками
  16. Заключение

Датчик Холла — что это такое в автомобиле?

Датчик используют на машинах с бесконтактной основой, ставшей очередной вехой в эволюции устройств, применяемых для включения системы подачи горючего. Именно бесконтактный измеритель — ее главная особенность. Также система отличается контактным зажиганием. Принцип работы датчика Холла — фиксация перемен, происходящих в магнитном поле, путем изменения напряжения мотора, генерируемого на выходе.

Прибор заменяет собой контакты, используется для контроля величины напряжения. Благодаря ему при перегрузках в бортовой сети происходит деактивация двигательной системы. При перегреве контроллера включается температурная защита. Металлический экран датчика имеет прорези, на которых формируется магнитное поле. Благодаря этому в пластине появляется напряжение. Из-за того, что прорези чередуются, оно является пониженным.

Поломка прибора приводит к возникновению неисправностей инжектора.

Описание и применение

Контроллер, в основе которого лежит действие эффекта Холла, относится к датчикам магнитного типа. Они выдают электрический сигнал в зависимости от изменения магнитного поля вокруг них.

Эффект Холла состоит в появлении напряжения в проводнике при прохождении через него электрического тока. Электрический ток меняет магнитное поле, за ним меняется индукция этого поля, в итоге создается разность потенциалов.

Регистр Холла работает следующим образом:

  • вокруг него создается магнитное поле, активирующее контроллер;
  • при внесении в поле какого-либо объекта, оно выходит за первоначальные границы; датчик этот процесс фиксирует и генерирует напряжение, пропорциональное изменению.

Напряжение называется напряжением Холла.

На основе датчика Холла собирают контроллеры приближения, движения, переключатели и другие полезные в быту и промышленности устройства.

Преимущества датчиков Холла

Датчики эффекта Холла имеют следующие преимущества:

  • выполняют несколько функций, таких как определение положения, скорости, а также направления движения;
  • поскольку являются твердотельными устройствами, то абсолютно не подвержены износу из-за отсутствия движущихся частей;
  • почти не требуют обслуживания;
  • прочные;
  • невосприимчивы к вибрации, пыли и воде.

Датчики эффекта Холла имеют следующие недостатки:

  • Не способны измерять ток на расстоянии более 10 см. Единственное решение для преодоления этой проблемы заключается в использовании очень сильного магнита, который может генерировать широкое магнитное поле.
  • Точность измеренного значения всегда является проблемой, поскольку внешние магнитные поля могут влиять на значения.
  • Высокая температура оказывает влияние на сопротивление проводника. Это в свою очередь скажется на подвижности носителя заряда и чувствительности датчиков Холла.

Аналоговые и цифровые решения

Датчики на основе эффекта Холла фиксируют разницу потенциалов. Аналоговое решение, рассмотренное выше, основано на преобразовании индукции поля в напряжение с учетом полярности и силы поля.

Принцип работы цифрового датчика состоит в фиксации присутствия или отсутствие поля. В случае достижения индукцией определенного показателя датчик отмечает наличие поля. Если индукция не соответствует необходимому показателю, тогда цифровой датчик показывает отсутствие поля. Чувствительность датчика определяется его способностью фиксировать поле при той или иной индукции.

Цифровой датчик Холла может быть биполярным и униполярным. В первом случае срабатывание и отключение устройства происходит посредством смены полярности. Во втором случае включение происходит при появлении поля, отключается датчик в результате того, что индукция снижается.

На основе операции

На основе операции датчики эффекта Холла можно разделить на два типа:

  • биполярный;
  • униполярный.
Биполярный датчик Холла

Как следует из названия, эти датчики требуют как положительных, так и отрицательных магнитных полей для своей работы. Положительное магнитное поле южного полюса магнита используется для активации датчика, а отрицательное магнитное поле северного полюса — для его отключения.

Униполярный датчик Холла

Как следует из названия, эти датчики требуют только положительного магнитного поля южного полюса магнита, чтобы быть активированными. Эта же полярность задействуется для выключения датчика.

Признаки неисправности датчика Холла

Датчики Холла являются составной частью различных приборов. Фото 1. Назначение и устройство датчика Холла Название датчик берет от фамилии своего изобретателя.

Далее снимается крышка трамблера и совмещается метка механизма газораспределения с меткой коленвала.

Выглядит он так: Поэтому при наличии неисправного датчика Холла бежим в ближайший радиомагазин или рынок и приобретаем SSA. Если в запасе нет уже готового исправного датчик — не беда. Поэтому для измерения слабых токов применяют конструкцию рис. Ток высокого напряжения идет от катушки зажигания по проводу через угольный контакт на пластину ротора, и затем через клемму крышки распределителя по проводу высокого напряжения, в наконечнике которого установлен помехоподавительный экран, попадает на соответствующую свечу зажигания и воспламеняет рабочую смесь в цилиндре.

Писали, что очень удобна для выставления зажигания… Удачи! Схема подключения датчика Холла В качестве примера использования, на картинке ниже показана электрическая цепь бесконтактной системы зажигания автомобиля, с преобразователем Холла. Существует несколько способов проверки исправности автомобильного датчика Холла.

Проверка датчика

Есть несколько способов диагностики контроллера. Самый точный вариант, который позволит получить осциллограмму — воспользоваться специальным оборудованием. Осциллограф не только определит состояние контроллера, но и даст точно понять, что устройство скоро выйдет из строя. Такое оборудование есть не у каждого электрика, поэтому ниже рассмотрены более простые, но не менее эффективные варианты.

Диагностика мультиметром

Перед выполнением тестирования устройство надо настроить в режим измерения постоянного тока, рабочий диапазон должен составить 20 вольт. Также потребуется два металлических штыря. Перед проведением диагностики с разъема устройства демонтируется резиновый чехол.

Процедура предварительной проверки, позволяющей установить, что на контроллер Холла подаются необходимые сигналы, выполняется так:

  1. С распределительного узла отключается основной бронепровод. Его необходимо соединить с массой автомобиля для предотвращения случайного появления разряда. Поскольку это приведет к запуску силового агрегата при диагностике.
  2. Затем производится активация системы зажигания.
  3. Разъем отключается от распределительного механизма.
  4. На тестере выставляется режим постоянного тока с диапазоном 20 вольт.
  5. Отрицательный контакт мультиметра подключается к кузову автомобиля, можно выбрать любое место. Положительный выход тестера будет использоваться для замера рабочего параметра напряжения.
  6. Разъем, подключенный к распределительному узлу, оснащается тремя контактами — красным, зеленым и белым, но расцветка проводников может быть другой. На первом выходе величина напряжения должна составить 11,37 вольт либо около 12 В, на втором — тоже в районе этого показателя. А на последнем проводнике рабочий параметр должен составить 0 вольт.

Следующий этап диагностики:

  1. Берутся два металлических штыря, можно использовать гвозди. Один из них устанавливается в средний контакт колодки (обычно зеленый цвет), а другой подключается к массе. Его расцветка, как правило, белая. Затем сам разъем подсоединяется обратно к распределительному устройству. Штыри используются в качестве проводников тока. На обратной стороне разъема открытых контактов нет, поэтому для проверки сами кабели придется оголить, а делать это не рекомендуется.
  2. Затем зажигание активируется. Положительный контакт тестера надо подключить к штырю среднего выхода на разъеме, а отрицательный — к белому проводнику. Производится замер напряжения. Если контроллер Холла рабочий, то полученная величина должна составить около 11,2 вольт.
  3. Затем надо прокрутить коленчатый вал силового агрегата и одновременно проверить показатели, которые выдает тестер. Если значения в ходе прокручивания снизятся до 0,02 вольт и затем увеличатся до 11,8 В, то это нормально. Так и должно быть в нижнем и верхнем пределе измерений. Можно отключать тестер.

Контроллер Холла считается рабочим, если при прокручивании коленчатого вала верхний предел измерений будет не ниже 9 вольт, а нижний — не выше 0,4 В.

Канал «Автоэлектрика ВЧ» подробно показал процедуру диагностики датчика с использованием тестера и рассказал об основных особенностях этого процесса.

Проверка сопротивления

Чтобы произвести диагностику этого параметра, потребуется простое устройство, состоящее из резисторного элемента на 1 кОм, диодной лампочки, а также гибких кабелей. К ножке источника освещения надо подключать резистор, для надежной фиксации используется пайка. К этой детали подсоединяются два проводника необходимой длины, важно, чтобы они были не короткими.

Принцип проверки выглядит так:

  1. Производится демонтаж крышки распределительного механизма. От контактов отсоединяется сам трамблер, а также колодка с проводами.
  2. Выполняется диагностика исправности электроцепи. Для этого тестер надо соединить с первой и третьей клеммами, а затем активировать зажигание. Если все проводники целые, то величина напряжения на дисплее мультиметра составит от 10 до 12 вольт.
  3. Затем аналогичным образом выполняется подключение собранного прибора к тем же выходам. Когда полярность соблюдена, то диодная лампочка загорится, если нет — то кабели надо поменять местами.
  4. Потом проводник, подключенный к первому выходу, остается нетронутым. А конец третьей клеммы переключается на вторую. Выполняется прокручивание распределительного вала. Это можно сделать руками либо с использованием стартерного механизма.
  5. Если в процессе выполнения этих действия источник освещения стал моргать, то контроллер работает правильно и не нуждается в замене.

Канал Altevaa TV рассказал о способе проверки датчика с использованием обычной лампочки на примере автомобиля Фольксваген.

Создание имитации контроллера Холла

Такой вариант диагностики датчика Холла считается наиболее быстрым, но его реализация возможна при наличии питания в системе зажигания и отсутствия искры.

От распределительного механизма отключается трехконтактный разъем. Производится активация зажигания в машине и с помощью куска проводника замыкаются контакты под номерами 2 и 3, это выходы сигнала и пин. Если в результате подключения на центральном кабеле образовалась искра, это говорит о поломке контроллера Холла. При выполнении задачи высоковольтный проводник необходимо держать у массы авто.

Замена датчика Холла

Заменить датчик Холла не составит особых затруднений. С этой работой под силу справится своими руками даже начинающему автолюбителю.

Чуть ниже на видео достаточно подробно показан процесс замены датчика в трамблере автомобиля УАЗ.

Обычно замена датчика Холла состоит из нескольких этапов:

  • Прежде всего, трамблер снимается с машины.
  • Далее снимается крышка трамблера и совмещается метка механизма газораспределения с меткой коленвала.
  • Запомнив положение трамблера, нужно открутить крепежные элементы гаечным ключом.
  • При наличии фиксаторов и стопоров, их также следует извлечь.
  • Вал вытаскивают из трамблера.
  • Осталось отсоединить клеммы датчика Холла и открутить его.
  • Оттянув регулятор, неисправная деталь осторожно вынимается через образованную щель.
  • Новый датчик Холла устанавливается в обратной последовательности.

Проверка работоспособности датчика Холла позволяет не только точно определить причину отказа двигателя. Благодаря простым приемам автомобилист сэкономит свое время на ремонт, а также исключит ненужную трату денег.

Видео, как заменить датчик Холла своими руками

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Они не имеют электромеханического контакта, который бы изнашивался, в отличие от геркона  и электромагнитного реле.

В настоящее время они уже почти полностью заменили герконы.

Источники

  • https://mashinapro.ru/1795-datchik-holla.html
  • https://ProDatchik.ru/vidy/ustrojstvo-datchika-holla/
  • https://meanders.ru.com/datchiki-holla-rabota-tipy-primenenie-preimushhestva-i-nedostatki.shtml
  • http://KrutiMotor.ru/ustrojstvo-datchika-xolla/
  • https://tokzamer.ru/bez-rubriki/datchik-holla-shema-principialnaya
  • https://autodvig.com/grm/chto-takoe-datchik-holla-64849/
  • https://unit-car.com/diagnostika-i-remont/150-datchik-holla.html
  • https://www.RusElectronic.com/datchik-kholla/

Радиосхемы. — Датчик Холла SS526DT

материалы в категории

Импульсный датчик скорости и направления вращения преобразует скорость и направление вращения деталей механизма в один электрический сигнал для последующего измерения и индикации параметров работы. Системы автоматического управления могут использовать датчик для включения в петлю обратной связи.

Информация, поступающая от датчика, необходима для формирования управляющих сигналов в системах регулирования и стабилизации параметров перемещения механических узлов автоматизированного объекта. Применения такого датчика требует контроль оборотов выходных валов редукторов, определение направления вращения двух и более синхронизируемых механизмов, учет расхода жидкости и многие другие приборы. Датчик использует всего три провода, с помощью которых подается питание и передается сигнал частоты и направления вращения в прибор системы автоматического управления. Датчик предназначен для применения в системах автоматизации поточных линий, транспортных системах и в других системах автоматического управления.

Технические характеристики микросхемы SS526DT

Измеряемая скорость вращения ….. 0,3…3000 об/мин
Температура эксплуатации ………… –25…+60 °С
Напряжение питания ……………….6,5…18 Вольт

Краткое описание работы датчика Холла

В основе работы датчика лежит преобразование перемещения в электрический сигнал которое выполняет компонент использующий эффект Холла – микросхема SS526DT производства компании Honeywell.

Микросхема содержит два полупроводниковых элемента, генерирующих разность потенциалов при воздействии магнитного поля. Она позволяет определить скорость и направление вращения. Информация об этих параметрах поступает от микросхемы SS526DT в схему датчика с двух соответствующих выходов в цифровом виде: скорости движения соответствует частота импульсов с выхода Speed (далее Скорость), направлению соответствует логический уровень на выходе Direction (далее Направление).

Конструкция датчика скорости и направления оборотов

Вращательное перемещение воспринимает вал датчика через закрепленную на нем шестерню. На валу расположен диск, в котором установлены постоянные магниты. Применение неодимовых магнитов (самых сильных постоянных магнитов) позволяет уместить на диске достаточное количество малогабаритных магнитов. Свойство неодимовых магнитов при малых габаритах создавать магнитное поле достаточной напряженности делает их оптимальными для применения в этой конструкции. Установлены магниты таким образом, что полюса магнитов чередуются, что необходимо для работы микросхемы SS526DT. Внутренняя схема SS526DT, имеющая в своем составе триггер, определяет направление движения благодаря смене полярности магнитного поля, которое создается постоянными магнитами. Чем больше магнитов установлено на диске, тем выше дискретность и, следовательно, увеличивается возможность регистрации медленных перемещений, т.е. чувствительность датчика становится выше. Микросхема SS526DT устанавливается на небольшой печатной плате, соединенной проводами с основной схемой датчика, элементы которой расположены на второй печатной плате большего размера. Перемещение полюсов магнитов происходит вдоль корпуса микросхемы SS526DT. Все элементы заключены в металлический защитный экранирующий кожух.

Схема электрическая принципиальная

С выхода датчика скорости и направления поступает сигнал, передающий информацию о скорости оборотов с помощью частоты импульсов, а информация о направлении вращения передается с помощью полярности импульсов.

Выходной сигнал:

Благодаря наличию в схеме датчика источника двуполярного напряжения питания выходной сигнал размахом 5 вольт может иметь отрицательную или положительную полярность.

Функциональная схема датчика скорости и направления оборотов:

Электрическая схема преобразует сигнал от датчика Холла в выходной сигнал датчика скорости и направления вращения, обеспечивая достаточную нагрузочную способность по току. Для минимизации помех, воздействующих на кабель импульсного датчика, сопротивление приёмника сигнала должно быть небольшим. Нужно, чтобы выходной ток датчика был достаточен для принимающего прибора в целях уменьшения влияния помех, искажающих передаваемую информацию. Питание датчика подается по двум проводам. Третий провод используется для передачи сигнала, полярность которого изменяется относительно общего провода питания. Датчик Холла формирует сигнал, несущий информацию о направлении вращения, который управляет переключателем К1. В зависимости от уровня сигнала переключатель К1 подает на переключатель К2 положительное или отрицательное напряжение. Сигнал скорости датчика Холла управляет переключателем К2. Частота сигнала Скорость, сформированного переключателем К2, соответствует половине количества магнитов, размещенных на диске датчика скорости и направления вращения.

Упрощенная схема включения датчика Холла

Логические элементы усиливают сигнал Направление, поступающий от датчика Холла. Логические элементы управляют светодиодами оптронов, один из которых работает на замыкание, а другой на размыкание. При низком логическом уровне сигнала Направление светодиоды оптронов не светятся. Также замкнуты контакты оптрона работающего на размыкание, на контакты оптрона сигнала Скорость подано напряжение + 5 вольт от встроенного двухполярного импульсного источника питания. При высоком логическом уровне сигнала Направление через светодиоды оптронов, управляющих полярностью выходного сигнала датчика скорости и направления вращения, проходит ток, положение контактов оптронов таково, что выходной оптрон подключается к напряжению минус 5 вольт. Сигнал Скорость через усиливающий логический элемент поступает на управление выходным оптроном. Под действием сигнала скорость с выхода датчика поступают импульсы, полярность которых задана сигналом Направление. Применение оптрона на выходе датчика позволяет увеличить нагрузочную способность, что дает возможность передавать сигнал увеличенным током для повышения помехоустойчивости.

На входе принимающего устройства сигнал дешифруется перед измерением частоты. С помощью сдвоенного оптрона в принимающем приборе сигнал, несущий информацию о скорости вращательного перемещения направляется на один из проводов, соответствующий направлению перемещения. Провода “Скорость вращения по часовой” и “Скорость вращения против часовой” подключаются к частотоизмерительным контурам схемы принимающего прибора. В зависимости от того, на каком проводе появляется сигнал, схема распознает направление перемещения. При включении светодиодов как указано на схеме работать будет только один оптрон в зависимости от полярности импульсов входящего сигнала Скорость/направление. Для увеличения помехозащищенности параллельно светодиодам можно подключить резисторы, увеличивающие ток, протекающий по проводу “Скорость/направление”.

Электрическая схема датчика скорости и направления оборотов

Рассмотренный порядок работы реализован в электрической схеме датчика скорости и направления вращения. Сигнал Направление поступает с выхода D микросхемы, использующей эффект Холла, DA2. Высокий логический уровень сигнала Направление преобразуется инвертором, входящим в состав микросхемы DD1, в низкий на выводе 12. Светодиод оптрона VK1.2 получает возможность работать при появлении высокого логического уровня на выводе 10 микросхемы DD1. Одновременно с этим запрещается работа светодиода оптрона VK1.1, так как на анод светодиода подано напряжение низкого логического уровня. Таким образом, благодаря соединению светодиодов оптронов с логическим элементом как изображено на схеме сигнал Направление устанавливает, через какой из оптронов будет проходить сигнал, поступающий с вывода 10 микросхемы DD1. Сигнал скорости оборотов поступает с выхода S микросхемы DA2 на вход инвертора микросхемы DD1. Высокий уровень импульсов, поступающих с вывода 10 микросхемы DD1, заставляет течь ток через резистор R4 и светодиод оптрона VK1.2. Функции оптронов разделяются следующим образом: оптрон VK1.1 формирует сигнал положительной полярности на контакте 3 клеммы XT1, оптрон VK1.2 – отрицательной. В схему датчика входит источник питания, преобразующий однополярное напряжение питания в двухполярное питание схемы. Конденсаторы, входящие в схему датчика, сглаживают помехи, уменьшая их влияние на формирование выходного сигнала. Резисторы R1, R2 задают выходной ток нашего импульсного датчика. Их номинал может быть переопределен в зависимости от входной цепи приёмника для их согласования. Схема использует один сдвоенный оптрон VK1, что позволяет сократить площадь печатной платы и сформировать сигналы Скорость и Направление вращения, используя один компонент.

Радиодетали в схеме

Параметры импульсного датчика во многом обуславливают примененные компоненты его электрической схемы. Диапазон изменения напряжения питания, при котором способен работать датчик скорости и направления вращения обуславливает преобразователь напряжения DA1. Верхний предел измерения скорости вращения зависит от быстродействия оптрона VK1. Применение конденсаторов с наименьшим тангенсом угла потерь сочетание конденсаторов с различными типами диэлектрика использование последних разработок в области конденсаторов позволяет добиться наиболее высоких результатов. При чрезмерном увеличении емкости существует опасность “перегрузить” преобразователь напряжения DA1, что приведет к срабатыванию защиты по току в момент подачи питания и схема “не будет подавать признаков жизни”. При выборе типа оптореле VK1 оценивается его быстродействие и частота импульсов, поступающих на вход оптореле. Правильный выбор VK1 позволит уменьшить стоимость датчика. Микросхема DD1 выполняет функцию простейшего усилителя по току и может быть заменена другой микросхемой. Клемма XT1 предназначенная для монтажа на печатную плату, может быть заменена на другой элемент разъемного соединения.

C1…C3 Конденсатор EMR 47 мкФ 50 В ф. Hitano

C4…C6 Конденсатор SMD 0805 2,2 мкФ 16 В

DA1 Преобразователь напряжения TMR 3-1221WI ф. Traco power

DA2 Микросхема SS526DT ф. Honeywell

DD1 Микросхема КР1533ЛН1

R1, R2 Резистор 300 Ом ±5%

R3, R4 Резистор 180 Ом ±5%

VK1 Оптореле 249КП10АР

ХТ1 Клемма LMI 107 203 51

Модифицирование импульсного датчика в зависимости от скорости вращения

Для различных применений требуется измерять различные диапазоны изменения скорости вращения, меняются требования к скорости определения смены направления вращения. Возможно применение датчика для скоростей 1 оборот в минуту и менее. При таких скоростях нужно увеличивать количество магнитов на диске, применять магниты с наименьшими габаритами и уменьшать зазор между микросхемой DA2 и плоскостью диска. Если скорости 5000 и более оборотов в минуту количество магнитов можно уменьшить. При этом наибольшая измеряемая скорость ограничена только конструктивными особенностями датчика. При уменьшении количества магнитов уменьшаются требования к наивысшей рабочей частоте компонентов схемы.

Источник: http://mikrocxema.ru/

RS Компоненты | электроник- и эль-компонентер

Компоненты РС | электроник- оч эль-компонентер

Вара продуктовый отдел

  • Аккумуляторы и зарядные устройства
  • Соединители
  • Дисплеи и оптоэлектроника
  • Контроль электростатического разряда, чистые помещения и прототипирование печатных плат
  • Пассивные компоненты
  • Блоки питания и трансформаторы
  • Raspberry Pi, Arduino и средства разработки
  • Полупроводники
  • Механизм автоматизации и управления
  • Кабели и провода
  • Корпуса и серверные стойки
  • Предохранители и автоматические выключатели
  • HVAC, вентиляторы и управление температурным режимом
  • Освещение
  • Реле и формирование сигналов
  • Переключатели
  • Доступ, хранение и обработка материалов
  • Клеи, герметики и ленты
  • Подшипники и уплотнения
  • Инженерные материалы и промышленное оборудование
  • Застежки и крепления
  • Ручной инструмент
  • Механическая передача энергии
  • Сантехника и трубопровод
  • Пневматика и гидравлика
  • Электроинструменты, Пайка и сварка
  • Компьютеры и периферия
  • Уборка и техническое обслуживание помещений
  • Офисные принадлежности
  • Средства индивидуальной защиты и рабочая одежда
  • Безопасность и скобяные изделия
  • Безопасность сайта
  • Испытания и измерения

Датчик на эффекте Холла: схема применения, работа

Эффект Холла назван в честь Эдвина Холла, который в 1879 году обнаружил, что при прохождении магнитного поля через проводящую с током пластину в направлении, перпендикулярном плоскости пластины, возникает потенциал напряжения по тарелке. Сила Лоренца, изображенная на верхней панели, является основным физическим принципом, лежащим в основе эффекта Холла. Когда электрон движется в направлении, перпендикулярном приложенному магнитному полю B, на него действует сила, называемая силой Лоренца, которая перпендикулярна как приложенному полю, так и протекающему току.

Датчик Холла (или просто датчик Холла) — тип датчика, который использует эффект Холла для обнаружения наличия и амплитуды магнитного поля. Выходное напряжение датчика Холла пропорционально напряженности поля. В этой статье вы узнаете определение, области применения, схему, принцип работы, преимущества и недостатки датчика Холла.

Подробнее: Датчик положения распределительного вала

Содержание

  • 1 Что такое датчик Холла?
  • 2 Применение датчика Холла
      • 2.0.1 Схема датчика Холла:
  • 3 принцип работы
      • 3.0.1 :
  • 4 Преимущества и недостатки датчика Холла
    • 4. 1 Преимущества:
    • 4.2 Недостатки:
  • 5 Заключение

      06

    • 5.2 Пожалуйста, поделитесь!

Что такое датчик Холла?

Магнитный датчик представляет собой разновидность датчика Холла. Датчик Холла — это преобразователь, реагирующий на изменения магнитного поля изменением выходного напряжения. Это электронное устройство, которое обнаруживает эффект Холла и преобразует полученные данные в электронные данные, которые затем можно использовать для включения и выключения цепи, измерения флуктуирующего магнитного поля, обработки встроенным компьютером или отображения на интерфейсе. .

Когда магнит помещается перпендикулярно проводнику с током, электроны в проводнике отталкиваются в одну сторону, что приводит к разности потенциалов заряда (т. е. напряжения). Таким образом, на наличие и амплитуду магнитного поля вблизи проводника указывает эффект Холла.

Применение датчика Холла

Ниже приведены распространенные области применения датчика Холла:

  • Датчики Холла используются в таких приложениях, как определение приближения, определение местоположения, определение скорости и определение тока.
  • Датчики Холла часто используются для измерения скорости вращения колес и валов, например, для тахометров или определения времени зажигания двигателей внутреннего сгорания.
  • Они используются для определения положения постоянного магнита в бесщеточных электродвигателях постоянного тока.
  • Обнаружение движущегося элемента вместо механического концевого выключателя является распространенным применением. Индексация вращательного или поступательного движения — еще одно распространенное использование.

Подробнее: Датчик положения коленчатого вала

Схема датчика Холла:

Принцип работы

В работе датчика Холла используется тонкий прямоугольный полупроводниковый материал p-типа, такой как арсенид галлия (GaAs), антимонид индия (InSb) или индий. арсенид (InAs) пропускает через себя непрерывный ток, образуя датчик Холла. Линии магнитного потока воздействуют на полупроводниковый материал, когда устройство помещается в магнитное поле, отклоняя носители заряда, электроны и дырки по обе стороны от полупроводниковой пластины. Магнитная сила, с которой сталкиваются носители заряда при прохождении через полупроводниковый материал, заставляет их двигаться.

Накопление носителей заряда создает разность потенциалов между двумя сторонами полупроводникового материала, поскольку электроны и дырки мигрируют в стороны. Существование внешнего магнитного поля под прямым углом к ​​полупроводниковому материалу затем влияет на прохождение электронов через него, и это влияние выше в плоском материале прямоугольной формы. Эффект Холла является результатом использования магнитного поля для создания напряжения, поддающегося количественной оценке.

Линии магнитного потока должны быть перпендикулярны (90o) к протеканию тока и правильной полярности, часто южному полюсу, для создания разности потенциалов на устройстве. Эффект Холла показывает тип магнитного полюса, а также величину магнитного поля. Например, южный полюс заставляет устройство создавать выходное напряжение, тогда как северный полюс не влияет. При отсутствии магнитного поля датчики и переключатели на эффекте Холла должны находиться в положении «ВЫКЛ» (состояние разомкнутой цепи). При воздействии магнитного поля соответствующей силы и полярности они включаются (состояние замкнутой цепи).

Подробнее: Что такое автомобильные датчики

Посмотрите видео ниже, чтобы узнать больше о датчике Холла:

Преимущества и недостатки датчика Холла

Преимущества:

Ниже приведены преимущества датчика Холла в его различные применения:

  • По сравнению с электромагнитными переключателями, это совсем недорого.
  • Возможна работа на высокой частоте.
  • Может использоваться для различных целей, включая датчики смещения, положения и приближения.
  • Он прочный и долговечный, выдерживает суровые условия.
  • Поскольку они устойчивы к влаге, они идеально подходят для различных применений.
  • Нет проблем с дребезгом контактов.

Подробнее: Понимание работы автомобильного мозга

Недостатки:

Единственным недостатком датчика Холла является рассогласование контактов в элементе Холла и пьезорезистивные эффекты, датчик становится слабым.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *