Проверка лямда зонд: Как проверить лямбда зонд мультиметром

Содержание

Как проверить лямбда зонд на работоспособность: диагностика мультиметром и тестером

«Начинка» современных автомобилей содержит множество датчиков, которые призваны контролировать исправность различных систем и агрегатов. Одним из главных помощников водителя является лямбда-зонд. Но иногда он тоже способен выходить из строя. Не все автолюбители знают, как проверить лямбда-зонд своими руками и серьёзно сэкономить на походах в автосервис.

Лямбда зонд: что такое и где находится

Лямбда зонд (ƛ зонд) – датчик, который замеряет объём кислорода в выхлопных газах и сравнивает со стандартом. Иными словами, это кислородный датчик. Если показатели его не устраивают, он подаёт сигнал в блок управления.

Место нахождения зависит от числа датчиков в машине. Так, в ТС, выпущенных до 2000 года, чаще всего стоит один. В более поздних моделях — от 2 датчиков. Первый всегда находится под капотом, второй (если он есть) – под днищем машины.

Как работает датчик

Выхлопные газы проходят сквозь датчик, а внутрь него поступает чистый воздух из атмосферы.

Из-за разной окислительной способности чистого воздуха и отработавших газов появляется разность потенциалов. Эти показания и отправляются в ЭБУ.

Внутри датчика спрятаны токопроводящий элемент, электроды, сигнальный контакт и заземление. Вся эта система начинает работать только после прогрева до 300–400 oC. Только при такой температуре твёрдый электролит способен проводить электричество.

Схема работы

Виды кислородных датчиков

Современные ТС оснащаются тремя видами датчиков.

Циркониевый. Одна из самых популярных моделей, основной элемент в составе — диоксид циркония. Наконечник керамический, начинает работать только при нагреве до 350 oC. Быстро разогревается за счёт вмонтированной нагревательной детали с керамическим изолятором.

Такие датчики делятся на 1, 2, 3 и 4 проводные.

Титановый. Наконечник устройства изготовлен из диоксида титана. Внешне датчик мало отличается от циркониевого, но работать начинает только при температуре от 700 oC. Из-за сложной конструкции, высокой стоимости и излишней чувствительности к температурным перепадам такие датчики редко используются.

Широкополосный. В отличие от предыдущих моделей, у этого датчика имеются две ячейки:

  1. Измерительная. Благодаря электронной схеме модуляции, в составе газов внутри ячейки сохраняется показатель ƛ =1.
  2. Насосная. Если смесь богатая, дополняет состав ионами кислорода из атмосферы, если обеднённая — выводит лишние молекулы кислорода из диффузионного отверстия во внешнюю среду.

Признаки и причины неисправности ƛ-зонда

Лямбда-зонд в процессе эксплуатации авто может выйти из строя. Чаще всего датчик ломается из-за некачественного топлива, попадания топлива или масла внутрь, или неполадок в системе подачи горючего.

О неисправности лямбда-зонда могут говорить следующие признаки:

  • обороты растут до максимума, после чего резко выключается мотор;
  • обороты на холостом ходу становятся нестабильными;
  • мощность существенно падает при повышении оборотов;
  • электронный блок выдаёт ошибку из-за поздней подачи сигнала с ƛ-датчика;
  • машина едет рывками.

Чтобы вернуть датчику работоспособность, его необходимо вынуть и правильно очистить. Для этого снимают керамическую головку и убирают загрязнения тряпкой с химическим средством. Если и это не помогает, датчик придётся менять.

Как проверить лямбда-зонд на работоспособность

Существует несколько способов проверить лямбда-зонд на исправность. Самый простой и поверхностный — тщательный осмотр устройства, самый сложный — диагностика при помощи специального оборудования.

Внешний осмотр датчика

Итак, внешнее изучение кислородного датчика будет состоять из нескольких шагов:

  1. Проверить внешнюю часть, которая находится вне катализатора. Не должно быть оплавленных участков, обрывов или замкнутых контактов.
  2. Выкрутить датчик из катализатора и изучить нижнюю часть, обычно спрятанную в катализаторе. Пятна сажи на ней говорят о том, что топливо слишком концентрировано, двигатель и клапаны близки к износу или в выхлопной системе произошла утечка. Отложения серого цвета сигнализируют о высоком содержании свинца в топливе.

Проверка лямбда-зонда мультиметром (тестером)

Потребуется вольтметр, омметр или мультиметр, в котором объединяются оба эти устройства. Если используется последний, его нужно перевести в режим замера сопротивления. Чтобы испытать нагреватель датчика, необходимо:

  1. Вывести из колодки датчика контакты 3 и 4 разъёма (стандартно это белый и коричневый провода).
  2. Подсоединить контакты к выходам тестера и измерить сопротивление.

Показатели могут быть разными, обычно они варьируются в пределах 2–10 Ом. Цифра более 5 Ом говорит об отличной работоспособности датчика. Если сопротивление вообще не выводится на дисплей, это говорит о том, что в нагревателе лямбда-зонда порвался провод и требуется немедленная замена.

Прогрев зонда

Кроме того, мультиметром можно проверить восприимчивость наконечника кислородного датчика. Для этого нужно завести машину и прогреть мотор до 70–80oC. Последующий алгоритм будет таким:

  1. Довести мотор до 3000 оборотов в минуту и зафиксировать этот показатель на 2–3 минуты, пока датчик не прогреется.
  2. Минусовой щуп мультиметра подсоединить к массе машины, другой состыковать с выходом датчика.
  3. Изучить данные на тестере: они должны варьироваться от 0,2 до 1 В и меняться 10 раз в секунду.
  4. Надавить педаль газа в пол и резко отпустить её. Исправный датчик выдаст значение в 1 В, после чего резко упадёт до ноля. Если цифры на дисплее не меняются при действиях с педалью и показывают 0,4–0,5 В, датчик требует замены.

Если напряжения нет вовсе, стоит проверить проводку. Для этого нужно «прощупать» мультиметром все провода, соединяющие реле с выключателем зажигания.

Проверка осциллографом

Диагностика осциллографом будет более продуктивной, поскольку в этом случае можно зафиксировать промежуток времени, за которое меняется выходное напряжение. Нормальными считаются показатели ниже 120 мСек.

Итак, алгоритм проверки будет таким:

  1. Найти сигнальный провод датчика и подключить к нему осциллограф. Затем нужно завести мотор и разогреть его до 60–70oC. Это нужно, чтобы прогреть датчик воздуха и дождаться от него обратной связи. В процессе подготовки на осциллографе уже появится сигнал о генерации небольшого тока (до 1 В).
  2. Когда начнёт прогреваться лямбда-датчик, напряжение ещё немного вырастет. По мере прогрева до 300–400oC диаграмма приобретёт динамику.
  3. Если на прогретом двигателе дойти до 2500–3000 оборотов, исправный датчик должен показать такую картину:
  4. Если резко отпустить газ, смесь переходит в режим обогащения, а лямбда откликается таким образом:

В процессе проверки важно засечь, через какое время датчик переходит в рабочий режим, то есть когда на диаграмме появляется динамика. Также анализируется реакция на работу двигателя на 2000–3000 оборотов в минуту. Если после прогрева сигнал стабильно находится только в нижнем или только в верхнем положении, датчик придётся менять. Если сигнал напоминает плавную извилистую линию, как на картинке ниже, датчик сгорел или вышел из строя.

Проверка бортовой системой

Если в машине имеется ЭБУ, поиск неполадок можно существенно облегчить. Стоит обратить внимание на индикатор «Check Engine», который нередко предупреждает о проблемах с лямбда-зондом. Чтобы уточнить причину сигнала, достаточно подключить к бортовому компьютеру автосканер.

К кислородному датчику будут относиться ошибки:

  • P0130: датчик отправляет неверные данные;
  • P0131: сигнал слишком слабый;
  • P0132: сигнал слишком сильный;
  • P0133: КД медленно реагирует;
  • P0134: датчик вообще не даёт сигнала;
  • P0135: нагреватель первого датчика не функционирует;
  • P0136: произошло замыкание второго датчика;
  • P0137: КД2 медленно реагирует;
  • P0138: КД2 слишком быстро реагирует;
  • P0140: разрыв в цепи КД2;
  • P0141: нагреватель второго датчика неисправен;
  • P1102: слабое сопротивление нагревателя КД;
  • P1115: цепь повреждена, считать данные невозможно.

Видео: как проверить работоспособность лямбда-зонда

Проверять исправность лямбда-зонда нужно регулярно, особенно если пробег машины перевалил за 50 000 км. Очень часто признаки выхода датчика из строя схожи с более серьёзными поломками. Вместо того, чтобы выискивать проблему в двигателе или электронике, порой достаточно поверхностно осмотреть лямбда-датчик.

Оцените статью: Поделитесь с друзьями!

4 способа проверки лямбда зонда в домашних условиях

Как проверить лямбда зонт самостоятельно? С этим вопросом сталкиваются большое количество владельцев автомобилей как отечественного производства, так и иномарок. В сегодняшней статье я расскажу вам о четырех полноценных способах проверки датчиков кислорода. Кстати проверка этих датчиков может потребоваться если сканер показывает ошибку, связанную с лямбда зондом, например

низкий уровень сигнала датчика кислорода или увеличился расход топлива.

Лямбда зонт или датчик остаточного кислорода (например, в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося не сгоревшего топлива либо кислорода в выхлопных газах. Данные показания позволяют приготовлять оптимальную воздушно-топливную смесь, а также снижать количество вредных для человека побочных продуктов процесса сгорания.

Датчики лямбда зонда – какие бывают?

Современные датчики кислорода имеют 4-х проводную систему, но бывают исключения! Нередко встречаются одно, двух и трех проводные датчики лямбда зонд.

Современные датчики кислорода

У четырехпроводного датчика два провода идут на цепь подогрева и один провод – сигнальный. Также один провод идёт на массу проверки лямбда зонда, которую можно произвести самостоятельно.

Проверка напряжения в цепи подогрева датчика

Принято считать, что оптимальное напряжение в цепи подогрева датчика кислорода равняется 12,45В.

Для проверки напряжения в цепи подогрева датчика кислорода нам понадобится вольтметр.

  1. Включаем зажигание автомобиля
  2. Острыми щупами протыкаем провода или втыкаем щупы от вольтметра в разъемы провода идущий на датчик кислорода.
  3. Замеряем напряжение.

Напряжение на этих проводах должно равняться напряжению аккумуляторной батареи, примерно 12, 45В. Плюс приходит обычно приходит на нагреватели датчика кислорода напрямую через предохранители, а минус подается с блока управления двигателем. Поэтому если на нагреватель датчика кислорода не приходит плюс, то смотрите цепь, аккумулятор, предохранитель и датчик кислорода. Кстати в некоторых моделях автомобиля возможно наличие реле в этой цепи. Но если нет минуса, то смотрите всю цепь до блока управления. Возможно потерялся контакт в каком либо разъеме, либо блок управления по каким то причинам не видит минус.

Проверка исправности нагревателя лямбда зонда при помощи тестера

Для того, чтобы проверить сам нагреватель лямбда зонда путем замера сопротивления нам понадобиться Омметр, то есть тестер или мультиметр в режиме измерения сопротивления. Отсоедините разъем датчика кислорода и измеряете сопротивление между проводами нагревателя. Сопротивление может быть разное, но обычно оно находится в пределах 2-10 Ом. Если сопротивление не показывается вообще, то скорее всего в нагревателе датчика кислорода (лямбда зонда) произошёл обрыв и он требует замены.

Проверка опорного напряжения датчика кислорода (лямбда зонд)

Принято считать, что оптимальное опорное напряжение датчика кислорода равняется 0,45В.

И так первую проверку лямбда зонда, которую мы можем провести самостоятельно, это проверка опорного напряжения.  Для этого нам понадобится тестер в режиме Вольтметра. Включаем зажигание и замеряем напряжение между сигнальным проводом и массой. В большинстве моделей автомобилей это напряжение должно равняться 0,45В. Допускаются небольшие отступления от нормы как в ту так и в другую сторону, но здесь уже все зависит от качества и состояния проводки в автомобиле.

Проверка сигнала лямбда зонда

Для проверки нагревателя лямбда зонда желательно иметь осциллограф либо осциллоскоп, но так же подойдет мото-тестер или хотя бы стрелочный, но не цифровой вольтметр. В принципе для данного способа проверки подойдет и цифровой вольтметр, но он более инертный, поэтому намного хуже реагирует на изменение показаний.

И так теперь проверяем сам сигнал лямбда зонда! Это самый сложный и ответственный способ. Первое, что необходимо сделать это обзавестись специальными приборами, которые я перечислил выше.

И так, запускаем двигатель прогреваем его до рабочей температуры. Дело в том, что датчик кислорода начинает работать только после прогрева, не после прогрева ДВС, а после прогрева датчика кислорода. На эту процедуру блоком отводиться определенное время, поэтому проверять сразу датчик кислорода нет никакого смысла.

Обычно, датчик кислорода начинает работать при температуре двигателя 60 – 70 градусов. Подсоединяете провода щупа между сигнальными проводами и проводами массы, поднимаете обороты двигателя примерно до 3000 об/мин, и наблюдаете за изменениями показаний лямбда зонда.

Сигнал с датчика кислорода должен меняться от 0,1 до 0,9 Вольт. Если изменения происходят в меньшем диапазоне, то прибор просто не успевает реагировать, либо датчик кислорода неисправен и требует замены.

Так же при 3000 об/мин засеките время, при котором меняются показания от большего к меньшему. При оптимальном варианте работы ДК за 10 секунд должно произойти 8 – 9 изменений. Если показания датчика изменяются реже, то вероятна ошибка медленный отклик датчика кислорода и он подлежит замене.

Видео: 4 способа проверки датчика кислорода и лямбда зонда

Как проверить лямбда зонд тестером с 4 проводами

Современный автомобиль – это электромеханическая система, которая состоит из множества деталей и узлов, что связаны между собой совокупностью различных датчиков. Эти датчики поддерживают рабочее состояние авто и обеспечивают его продуктивную работу. Сегодня в этой статье мы будем вести речь про датчик кислорода (лямбда зонд). В частности ответим на вопрос как проверить лямбда зонд с 4 проводами тестером. Это самый распространенный тип датчика и он весьма важен.

Перед тем, как приступать к изучению и тестированию работоспособности ЛЗ мы рекомендуем кратко изучить его конструктивные особенности, виды и принцип действия.

Что такое лямбда зонд, принцип действия и его виды

Итак, датчик воздуха – это небольшое устройство, которое установлено в выпускном коллекторе любого современного автомобиля и служит для оценки концентрации остаточного кислорода в отработавших газах. Благодаря показаниям этого устройства компьютерный блок вашего автомобиля получает данные на основе которых производит приготовление горючей смеси. Лямбда зонд учитывает остаточную концентрацию кислорода в сгоревшем топливе и подает сигнал на электронику о том, что вновь поступающую горючую смесь нужно либо обогатить, либо обеднить воздухом. Разумеется то, что при любой неисправности лямбда зонда может пострадать работоспособность двигателя машины.

Помни! Для сгорания 1 кг. смеси топлива и воздуха, необходимо затратить около 15-ти кг. кислорода.

Устройство лямбда зонда

Современный датчик воздуха представляет собой небольшое конструктивное устройство внутри которого имеется ряд взаимосвязанных деталей.

Конструкция лямбда зонда

  1. Металлический корпус на котором имеется резьба. Она предназначена для фиксации датчика в посадочном отверстии;
  2. Изолятор изготовленный из керамики;
  3. Уплотнитель в виде кольца;
  4. Проводники;
  5. Защитная оболочка с отверстием для вентиляции;
  6. Контакт;
  7. Керамический наконечник;
  8. Электрический нагреватель;
  9. Отверстие для выпускного газа;
  10. Стальная оболочка.

Как правило, начало измерений отработавших газов наступает при температуре 310-400 градусов. Именно при такой температуре специальный наполнитель в датчике обретает электропроводимость. Пока температура не достигла нужного значения, электронный блок управления автомобиля берет показания с других датчиков, а уже потом с лямбда зонда. Особенность его работы заключается в том, что выхлопные газы и атмосферный воздух разделены емкостью с токогенерирующим составом. В следствии определенных химических воздействий на эту емкость со стороны выхлопа и со стороны воздуха возникает разница концентрации кислорода на основе чего вырабатываться электрический потенциал. Значения этого потенциала отправляются на блок управления автомобилем.

Все датчики кислорода делятся на четыре типа в зависимости от количества проводов в их конструкции:

1. Однопроводные;
2. Двухпроводные;
3. Трехпроводные;
4. Четырехпроводные.

Виды лямбда датчиков

Все вышеперечисленные лямбда зонды бывают узкополосные и широкополосные.

Основные причины неисправностей лямбда-зонда и последствия его поломки

После того, как мы определились с понятием и особенностями работы датчика кислорода, можно сделать вывод, что он играет ключевую функцию в нормальной работе двигателя внутреннего сгорания. Так что же может привести к поломке лямбда зонда и выхода его из строя? Существуют два аспекта в этом вопросе: внешние факторы и внутренние о которых читайте ниже.

  • Протекание в корпус датчика охлаждающей жидкости или же тормозной;
  • Уход за датчиком средствами, которые не предназначены для таких целей;
  • Некачественное топливо с чрезмерным содержанием свинца;
  • Перегрев датчика, который также случается при использовании плохого топлива.

После того, как лямбда зонд вышел из строя ваш автомобиль начнет подавать определенные признаки:

  • Существенные рывки при движении;
  • Чрезмерные расход топлива;
  • Плохая работа катализатора;
  • Плавающие обороты двигателя;
  • Излишки токсических отходов в отработавших газах.

Серьёзность всего вышеперечисленного должна наталкивать водителя на проверку лямбда зонда практически каждые 10 тыс. км. Его полная замена желательна после каждых 40 000 км пробега.

Проверка лямбда зонда с 4 проводами тестером. Методы проверки ЛЗ

Итак, мы подошли к тому вопросу, который волнует каждого автолюбителя: как же проверить датчик лямбда зонд в домашних условиях? Для этого вам понадобится обычный тестер (мультиметр) или вольтметр.

Лямбда зонд 4 провода

Первым делом необходимо прогреть двигатель, после чего произвести замеры сопротивления на проводах подогревателя. Как правило, это два белых провода полярность между которыми можно не соблюдать. Нормальное сопротивление между ними должно равняться от 2 до 10-ти Ом. Если это значение другое, то следовательно датчик неисправен.

График напряжений лямбда зонда

Идем далее. Теперь нужно минусовой провод тестера подключить на корпус двигателя. При этом плюсовой контакт подключите к сигнальному проводу самого датчика. Как правило это будет черный провод. На прогретом двигателе нажмите на педаль газа и наберите обороты до 3000 об/мин. Удерживайте педаль в этом положении около трёх минут. В это время производится прогрев лямбда зонда. Теперь вы можете проверить включение датчика кислорода.

Напряжение между корпусом двигателя и сигнальным (черным проводом) детали должно колебаться в районе от 0,2 до 1 вольта. За каждые прошедшие 10 секунд времени датчик должен включаться около 10-ти раз. В тех случая когда тестер будет показывать 0,4-0,5 вольта и не будет производиться включение, то можно сделать вывод о неисправности лямбда зонда.

Также вам нужно знать о том, что при резком нажатии на педаль газа тестер должен показывать напряжение около 1 вольта. При резком отпускании педали – ноль вольт.

На этом у нас всё. Надеемся что ваш датчик полностью исправен и выполняет возложенные на него функции. Если у вас остались вопросы, пожалуйста, оставляйте их в комментариях.

Как проверить лямбда зонд? (решено) — 2 ответа

Перво-наперво при выходе из строя и неисправности лямбды в поведении авто появляются несколько ощутимых последствий:

Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

Чем и как можно проверить лямбду

Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

Сначала ищем провод обогрева:

Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.

Проверка лямбда-зонда тестером

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

Исключения:

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.  

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

И так подведу итог чем можно проверить лямбда зонд: внешним осмотром, мультиметром, прогревом, осциллографом, бортовой системой.

Если отключить лямбда зонд и выполнять проверку без машины, можно измерить только опорное сопротивление. При подключенном элементе, можно измерить сопротивление и напряжение на прогретом двигателе.

Как проверить лямбда зонд мультиметром

Принцип проверки лямбда зонда на всех автомобилях похож. Отличия бывают только в напряжении. Детальнее разобраться поможет проверка на разных машинах.

К примеру, для проверки на Шкоде Октавия, выставляем на мультиметре сопротивление 200 Ом. Когда двигатель холодный оптимальное значение будет равно 9 Ом. Если прогреть двигатель, значение уменьшится за счет токопроводящего напыления.

После этого замеряем чувствительность датчика. Выставляем мультиметр в режим постоянного тока. Подсоединив красный щуп к лямбда зонду а черный к массе, нужно включить зажигание. Показатели будут находиться на уровне 0,45-0,47 V. После прогрева машины показатели будут прыгать от 0,1 до 0,9 V.

Проверка лямбда зонда на Тойоте Камри выполняется также. При включенном зажигании будет показывать до 0,5 V, а при постоянной работе мотора на уровне 2000 оборотов — 0,1 — 0,9 V.

Приблизительно такие же показатели будут на Форд Фокус. Только если нажать педаль газа, а потом ее резко отпустить, мультиметр покажет 1 V. На Камри и Октавии значение может быть чуть ниже — 0,8 V. Это означает, что лямбда зонд работает нормально.

Проверяем самостоятельно лямбда-зонд. Методика диагностики.

Кислородный датчик – устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородным датчиком, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название – лямбда-зонд.

Все современные автомобили оборудованы датчиками кислорода (лямбда зонды). Они являются очень важной составляющей системы впрыска топлива на инжекторных двигателях. При выходе из строя лямбда зонда, увеличивается расход топлива причем в разы!!! у меня мотор 1,6 кушал 20 литров на 100 км пробега. Для проверки лямбды не достаточно иметь простой мультиметр, так как сигнал с датчика на переходных режимах меняется практически мгновенно, и тестер просто не успевает его измерить. Поэтому было принято решение, сделать простой недорогой тестер, специально для проверки датчиков кислорода. В качестве индикации служит линейка из 10 светодиодов которая позволяет оперативно контролировать выходной сигнал с датчика и определить его исправность.

Внимание! датчики кислорода бывают одно, двух, трех и четырех проводные! Однопроводные очень старые модели с ними все понятно масса и сигнальный провод. В двух проводных датчиках черный провод сигнал, а серый масса. Трех проводные имеют 2 белых провода подогрев, черный сигнал, масса берется с коллектора. Четырех проводной датчик также как 3х проводной 2 белых подогрев, черный сигнал, серый масса. 

Тестер для проверки лямбда-зонда своими руками

Схема тестера для проверки лямбда зонда довольно проста, ее сердце микросхема-генератор LM3914, которая может работать в 2х режимах, бегущая полоса или бегущая точка. на входе стоит делитель который настроен на входное напряжение 0-1 V, каждый светодиод 0,1 V. Чего как раз достаточно практически для всех типов зондов, обычно диапазон лямбда зондов 0-0,9 V.

Настройка заключается в подстройке делителя напряжения на входе тестера, подстроечным резистором. Для этого нужен регулируемый блок питания и мультиметр. Необходимо выставить напряжение 0,5 V на блоке питания и добиться загорания 5 и 6 светодиодов. т.е. средина светодиодной линейки, далее поднимаем напряжение до 0,9 V и смотрим чтоб горел предпоследний светодиод. На этом настройка окончена.
Все собрано на печатной плате размером 31 х 27 мм. светодиоды подключены проводами. Питается устройство от 3х батареек типа ААА.

Печатная плата

Что касается корпуса, здесь на усмотрение. Кто что придумает, так он и будет выглядеть.

Конечно же есть и другие варианты схем такого тестера, собраны они также на микросхеме-генераторе LM3914:

Если внимательно присмотреться к схеме каждого варианта, можно найти небольшие различия включения микросхемы, здесь выбирать только Вам!

Кислородный датчик можно проверить также простым мультиметром, зная основные параметры работы датчика.

Переводим режим мультиметра в измерение постоянного напряжения в пределах «20 В». Включаем зажигание автомобиля, но не заводим двигатель.  На приборе должно быть значение «0,45 В». Это нормальное показание, опорное напряжение в норме.

Если оно отсутствует или сильно занижено, значит, блок управления двигателем не выдает необходимого опорного напряжения на лямбда-датчик. Он правильно работать не будет. Нужно искать проблему в ЭБУ мотора.

В случае двухпроводной лямбды может отсутствовать «земля» на сером проводе. Возможен обрыв на нем или блок управления не «присылает» минус – проблемы в электронике блока. Чтобы в этом убедиться, можно минусовый щуп мультиметра подключить к «минусу» аккумулятора. Если на приборе покажутся заветные «0,45 В», значит нет «массы» в ЭБУ.

Проверяем работоспособность активного элемента лямбда-зонда

Щупы прибора оставляем в таком же положении. Заводим мотор автомобиля, даем ему немного прогреться. Показания мультиметра должны изменяться приблизительно в течение 1 секунды от 0,1 до 0,9 В. Если они неизменные, то датчик неисправен.

Показания прибора при работающем двигателе не меняются, значит лямбда не работает!

Чтобы сильнее убедиться в работоспособности лямбды, можно снять с ресивера вакуумный шланг, то есть увеличить количество воздуха во впускном коллекторе после ДМРВ (датчика массового расхода воздуха), тем самым обеднить смесь. Показания мультиметра должны измениться, то есть, границы амплитуды изменения напряжения поменяются.

Обманка кислородного датчика (лямбда-зонда)

Есть категория автолюбителей, предпочитающих обход различных электронных узлов автомобиля. Обманка всё решит! Здесь выскажу своё личное мнение. 

Зачем отключать или выводить из работоспособности целые узлы автомобиля, превращая его в Жигули? Покупаем сразу простейший автомобиль и не морочим никому голову!

Тем не менее, приведём варианты обманок кислородного датчика

Как видим по схемам обманок, они типовые. Но, покупая хороший автомобиль, нужно предполагать расходы на его содержание и обслуживание. Такие варианты отключения датчиков ни к чему хорошему не приводят!

 

 

Как проверить лямбда-зонд на работоспособность

Инжекторные двигатели экономичны и дружелюбны к экологии в отличии от карбюраторных моторов. Высоких показателей инженеры добились благодаря датчикам в системе питания. Один из датчиков, который непосредственно влияет на смесеобразование – это лямбда-зонд или кислородный датчик.

Содержание статьи:

Если он выходит из строя, можно наблюдать потерю мощности, большой расход топлива, нестабильную работу мотора.

Зачем в автомобиле нужен лямбда-зонда, место расположения

Лямбда-зонд необходим для измерения коэффициента содержания кислорода в горючей смеси. Он устанавливается всегда в районе приемной трубы до катализатора и измеряет объем несгоревшего кислорода в продуктах сгорания. Эта информация позволит ЭБУ готовить оптимальную смесь.

Наиболее эффективно сгорает смесь, в которой содержится 14,7 частей воздуха и одна часть топлива. Это оптимальные показатели, если кислород присутствует в больших количествах, то смесь бедная, если воздуха меньше, то богатая.

Читайте также: Почему горит ЧЕК в машине, что делать, можно ли ехать и как его потушить

Сгорание богатой смеси менее эффективно – можно наблюдать снижение мощности, повышенный расход топлива.

Так как моторы в автомобилях функционируют на совершенно разных режимах, то оптимальное соотношения воздуха и топлива может не соблюдаться. Для контроля качества смеси в системах питания применяют кислородные датчики.

На основе сигналов от лямбды ЭБУ может оценить качество смеси. Если обнаружены показатели, которые не соответствуют нормам, смесь корректируется.

Принцип работы кислородного датчика

Принцип действия кислородного датчика достаточно простой. Лямбда-зонд должен сравнивать показания с какими-то идеальными результатами, чтобы понимать, как меняется процент кислорода в смеси, поэтому замеры проводятся в двух местах – измеряется атмосферный воздух и продукты сгорания.

Такой подход позволяет датчику чувствовать разницу, если соотношения топливной смеси меняется.

ЭБУ должен получать от лямбда-зонда электрический импульс. Для этого датчик должен уметь преобразовывать замеры в электрические сигналы. Для измерения применяются специальные электроды, которые могут вступать с кислородом в реакцию.

В работе лямбды используется принцип гальванических элементов – смена условий химических реакций приводит к изменению напряжения между двумя электродами. Когда смесь богатая, а содержание кислорода за нижним порогом, тогда напряжение растет. Если смесь обедненная, напряжение будет падать.

Далее импульс, который возникает на этапе химических реакций, отправляется на ЭБУ, где параметры сравниваются с записанными в памяти топливными картами. В результате корректируется работа системы питания.

Статья по теме: Как сделать пеногенератор для автомойки из подручных вещей своими руками

Датчик кислорода работает на химических реакциях, но при этом конструкция его относительно простая. Главный элемент – специальный наконечник из керамических материалов. В качестве сырья используется диоксид циркония, а реже – диоксид титана.

Наконечник покрыт напылением из платины – именно этот слой и вступает в реакцию с кислородом. Одной стороной этот наконечник контактирует с выхлопными газами, другой стороной – с воздухом в атмосфере.

Электроды лямбда-зонда имеют одну особенность. Так, чтобы реакция проходила эффективнее и показатели были точными, замеры содержания кислорода в выхлопе производятся при условии определенных температур.

Для того, чтобы наконечник вышел на рабочие характеристики и нужную электропроводимость, температура среды должна составлять 300-400 градусов.

Для обеспечения нужного режима температур изначально лямбда-зонд устанавливался в непосредственной близости к выпускному коллектору. Это обеспечивало нужную температуру после прогрева ДВС. В работу датчик вступал не сразу. До того, как лямбда достаточно нагреется и начнет выдавать точные параметры, ЭБУ использовало сигналы других датчиков. Оптимальная смесь в процессе прогрева не приготавливалась.

Некоторые модели кислородных датчиков оснащены электрическими нагревателями. Благодаря им лямбда может быстрее выходить на рабочие температурные режимы. Подогрев использует энергию бортовой сети автомобиля.

Признаки и причины неисправности датчика

При неисправном лямбда-зонде выхлопные газы становятся более токсичными. Определить это можно при помощи специального диагностического оборудования. При этом никаких внешних признаков не будет, также, как и не будет никакого особенного запаха.

Вырастает расход топлива. Водители, как правило следят за тем, насколько наполнен топливный бак, стараются определить скорость, при которой расход минимален. Повышенный расход будет сразу же заметен. В зависимости от серьезности поломки датчика кислорода, расход вырастет в пределах от 1 л до 4 л.

Перегрев каталитического нейтрализатора. Если лямбда неисправна, то в ЭБУ подается неверный сигнал. Это может приводить к неправильной работе катализатора. Он перегревается вплоть до красного цвета и выходит из строя.

Автомобиль будет дергаться, и водитель сможет услышать хлопки. Лямбда перестает формировать правильные сигналы, в результате – нестабильный ХХ. Обороты могут колебаться в очень широких диапазонах.

Это интересно: Как восстановить кожу на руле автомобиля методом покраски

Снижаются динамические характеристики. Автомобиль теряет мощность. Эти признаки можно наблюдать в сильно запущенных случаях. Датчик не работает на холодном моторе, а автомобиль всячески сигнализирует о неисправности.

Среди причин поломок можно выделить:

  • Повреждения, вызванные сильными ударами, ДТП, наездами на бордюр;
  • Некорректную работу ДВС и проблемы в работе системы зажигания, когда элемент перегревается и выходит из строя;
  • Засор системы и некачественное топливо. Чем больше в бензине тяжелых металлов, тем быстрее лямбда выйдет из строя;
  • Поршневая группа – часто из-за изношенной ЦПГ в выпускной коллектор попадает масло, а продукты его сгорания забивают зонд;
  • Замыкания в электропроводке;
  • Бедная или слишком богатая смесь;
  • Попадание лишнего воздуха в выхлопную систему;
  • Пропуски зажигания;
  • Топливные присадки.

Проверка лямбда-зонд с помощью диагностического устройства

В большинстве случае ДВС сам подсказывает есть ли неисправности в работе датчиков. Самым быстрым и эффективным способом диагностики в таком случае будет подключение ODBII сканера.

Из доступных на рынке вариантов рекомендуем обратить внимание на модель корейского производства Scan Tool Pro Black Edition.

Данное устройство относится к бюджетному сегменту, но в отличие от китайских аналогов на 8-битном чипе, имеет 32-битную базу, что позволяет осуществлять диагностику не только двигателя, но и других систем автомобиля (коробку передач, трансмиссию, ABS, ESP, систему кондиционирования и т. д.).

Сканер достаточно прост в использовании, имеет широкий функционал и совместим с большинством автомобилей начиная с 1993 года выпуска.

Если все плохо, то в ЭБУ будет выдавать следующие ошибки – это P0131, P0134, P0171. Более подробно о них в видео ниже.

Также будет загораться лампочка «проверьте двигатель», но здесь точно установить причину можно только при помощи диагностики. Чек загорается и в случае других проблем.

Как проверить лямбда-зонд мультиметром

Когда наблюдаются рывки при движении, повышенный расход горючего, и горящий “чек”, то стоит провести диагностику. Эти признаки могут говорить и о других неисправностях, но если есть мультиметр, то можно проверить кислородный датчик своими руками. Специалисты рекомендуют проверять лямбду через измерение напряжений.

К сведению: Стук в Двигателе все причины появления странных звуков при работе мотора

Но прежде любых измерений нужно прогреть ДВС. Если лямбда холодная, она не будет работать. Также рекомендуется по возможности снять датчик и осмотреть его и проводку на предмет грязи и повреждений. Если датчик деформирован, электрод поцарапан или покрыт сажей, нагаром, то лучше его заменить.

Измерения напряжения в цепи подогрева

Включают зажигание, щупами протыкают провода, которые идут к нагревателю. Можно также втыкать щупы мультиметра в разъем. Напряжение будет примерно равно напряжению в бортовой сети. Если двигатель не запущен, то напряжения может и не быть.

Обычно плюс приходит к нагревателю напрямую. Минус подает блок управления. Если отсутствует плюс, следует проверить цепи от аккумулятора до датчика. Если отсутствует минус, тогда нужно проверить цепь от ЭБУ до датчика.

Проверка нагревателя

Можно проверить работоспособность кислородного датчика при помощи омметра. Очень часто поломка связана со спиралью подогрева или проводкой к ней.

Для проверки омметр присоединяют между контактами нагревателя. Если нагреватель исправен, то омметр покажет сопротивление от 2 до 10 ОМ. В цепи подогрева сопротивление будет от 1 кОм до 10 мОм. Если сопротивления нет, то стоит поискать обрыв в проводке.

Опорное напряжение

Имея под рукой мультиметр, можно проверить опорное напряжения. Для этого включают зажигание, затем измеряют напряжение между проводом сигнала и массой.

В правильно работающей лямбде напряжение будет в пределах 0,45 В. Если имеются отличия хотя-бы на 0,2 В, то проблемы с сигнальной цепи или плохая масса.

Проверка сигнала с датчика осциллографом

Двигатель необходимо прогреть. Осциллограф подключают между сигналом и массой. Затем поднимают обороты до 3000 и наблюдают за изменениями показаний. Сигнал должен меняться в пределах от 0,1 В до 0,9 В. Если осциллограф точный и видно, что изменения в более узком диапазоне, то лямбда неисправна.

По теме: Как нумеруются цилиндры, виды их расположения в двигателе

Также стоит засечь время, в течении которого показания опускаются от большего уровня к меньшему. За 10 секунд показания должны меняться 10 раз. Если смены происходят реже, тогда может появиться ошибка под датчику.

Как проверить и заменить лямбда-зонд

Лямбда-зонд, или датчик кислорода, является жизненно важным элементом выхлопных систем вашего автомобиля, гарантируя, что в топливной смеси содержится необходимое количество кислорода для эффективного и экологически чистого сгорания. В этом сообщении блога мы кратко рассмотрим, что такое лямбда-зонд, как он работает, когда его следует проверять и как его заменить.

Что такое лямбда-зонд?

Лямбда-зонд расположен внутри выпускного коллектора рядом с двигателем. Автомобили, оснащенные EOBD II (европейские автомобили после 2001 г.), также имеют второй датчик после каждого катализатора с целью измерения характеристик катализатора.Датчик измеряет процент несгоревшего кислорода, чтобы увидеть, слишком ли его много (смесь слишком бедная) или слишком мало (смесь слишком богатая). Результаты отправляются в электронный блок управления двигателем (ЭБУ), чтобы количество топлива, поступающего в двигатель, можно было отрегулировать для получения оптимальной смеси. Он постоянно меняется в зависимости от ряда факторов, включая нагрузку на двигатель (например, холмы), ускорение, температуру двигателя и период прогрева.

На рынке есть три типа лямбда-зондов, самые старые и самые распространенные на рынке - лямбда-зонды из оксида циркония.Этот тип существует в разной конфигурации (один, два, три или четыре провода), в зависимости от того, подогревается датчик или нет. Второй тип - это лямбда-зонд из оксида титана, также доступный в четырех различных типах (см. Рисунок). Этот тип легко определить, поскольку диаметр источника меньше, чем у оксида циркония (в качестве визуальной подсказки эти датчики имеют желтый цвет. и красные провода). Наконец, третий тип - это так называемый широкополосный лямбда-зонд, также называемый «5-проводным датчиком», который является новейшим и более точным.Широкополосный лямбда-зонд является наиболее распространенным в новых автомобилях, оснащенных двумя лямбда-зондами на каждый каталитический нейтрализатор.

Как работает лямбда-зонд?

Лямбда-зонд используется для регулирования топливной смеси, при этом ЭБУ реагирует на измерения датчика, чтобы определить необходимое количество топлива. Это означает, что топливная смесь будет постоянно колебаться от богатой к обедненной, позволяя каталитическому нейтрализатору работать с максимальной эффективностью, одновременно уравновешивая общую смесь для минимизации выбросов.

Если ЭБУ не получает никаких измерений от датчика, например, когда двигатель только что запустился или датчик не работает, ЭБУ будет использовать фиксированную обогащенную топливную смесь, что увеличивает расход топлива и выбросы. Если лямбда-зонд или провода повреждены или изношены, автомобиль будет постоянно циркулировать в богатой смеси, увеличивая расход топлива и подвергая опасности другие элементы системы контроля выбросов, такие как каталитические нейтрализаторы.

Когда следует проверять лямбда-датчики?

Обычный лямбда-зонд имеет долгий срок службы, но все равно может выйти из строя.Если вы заметили какой-либо из следующих симптомов, возможно, стоит проверить свой лямбда-зонд:

  • Нерегулярный дроссель на холостом ходу
  • Грубые звуки двигателя
  • Большой расход топлива и низкая производительность
  • Неудачный тест на выбросы
  • Черный дым и нагар вокруг выхлопной трубы
  • Лямбда-датчики могут выйти из строя по ряду причин, в том числе:
  • Использование уплотнительной пасты, содержащей силикон, на выхлопных патрубках перед лямбда-датчиками
  • Загрязненное топливо или присадки, содержащие свинец
  • Двигатель, который начал сжигать масло, оставляя нагар на датчике
  • Внешнее загрязнение, например, дорожная соль, грунтовочный материал или химикаты
  • Сенсор подошел к концу срока службы
Как проверить лямбда-зонд из оксида циркония

Для проверки лямбда-зонда проверьте натяжение сигнального провода (в основном черного цвета). Обычно после прогрева двигателя и при нормальной работе измерение должно меняться от 0,1 до 0,9 В примерно два раза в секунду при 2000 об / мин.

Если нагревается лямбда-зонд (трех- или четырехпроводный), возьмите нагреватель и измерьте его сопротивление омметром. Нагреватель представляет собой два провода одного цвета, обычно белого или черного цвета. Рекомендуется всегда проверять электрическую схему автомобиля и проводить измерения при нормальной рабочей температуре двигателя.

Как проверить титановый лямбда-зонд (легко обнаружить, потому что диаметр нагрева меньше, чем у оксида циркония, и всегда присутствуют желтый и красный провод.)

Измеренное натяжение сигнального провода аналогично натяжению, полученному от циркониевого лямбда-зонда. Низкое значение напряжения соответствует обедненной смеси, а высокое напряжение (около 1 В) соответствует богатой смеси. В некоторых ЭБУ все наоборот, в зависимости от их внутреннего подключения

Как диагностировать широкополосный лямбда-зонд:

Для диагностики широкополосных лямбда-датчиков необходимо использование сканирующего прибора или осциллографа.

Как снять и заменить лямбда-зонд

Используйте специальный разъем для облегчения снятия лямбда-зонда.Найдите нужное приложение в каталоге, похожие приложения могут иметь разное время реакции, не являясь эквивалентами. Нанесите смазку вокруг резьбы на новом датчике, чтобы упростить установку датчика сейчас и удалить его позже. Датчик можно вкрутить вручную и затянуть с помощью специального гнезда с правильным моментом, указанным в руководстве по эксплуатации автомобиля.

Смотрите больше с Garage Gurus

Сделайте шаг ближе к действию и посмотрите, как эксперт Garage Gurus точно покажет вам, как проверить, снять и заменить лямбда-зонд.

Обзоры на лямбда-зонд

- интернет-магазины и отзывы на лямбда-зонд на AliExpress

Отличные новости !!! Вы попали в нужное место для лямбда-зонда. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший лямбда-зонд в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели лямбда-зонд на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в лямбда-зонде и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов.Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести лямбда-зонд по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

лямбда-зонд Википедия

Прибор для измерения концентрации кислорода

Кислородный монитор с датчиком оксида циркония

Датчик кислорода (или лямбда-зонд , где лямбда относится к соотношению воздушно-топливного эквивалента, обычно обозначаемому λ) - это электронное устройство, которое измеряет долю кислорода (O 2 ) в газе или анализируемая жидкость.

Он был разработан Robert Bosch GmbH в конце 1960-х годов под руководством доктора Гюнтера Баумана. Оригинальный чувствительный элемент изготовлен из циркониевой керамики в форме наперстка, покрытой тонким слоем платины как на выхлопной, так и на контрольной сторонах. Планарный датчик появился на рынке в 1990 году и значительно уменьшил массу керамического чувствительного элемента, а также включил нагреватель в керамическую структуру. [1] В результате датчик срабатывал раньше и быстрее реагировал.

Наиболее распространенное применение - измерение концентрации кислорода в выхлопных газах двигателей внутреннего сгорания автомобилей и других транспортных средств для расчета и, при необходимости, динамической регулировки соотношения воздух-топливо, чтобы каталитические нейтрализаторы могли работать оптимально, и также определить, правильно ли работает преобразователь. Дайверы также используют подобное устройство для измерения парциального давления кислорода в дыхательном газе.

Ученые используют кислородные датчики для измерения дыхания или производства кислорода и используют другой подход. Датчики кислорода используются в анализаторах кислорода, которые находят широкое применение в медицинских приложениях, таких как мониторы для анестезии, респираторы и концентраторы кислорода.

Датчики кислорода также используются в системах предотвращения пожаров с пониженным содержанием кислорода, чтобы постоянно контролировать концентрацию кислорода внутри защищаемых объемов.

Есть много разных способов измерения кислорода. К ним относятся такие технологии, как диоксид циркония, электрохимические (также известные как гальванические), инфракрасные, ультразвуковые, парамагнитные и, совсем недавно, лазерные методы.

Применение в автомобильной промышленности []

Трехпроводной датчик кислорода, подходящий для использования в Volvo 240 или аналогичном автомобиле.

Автомобильные кислородные датчики, в просторечии известные как датчики O 2 («ō два»), делают возможными современные электронные системы впрыска топлива и контроля выбросов. Они помогают определить в реальном времени, является ли соотношение воздух-топливо в двигателе внутреннего сгорания богатым или бедным. Поскольку кислородные датчики расположены в потоке выхлопных газов, они не измеряют напрямую воздух или топливо, поступающее в двигатель, но когда информация от кислородных датчиков сочетается с информацией из других источников, ее можно использовать для косвенного определения воздушно-топливного отношения. .Впрыск топлива, управляемый с обратной связью, изменяет выходную мощность топливной форсунки в соответствии с данными датчика в реальном времени, а не работает с заранее определенной (разомкнутой) топливной картой. Помимо обеспечения эффективной работы электронного впрыска топлива, этот метод контроля выбросов может снизить количество как несгоревшего топлива, так и оксидов азота, попадающих в атмосферу. Несгоревшее топливо представляет собой загрязнение в виде переносимых по воздуху углеводородов, в то время как оксиды азота (NO x газов) являются результатом температуры камеры сгорания, превышающей 1300 кельвинов, из-за избытка воздуха в топливной смеси, поэтому способствуют образованию смога и кислотный дождь. Volvo была первым производителем автомобилей, который применил эту технологию в конце 1970-х вместе с трехкомпонентным катализатором, используемым в каталитическом нейтрализаторе.

Датчик фактически не измеряет концентрацию кислорода, а измеряет разницу между количеством кислорода в выхлопных газах и количеством кислорода в воздухе. Богатая смесь вызывает потребность в кислороде. Это требование вызывает повышение напряжения из-за переноса ионов кислорода через слой датчика. Бедная смесь вызывает низкое напряжение, так как имеется избыток кислорода.

В современных двигателях внутреннего сгорания с искровым зажиганием используются кислородные датчики и каталитические нейтрализаторы для снижения выбросов выхлопных газов. Информация о концентрации кислорода отправляется в компьютер управления двигателем или блок управления двигателем (ЭБУ), который регулирует количество топлива, впрыскиваемого в двигатель, чтобы компенсировать избыток воздуха или топлива. ЭБУ пытается поддерживать в среднем определенное соотношение воздух-топливо, интерпретируя информацию, полученную от датчика кислорода. Основная цель - компромисс между мощностью, экономией топлива и выбросами, и в большинстве случаев достигается за счет соотношения воздух-топливо, близкого к стехиометрическому.Для двигателей с искровым зажиганием (например, тех, которые работают на бензине или сжиженном нефтяном газе, а не на дизельном), современные системы имеют дело с тремя типами выбросов: углеводороды (которые выделяются, когда топливо сгорает не полностью, например, при пропуске зажигания или работа на богатой смеси), оксид углерода (который является результатом работы на слегка обогащенной смеси) и NO x (которые преобладают, когда смесь бедная). Отказ этих датчиков в результате нормального старения, использования этилированного топлива или топлива, загрязненного, например, силиконом или силикатами, может привести к повреждению каталитического нейтрализатора автомобиля и дорогостоящему ремонту.

Вмешательство или изменение сигнала, который кислородный датчик посылает в компьютер двигателя, может нанести ущерб контролю выбросов и даже повредить автомобиль. Когда двигатель работает в условиях низкой нагрузки (например, при очень плавном ускорении или поддержании постоянной скорости), он работает в «режиме с обратной связью». Это относится к петле обратной связи между ЭБУ и кислородным датчиком (датчиками), в котором ЭБУ регулирует количество топлива и ожидает увидеть результирующее изменение реакции датчика кислорода.Этот цикл вынуждает двигатель работать как на слегка обедненной, так и на слегка богатой смеси на последовательных контурах, поскольку он пытается поддерживать в среднем в основном стехиометрическое соотношение. Если в результате модификаций двигатель будет работать умеренно обедненным, произойдет небольшое повышение эффективности использования топлива, иногда за счет увеличения выбросов NO x , гораздо более высоких температур выхлопных газов, а иногда и небольшого увеличения мощности, которое может быстро превращаются в пропуски зажигания и резкую потерю мощности, а также возможное повреждение двигателя и каталитического нейтрализатора (из-за пропусков зажигания) при сверхнизком соотношении воздух-топливо. Если модификации приводят к тому, что двигатель работает на обогащенной смеси, тогда произойдет небольшое увеличение мощности до определенного предела (после чего двигатель начнет переполняться из-за слишком большого количества несгоревшего топлива), но за счет снижения топливной эффективности и увеличения количества несгоревших углеводородов. в выхлопе, что вызывает перегрев каталитического нейтрализатора. Продолжительная работа на богатых смесях может вызвать катастрофический отказ каталитического нейтрализатора (см. Обратную вспышку). ЭБУ также контролирует синхронизацию зажигания двигателя вместе с шириной импульса топливной форсунки, поэтому модификации, которые изменяют работу двигателя на слишком бедную или слишком богатую, могут привести к неэффективному расходу топлива, когда топливо воспламеняется слишком рано или слишком поздно в цикле сгорания. .

Когда двигатель внутреннего сгорания находится под высокой нагрузкой (например, при полностью открытой дроссельной заслонке), выходной сигнал кислородного датчика игнорируется, и ЭБУ автоматически обогащает смесь для защиты двигателя, так как пропуски зажигания под нагрузкой с большей вероятностью могут вызвать повреждение . Это называется двигателем, работающим в «режиме разомкнутого контура». В этом состоянии любые изменения на выходе датчика игнорируются. Во многих автомобилях (за исключением некоторых моделей с турбонаддувом) входные данные от расходомера воздуха также игнорируются, поскольку в противном случае они могут снизить производительность двигателя из-за слишком богатой или слишком бедной смеси и повысить риск повреждения двигателя из-за детонация, если смесь слишком бедная.

Функция лямбда-зонда []

Лямбда-зонды обеспечивают обратную связь с ЭБУ. Где это применимо, бензиновые, пропановые и газовые двигатели оснащаются трехкомпонентными катализаторами в соответствии с законодательством о выбросах дорожных транспортных средств. Используя сигнал лямбда-зонда, ЭБУ может управлять двигателем, слегка обогащенным лямбда = 1, это идеальная рабочая смесь для эффективности трехкомпонентного катализатора. [2] Компания Robert Bosch GmbH представила первый автомобильный лямбда-зонд в 1976 году, [3] , и в том же году он был впервые использован Volvo и Saab. Датчики были введены в США примерно с 1979 года и требовались на всех моделях автомобилей во многих странах Европы в 1993 году.

Измеряя долю кислорода в оставшемся выхлопном газе и зная, помимо прочего, объем и температуру воздуха, поступающего в цилиндры, ЭБУ может использовать справочные таблицы для определения количества топлива, необходимого для сжигания в стехиометрическое соотношение (14,7: 1 воздух: топливо по массе для бензина) для обеспечения полного сгорания.

Зонд []

Чувствительный элемент представляет собой керамический цилиндр, покрытый внутри и снаружи пористыми платиновыми электродами; вся сборка защищена металлической сеткой.Он работает путем измерения разницы в кислороде между выхлопными газами и наружным воздухом и генерирует напряжение или изменяет его сопротивление в зависимости от разницы между ними.

Датчики работают эффективно только при нагревании до приблизительно 316 ° C (600 ° F), поэтому большинство новых лямбда-зондов имеют нагревательные элементы, заключенные в керамику, которые быстро нагревают керамический наконечник до температуры. Более старые датчики без нагревательных элементов в конечном итоге будут нагреваться выхлопными газами, но между запуском двигателя и достижением теплового равновесия между компонентами выхлопной системы проходит определенное время.Время, необходимое выхлопным газам для доведения датчика до температуры, зависит от температуры окружающего воздуха и геометрии выхлопной системы. Без нагревателя процесс может занять несколько минут. Есть проблемы с загрязнением, которые приписываются этому медленному процессу запуска, в том числе аналогичная проблема с рабочей температурой каталитического нейтрализатора.

К зонду обычно прикрепляют четыре провода: два для лямбда-выхода и два для питания нагревателя, хотя некоторые автопроизводители используют металлический корпус в качестве заземления для сигнала сенсорного элемента, в результате чего получается три провода.Ранее датчики без электрического нагрева имели один или два провода.

Работа датчика []

Циркониевый датчик []
Планарный циркониевый датчик (схематическое изображение)

Лямбда-зонд из диоксида циркония или диоксида циркония основан на твердотельном электрохимическом топливном элементе, который называется ячейкой Нернста. Его два электрода обеспечивают выходное напряжение, соответствующее количеству кислорода в выхлопных газах по сравнению с количеством кислорода в атмосфере.

Выходное напряжение 0,2 В (200 мВ) постоянного тока представляет собой «бедную смесь» топлива и кислорода, когда количество кислорода, поступающего в цилиндр, достаточно для полного окисления монооксида углерода (CO), образующегося при сжигании воздуха и топливо, в диоксид углерода (CO 2 ).Выходное напряжение 0,8 В (800 мВ) постоянного тока представляет собой «богатую смесь», в которой много несгоревшего топлива и мало остаточного кислорода. Идеальная уставка составляет приблизительно 0,45 В (450 мВ) постоянного тока. Здесь количество воздуха и топлива находится в оптимальном соотношении, которое составляет ~ 0,5% обедненной смеси от стехиометрической точки, так что выхлопные газы содержат минимальное количество окиси углерода.

Напряжение, создаваемое датчиком, нелинейно по отношению к концентрации кислорода. Датчик наиболее чувствителен вблизи стехиометрической точки (где λ = 1) и менее чувствителен при очень бедной или очень богатой смеси.

ЭБУ - это система управления, которая использует обратную связь от датчика для регулировки топливно-воздушной смеси. Как и во всех системах управления, важна постоянная времени датчика; способность ЭБУ управлять соотношением топливо-воздух зависит от времени отклика датчика. У изношенного или загрязненного датчика обычно более медленное время отклика, что может снизить производительность системы. Чем короче период времени, тем выше так называемый «перекрестный счет» [4] и тем быстрее реагирует система.

Датчик имеет прочную конструкцию из нержавеющей стали внутри и снаружи. Благодаря этому датчик обладает высокой устойчивостью к коррозии, что позволяет эффективно использовать его в агрессивных средах с высокой температурой / давлением.

Датчик из диоксида циркония относится к "узкополосному" типу, поскольку он реагирует на узкий диапазон соотношения топливо / воздух.

Широкополосный циркониевый датчик []
Планарный широкополосный циркониевый датчик (схематическое изображение)

Вариант датчика из диоксида циркония, названный «широкополосным» датчиком, был представлен NTK в 1992 году [5] и широко используется в системах управления двигателем автомобилей, чтобы удовлетворить постоянно растущие потребности в улучшении экономии топлива. снижение выбросов при одновременном улучшении характеристик двигателя. [6] Он основан на плоском элементе из диоксида циркония, но также включает электрохимический газовый насос. Электронная схема, содержащая контур обратной связи, управляет током газового насоса, чтобы поддерживать постоянную мощность электрохимической ячейки, так что ток насоса напрямую указывает на содержание кислорода в выхлопных газах. Этот датчик исключает цикличность обедненной-богатой смеси, присущую узкополосным датчикам, позволяя блоку управления гораздо быстрее регулировать подачу топлива и угол зажигания двигателя.В автомобильной промышленности этот датчик также называется датчиком UEGO (универсальный датчик кислорода в выхлопных газах). Датчики UEGO также широко используются при настройке динамометрических стендов на вторичном рынке и в высокопроизводительном оборудовании для отображения воздуха и топлива водителя. Широкополосный циркониевый датчик используется в системах стратифицированного впрыска топлива и теперь может также использоваться в дизельных двигателях, чтобы соответствовать предстоящим ограничениям выбросов EURO и ULEV.

Широкополосные датчики состоят из трех элементов:

  1. ионно-кислородный насос,
  2. узкополосный циркониевый датчик,
  3. нагревательный элемент.

Схема подключения широкополосного датчика обычно состоит из шести проводов:

  1. резистивный нагревательный элемент,
  2. резистивный нагревательный элемент,
  3. Датчик
  4. ,
  5. насос,
  6. калибровочный резистор,
  7. общий.
Датчик титана []

Менее распространенный тип узкополосных лямбда-зондов имеет керамический элемент из диоксида титана (диоксида титана). Этот тип не генерирует собственное напряжение, но изменяет свое электрическое сопротивление в зависимости от концентрации кислорода.Сопротивление диоксида титана зависит от парциального давления кислорода и температуры. Поэтому некоторые датчики используются с датчиком температуры газа для компенсации изменения сопротивления из-за температуры. Значение сопротивления при любой температуре составляет примерно 1/1000 изменения концентрации кислорода. К счастью, при λ = 1 происходит большое изменение кислорода, поэтому изменение сопротивления обычно в 1000 раз между богатой и обедненной жидкостью, в зависимости от температуры.

Поскольку диоксид титана является полупроводником N-типа со структурой TiO 2 - x , дефекты x в кристаллической решетке проводят заряд.Так, для выхлопа с высоким содержанием топлива (более низкая концентрация кислорода) сопротивление низкое, а для выхлопа с обедненным топливом (более высокая концентрация кислорода) сопротивление высокое. Блок управления питает датчик небольшим электрическим током и измеряет результирующее падение напряжения на датчике, которое варьируется от почти 0 вольт до примерно 5 вольт. Подобно датчику из диоксида циркония, этот тип является нелинейным, поэтому его иногда упрощенно описывают как двоичный индикатор, считывающий либо «богатый», либо «обедненный». Датчики из диоксида титана дороже датчиков из диоксида циркония, но они также быстрее реагируют.

В автомобильной промышленности датчик диоксида титана, в отличие от датчика диоксида циркония, не требует эталонной пробы атмосферного воздуха для правильной работы. Это упрощает проектирование узла датчика против загрязнения водой. Хотя большинство автомобильных датчиков являются погружными, датчики на основе диоксида циркония требуют очень небольшого притока эталонного воздуха из атмосферы. Теоретически жгут проводов датчика и разъем заделаны. Предполагается, что воздух, который просачивается через жгут проводов к датчику, исходит из открытого места в жгуте - обычно ЭБУ, который расположен в замкнутом пространстве, таком как багажник или салон автомобиля.

Местоположение датчика в системе []

Зонд обычно ввинчивается в резьбовое отверстие в выхлопной системе, расположенное после ответвления коллектора выхлопной системы комбайнов и перед каталитическим нейтрализатором. Новые автомобили должны иметь датчик до и после катализатора выхлопных газов, чтобы соответствовать нормативам США, требующим проверки всех компонентов выбросов на предмет отказа. Сигналы до и после катализатора отслеживаются для определения эффективности катализатора, и, если преобразователь не работает должным образом, пользователю через бортовые системы диагностики отправляется предупреждение, например, путем включения индикатора на приборной панели автомобиля. .Кроме того, некоторые каталитические системы требуют коротких циклов обедненного (кислородсодержащего) газа для загрузки катализатора и содействия дополнительному окислительному восстановлению нежелательных компонентов выхлопных газов.

Датчик наблюдения []

Воздушно-топливное соотношение и, естественно, состояние датчика можно контролировать с помощью измерителя воздушно-топливного отношения, который отображает выходное напряжение датчика.

Неисправности датчика []

Обычно срок службы ненагреваемого датчика составляет от 30 000 до 50 000 миль (от 50 000 до 80 000 км).Срок службы датчика с подогревом обычно составляет 100 000 миль (160 000 км). Отказ ненагреваемого датчика обычно вызван скоплением сажи на керамическом элементе, что увеличивает время его отклика и может привести к полной потере способности воспринимать кислород. У нагретых датчиков нормальные отложения выгорают во время работы, а выход из строя происходит из-за истощения катализатора. Затем датчик имеет тенденцию сообщать о бедной смеси, ECU обогащает смесь, выхлоп обогащается монооксидом углерода и углеводородами, и экономия топлива ухудшается.

Этилированный бензин загрязняет кислородные датчики и каталитические нейтрализаторы. Большинство кислородных датчиков рассчитаны на определенный срок службы в присутствии этилированного бензина, но срок службы датчика будет сокращен до 15 000 миль (24 000 км), в зависимости от концентрации свинца. Концы датчиков, поврежденных свинцом, обычно имеют обесцвеченный или ржавый цвет.

Другой частой причиной преждевременного выхода из строя лямбда-зондов является загрязнение топлива силиконами (которые используются в некоторых уплотнениях и смазках) или силикатами (используются в качестве ингибиторов коррозии в некоторых антифризах).В этом случае отложения на датчике имеют цвет от блестящего белого до зернистого светло-серого.

Утечка масла в двигатель может покрыть наконечник зонда маслянистым черным отложением, что приведет к потере чувствительности.

Чрезмерно богатая смесь вызывает накопление черного порошкообразного осадка на датчике. Это может быть вызвано неисправностью самого датчика или проблемой в системе нормирования топлива.

Подача внешнего напряжения на датчики из диоксида циркония, например Проверив их с помощью омметра некоторых типов, можно повредить их.

Некоторые датчики имеют отверстие для входа воздуха в датчик в проводе, поэтому загрязнения из провода, вызванные утечками воды или масла, могут попасть в датчик и вызвать неисправность. [7]

Признаки неисправности датчика кислорода [8] включает:

  • Световой датчик на приборной панели указывает на проблему,
  • повышенные выбросы выхлопных газов,
  • повышенный расход топлива,
  • колебание на разгоне,
  • стойло,
  • грубый холостой ход.

Приложения для дайвинга []

Анализатор кислорода для дыхательных газовых смесей для дайвинга

Тип датчика кислорода, который используется в большинстве подводных погружений, - это электрогальванический датчик кислорода, тип топливного элемента, который иногда называют анализатором кислорода или ppO 2 meter . Они используются для измерения концентрации кислорода в смесях газов для дыхания, таких как найтрокс и тримикс. [9] Они также используются в механизмах контроля кислорода в ребризерах замкнутого цикла, чтобы поддерживать парциальное давление кислорода в безопасных пределах. [10] , а также для контроля содержания кислорода в газе для дыхания в насыщенных водолазных системах и в смешанном газе, подаваемом с поверхности. Этот тип датчика работает путем измерения напряжения, создаваемого небольшим электрогальваническим топливным элементом.

Научные приложения []

При исследованиях дыхания почвы датчики кислорода могут использоваться вместе с датчиками углекислого газа, чтобы помочь улучшить характеристики дыхания почвы. Обычно в датчиках почвенного кислорода используется гальванический элемент для создания потока тока, который пропорционален измеряемой концентрации кислорода.Эти датчики расположены на разной глубине, чтобы отслеживать истощение кислорода во времени, которое затем используется для прогнозирования скорости дыхания почвы. Как правило, эти почвенные датчики оснащены встроенным нагревателем для предотвращения образования конденсата на проницаемой мембране, поскольку относительная влажность в почве может достигать 100%. [11]

В морской биологии или лимнологии измерения кислорода обычно выполняются для измерения дыхания сообщества или организма, но также используются для измерения первичной продукции водорослей.Традиционный способ измерения концентрации кислорода в пробе воды заключался в использовании методов влажной химии, например метод титрования Винклера. Однако существуют коммерчески доступные датчики кислорода, которые с большой точностью измеряют концентрацию кислорода в жидкостях. Доступны два типа датчиков кислорода: электроды (электрохимические датчики) и оптоды (оптические датчики).

Электроды []

Измеритель растворенного кислорода для лабораторного использования

Электрод Кларка - наиболее часто используемый датчик кислорода для измерения растворенного в жидкости кислорода.Основной принцип заключается в том, что катод и анод погружены в электролит. Кислород поступает в датчик через проницаемую мембрану путем диффузии и восстанавливается на катоде, создавая измеримый электрический ток.

Между концентрацией кислорода и электрическим током существует линейная зависимость. С помощью двухточечной калибровки (0% и 100% насыщение воздухом) можно измерить кислород в образце.

Одним из недостатков этого подхода является то, что кислород потребляется во время измерения со скоростью, равной диффузии в датчике.Это означает, что датчик необходимо перемешивать, чтобы получить правильные измерения и избежать застоя воды. С увеличением размера сенсора увеличивается потребление кислорода, а вместе с ним и чувствительность перемешивания. В больших датчиках также наблюдается дрейф сигнала во времени из-за расхода электролита. Однако датчики типа Кларка могут быть очень маленькими с размером наконечника 10 мкм. Потребление кислорода таким микросенсором настолько мало, что он практически нечувствителен к перемешиванию и может использоваться в застойных средах, таких как отложения или внутри тканей растений.

Оптоды []

Оптод кислорода - это датчик, основанный на оптическом измерении концентрации кислорода. На конец оптического кабеля наклеивается химическая пленка, и флуоресцентные свойства этой пленки зависят от концентрации кислорода. Флуоресценция максимальна при отсутствии кислорода. Когда проходит молекула O 2 , она сталкивается с пленкой и гасит фотолюминесценцию. При данной концентрации кислорода будет определенное количество молекул O 2 , сталкивающихся с пленкой в ​​любой момент времени, и флуоресцентные свойства будут стабильными.

Отношение сигнала (флуоресценции) к кислороду нелинейное, и оптод наиболее чувствителен при низкой концентрации кислорода. То есть чувствительность уменьшается с увеличением концентрации кислорода в соответствии с соотношением Штерна – Фольмера. Однако оптодные датчики могут работать во всем диапазоне от 0% до 100% насыщения кислородом в воде, и калибровка выполняется так же, как и с датчиком типа Кларка. Кислород не потребляется, и, следовательно, датчик нечувствителен к перемешиванию, но сигнал стабилизируется быстрее, если датчик перемешать после помещения в образец.Этот тип электродных датчиков может использоваться для мониторинга производства кислорода в реакциях расщепления воды на месте и в реальном времени.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *